# Classical Source-Free Electromagnetism is Equivalent to Free-Photon Quantum Mechanics 

Steven Kenneth Kauffmann*


#### Abstract

The classical source-free electric field is a polar transverse-vector field, but the classical magnetic field is an axial transverse-vector field. A derivative-related linear transformation (which is its own inverse) of the classical axial magnetic field in fact produces an alternate polar transverse-vector representation of the classical magnetic field. The classical source-free complex-valued electromagnetic polar transverse-vector field whose real part is the classical source-free polar electric field, and whose imaginary part is the alternate polar representation of the classical source-free magnetic field, turns out to satisfy the time-dependent Schrödinger equation whose Hamiltonian operator is that of the free photon. That classical source-free complex-valued electromagnetic polar transverse-vector field can, moreover, be slightly linearly modified to become the normalized wave function of the free photon.


## 1. The laws of classical source-free electromagnetism

The classical gauge-invariant Heaviside-Maxwell equations which apply to source-free electromagnetism are,

$$
\begin{gather*}
\text { the source-free version of Coulomb's Law, } \nabla \cdot \mathbf{E}=0 \text {, }  \tag{1.1a}\\
\text { Faraday's Law, } \nabla \times \mathbf{E}=-\dot{\mathbf{B}} / c,  \tag{1.1b}\\
\text { Gauss' Law, } \nabla \cdot \mathbf{B}=0, \tag{1.1c}
\end{gather*}
$$

the source-free version of the Biot-Savart/Maxwell Law, $\nabla \times \mathbf{B}=\dot{\mathbf{E}} / c$.
Eqs. (1.1a) and (1.1c) reveal that both $\mathbf{E}$ and $\mathbf{B}$ are transverse-vector fields, and since $\mathbf{E}$ is assumed to be a polar vector field whose dimension is the square root of energy over volume, Eqs. (1.1b) and (1.1d) reveal that $\mathbf{B}$ is an axial vector field which has the same dimension as $\mathbf{E}$.

The axial/polar vector field dichotomy which isolates $\mathbf{B}$ from $\mathbf{E}$ obviously tends to frustrate the attainment of a comprehensive understanding of the consequences of the classical source-free electromagnetic Heaviside-Maxwell equations given in Eqs. (1.1a) through (1.1d).

Fortunately, however, there exists a derivative-related linear transformation (which is its own inverse) of the axial transverse-vector magnetic field $\mathbf{B}$ into an alternate polar transverse-vector magnetic-field representation $\mathbf{M}$ which has the same dimension as that of $\mathbf{B}$ and $\mathbf{E}$,

$$
\begin{equation*}
\mathbf{M} \equiv\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{B}) \tag{1.2a}
\end{equation*}
$$

where for arbitrary real $p$ the linear operator $\left(-\nabla^{2}\right)^{p}$ is given by,

$$
\begin{equation*}
\left(-\nabla^{2}\right)^{p} f(\mathbf{r}) \equiv(2 \pi)^{-3} \int|\mathbf{k}|^{2 p} e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} f\left(\mathbf{r}^{\prime}\right) d^{3} \mathbf{k} d^{3} \mathbf{r}^{\prime} \tag{1.2b}
\end{equation*}
$$

Two important properties of the linear operators $\left(-\nabla^{2}\right)^{p}$ are that,

$$
\begin{equation*}
\left(-\nabla^{2}\right)^{p}(\nabla f(\mathbf{r}))=\nabla\left(\left(-\nabla^{2}\right)^{p} f(\mathbf{r})\right)=(2 \pi)^{-3} \int(i \mathbf{k})|\mathbf{k}|^{2 p} e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} f\left(\mathbf{r}^{\prime}\right) d^{3} \mathbf{k} d^{3} \mathbf{r}^{\prime} \tag{1.2c}
\end{equation*}
$$

and that,

$$
\begin{equation*}
\left(-\nabla^{2}\right)^{p_{2}}\left(\left(-\nabla^{2}\right)^{p_{1}} f(\mathbf{r})\right)=\left(-\nabla^{2}\right)^{p_{1}+p_{2}} f(\mathbf{r}) . \tag{1.2d}
\end{equation*}
$$

