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Abstract The classical source-free electric field is a polar transverse-vector field, but the classical magnetic field is
an axial transverse-vector field. A derivative-related linear transformation (which is its own inverse) of the classical
axial magnetic field in fact produces an alternate polar transverse-vector representation of the classical magnetic
field. The classical source-free complex-valued electromagnetic polar transverse-vector field whose real part is the
classical source-free polar electric field, and whose imaginary part is the alternate polar representation of the classical
source-free magnetic field, turns out to satisfy the time-dependent Schrédinger equation whose Hamiltonian operator
is that of the free photon. That classical source-free complex-valued electromagnetic polar transverse-vector field
can, moreover, be slightly linearly modified to become the normalized wave function of the free photon.

1. The laws of classical source-free electromagnetism

The classical gauge-invariant Heaviside-Maxwell equations which apply to source-free electromagnetism are,

the source-free version of Coulomb’s Law, V- E =0, (1.1a)
Faraday’s Law, V x E = —B/c, (1.1b)

Gauss’ Law, V- B =0, (1.1c)

the source-free version of the Biot-Savart/Maxwell Law, V x B = E/c. (1.1d)

Egs. (1.1a) and (1.1c) reveal that both E and B are transverse-vector fields, and since E is assumed to be
a polar vector field whose dimension is the square root of energy over volume, Eqgs. (1.1b) and (1.1d) reveal
that B is an awxial vector field which has the same dimension as E.

The axial/polar vector field dichotomy which isolates B from E obviously tends to frustrate the at-
tainment of a comprehensive understanding of the consequences of the classical source-free electromagnetic
Heaviside-Maxwell equations given in Egs. (1.1a) through (1.1d).

Fortunately, however, there exists a derivative-related linear transformation (which is its own inverse)
of the axial transverse-vector magnetic field B into an alternate polar transverse-vector magnetic-field rep-
resentation M which has the same dimension as that of B and E,

M = (-V?)"V*(V x B), (1.2a)
where for arbitrary real p the linear operator (—V?2)P is given by,
(=V2)Pf(r) = (2n) 73 [ k[P 0= f(r') Pk dPr'. (1.2b)
Two important properties of the linear operators (—V?)? are that,
(—V2P(V () = V(=V2Pf(r)) = (2m) (K] el =) f(2Y) ok (1.2¢)
and that,
(=W (V2P f(x)) = (=920 f(r). (1.24)
Application of the properties given by Egs. (1.2¢) and