Application of the properties given by Eqs. (1.2c) and (1.2d) yield that,

$$
\begin{equation*}
\nabla \cdot \mathbf{M}=\nabla \cdot\left(\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{B})\right)=\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \cdot(\nabla \times \mathbf{B}))=0, \tag{1.3a}
\end{equation*}
$$

so $\mathbf{M}$ is a transverse-vector field, just as $\mathbf{B}$ is (Gauss' Law). In addition,

$$
\begin{gather*}
\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{M})=\left(-\nabla^{2}\right)^{-1 / 2}\left(\nabla \times\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{B})\right)=\left(-\nabla^{2}\right)^{-1}(\nabla \times(\nabla \times \mathbf{B}))= \\
\left(-\nabla^{2}\right)^{-1}\left(\nabla(\nabla \cdot \mathbf{B})-\nabla^{2} \mathbf{B}\right)=\left(-\nabla^{2}\right)^{-1}\left(-\nabla^{2} \mathbf{B}\right)=\mathbf{B}, \tag{1.3b}
\end{gather*}
$$

so the Eq. (1.2a) linear transformation is its own inverse.
We next replace Eq. (1.1c), namely $\nabla \cdot \mathbf{B}=0$, by Eq. (1.3a), namely $\nabla \cdot \mathbf{M}=0$, and furthermore insert Eq. (1.3b), namely $\mathbf{B}=\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{M})$ into Eqs. (1.1b) and (1.1d) in order to eliminate the axial magnetic-field vector $\mathbf{B}$ from the Heaviside-Maxwell equations for source-free electromagnetism presented in Eqs. (1.1a) through (1.1d) in favor of the alternative polar magnetic-field vector M. Thus Faraday's Law

[^0]of Eq. (1.1b), namely $\nabla \times \mathbf{E}=-\dot{\mathbf{B}} / c$, is replaced by $-c \nabla \times \mathbf{E}=\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \dot{\mathbf{M}})$. To solve this last equation for $\dot{\mathbf{M}}$, we apply the curl operator $\nabla \times$ to both its left and right sides, bearing in mind that $\nabla \times$ commutes with the operator $\left(-\nabla^{2}\right)^{-1 / 2}$ (see Eq. (1.2c)), and also that $\nabla \times(\nabla \times \mathbf{E})=-\nabla^{2} \mathbf{E}$ since $\nabla \cdot \mathbf{E}=0$, and likewise that $\nabla \times(\nabla \times \dot{\mathbf{M}})=-\nabla^{2} \dot{\mathbf{M}}$ since $\nabla \cdot \dot{\mathbf{M}}=0$. The result for $\dot{\mathbf{M}}$ in terms of $\mathbf{E}$ is,
\[

$$
\begin{equation*}
\dot{\mathbf{M}}=-c\left(-\nabla^{2}\right)^{1 / 2} \mathbf{E} . \tag{1.4a}
\end{equation*}
$$

\]

The source-free Biot-Savart/Maxwell Law of Eq. (1.1d), namely $\nabla \times \mathbf{B}=\dot{\mathbf{E}} / c$, is replaced by $\dot{\mathbf{E}}=c \nabla \times$ $\left(\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{M})\right)$. Again, since the curl operator $\nabla \times$ commutes with the operator $\left(-\nabla^{2}\right)^{-1 / 2}$, and $\nabla \times(\nabla \times \mathbf{M})=-\nabla^{2} \mathbf{M}$ because $\nabla \cdot \mathbf{M}=0$, the simplified result for $\dot{\mathbf{E}}$ in terms of $\mathbf{M}$ is,

$$
\begin{equation*}
\dot{\mathbf{E}}=c\left(-\nabla^{2}\right)^{1 / 2} \mathbf{M} \tag{1.4b}
\end{equation*}
$$

We note in passing that Eq. (1.4b) implies that $\mathbf{M}$ can also be expressed in the form,

$$
\begin{equation*}
\mathbf{M}=\left(-\nabla^{2}\right)^{-1 / 2} \dot{\mathbf{E}} / c \tag{1.4c}
\end{equation*}
$$

a representation of $\mathbf{M}$ which follows as well from Eq. (1.2a) and the source-free Biot-Savart/Maxwell Law given by Eq. (1.1d).

In addition to the time-dependent Eqs. (1.4a) and (1.4b), which are clearly consistent with both $\mathbf{E}$ and $\mathbf{M}$ being polar vector fields, we of course know as well that both $\mathbf{E}$ and $\mathbf{M}$ are transverse-vector fields,

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=0 \tag{1.4d}
\end{equation*}
$$

and,

$$
\begin{equation*}
\nabla \cdot \mathbf{M}=0 \tag{1.4e}
\end{equation*}
$$

The two real-valued vector equations given by Eqs. (1.4a) and (1.4b) can be combined into the single complex-valued vector equation,

$$
\begin{equation*}
i d(\mathbf{E}+i \mathbf{M}) / d t=c\left(-\nabla^{2}\right)^{1 / 2}(\mathbf{E}+i \mathbf{M}) \tag{1.5a}
\end{equation*}
$$

Similarly, the two real-valued equations given by Eqs. (1.4d) and (1.4e) can be combined into the single complex-valued equation,

$$
\begin{equation*}
\nabla \cdot(\mathbf{E}+i \mathbf{M})=0 \tag{1.5b}
\end{equation*}
$$

Upon multiplying Eq. (1.5a) through by the constant $\hbar$ it becomes,

$$
\begin{equation*}
i \hbar d(\mathbf{E}+i \mathbf{M}) / d t=\hbar c\left(-\nabla^{2}\right)^{1 / 2}(\mathbf{E}+i \mathbf{M}) \tag{1.6a}
\end{equation*}
$$

whose form is that of a time-dependent Schrödinger equation with the Hamiltonian operator,

$$
\begin{equation*}
\widehat{h}=\hbar c\left(-\nabla^{2}\right)^{1 / 2}=\left(|-i \hbar \nabla|^{2}\right)^{1 / 2} c=\left(|\widehat{\mathbf{p}}|^{2}\right)^{1 / 2} c=|\widehat{\mathbf{p}}| c \tag{1.6b}
\end{equation*}
$$

which is the relativistic energy of a zero-mass free particle, i.e., the relativistic energy of the free photon.
Notwithstanding that the form of Eq. (1.6a) is that of the time-dependent Schrödinger equation of a free photon, the entity $(\mathbf{E}+i \mathbf{M})$ has shortcomings for the role of a normalized quantum wave function. For example, the dimension of $(\mathbf{E}+i \mathbf{M})$ is the square root of energy over volume, whereas the dimension of a normalized quantum wave function is the square root of inverse volume. We now work out the linear modification of $(\mathbf{E}+i \mathbf{M})$ which renders it a satisfactory normalized free-photon wave function.

## 2. The normalized free-photon wave function in terms of classical electromagnetic fields

To remove the inappropriate (for a normalized quantum wave function) dimension of the square root of energy from $(\mathbf{E}+i \mathbf{M})$ we linearly transform it by the inverse of the square root of a pure number $N$ times the free-photon Hamiltonian $\widehat{h}$,

$$
\begin{equation*}
\boldsymbol{\Psi}=(N \widehat{h})^{-1 / 2}(\mathbf{E}+i \mathbf{M}), \text { where } \widehat{h}=\hbar c\left(-\nabla^{2}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Note that since $(\mathbf{E}+i \mathbf{M})$ satisfies the time-dependent free-photon Schrödinger equation whose Hamiltonian operator is $\widehat{h}$, the $\boldsymbol{\Psi}$ of Eq. (2.1) satisfies that time-dependent Schrödinger equation as well since the
additional linear transformation factor $(N \widehat{h})^{-1 / 2}$ it features is time-independent and commutes with the Hamiltonian operator $\widehat{h}$.

We next work out the appropriate value of the pure number $N$ which occurs in the Eq. (2.1) expression for the complex vector wave function $\boldsymbol{\Psi}$ by considering the expectation value of the Hamiltonian operator $\widehat{h}$ in the state $\mathbf{\Psi}$,

$$
\begin{equation*}
\langle\widehat{h}\rangle_{\boldsymbol{\Psi}}=\int \boldsymbol{\Psi}^{*} \cdot(\widehat{h} \mathbf{\Psi}) d^{3} \mathbf{r}=N^{-1} \int(\mathbf{E}-i \mathbf{M}) \cdot(\mathbf{E}+i \mathbf{M}) d^{3} \mathbf{r}=N^{-1} \int\left(|\mathbf{E}|^{2}+|\mathbf{M}|^{2}\right) d^{3} \mathbf{r} . \tag{2.2}
\end{equation*}
$$

Since from Eq. (1.2a), $\mathbf{M}=\left(-\nabla^{2}\right)^{-1 / 2}(\nabla \times \mathbf{B})$, and from Eq. (1.1c), $\nabla \cdot \mathbf{B}=0$, it can be demonstrated that,

$$
\begin{equation*}
\int|\mathbf{M}|^{2} d^{3} \mathbf{r}=\int|\mathbf{B}|^{2} d^{3} \mathbf{r}, \tag{2.3}
\end{equation*}
$$

by applying the lemma,

$$
\begin{equation*}
\int((\nabla \times \mathbf{U}) \cdot \mathbf{V}) d^{3} \mathbf{r}=\int(\mathbf{U} \cdot(\nabla \times \mathbf{V})) d^{3} \mathbf{r} \tag{2.4}
\end{equation*}
$$

which follows from integration by parts.
Therefore, from Eqs. (2.2) and (2.3),

$$
\begin{equation*}
\langle\widehat{h}\rangle_{\boldsymbol{\Psi}}=N^{-1} \int\left(|\mathbf{E}|^{2}+|\mathbf{B}|^{2}\right) d^{3} \mathbf{r} \tag{2.5}
\end{equation*}
$$

and since $(1 / 2) \int\left(|\mathbf{E}|^{2}+|\mathbf{B}|^{2}\right) d^{3} \mathbf{r}$ is known to be the energy of the source-free electromagnetic field, the value of $N$ is 2. Upon putting this result for $N$ into Eq. (2.1), we obtain the free-photon wave function $\boldsymbol{\Psi}$ in terms of the source-free electric and magnetic fields,

$$
\begin{gather*}
\mathbf{\Psi}=(2 \hbar c)^{-1 / 2}\left(-\nabla^{2}\right)^{-1 / 4}(\mathbf{E}+i \mathbf{M})=(2 \hbar c)^{-1 / 2}\left(\left(-\nabla^{2}\right)^{-1 / 4} \mathbf{E}+i\left(-\nabla^{2}\right)^{-3 / 4}(\nabla \times \mathbf{B})\right)= \\
(2 \hbar c)^{-1 / 2}\left(\left(-\nabla^{2}\right)^{-1 / 4} \mathbf{E}+i\left(-\nabla^{2}\right)^{-3 / 4}(\dot{\mathbf{E}} / c)\right) . \tag{2.6}
\end{gather*}
$$

Since $\nabla \cdot \mathbf{E}=0$ and $\nabla \cdot \mathbf{M}=0$, it is apparent that $\nabla \cdot \mathbf{\Psi}=0$, namely that the free-photon wave function $\mathbf{\Psi}$ is a transverse complex-valued vector field.


[^0]:    *Retired, APS Senior Member, SKKauffmann@gmail.com.

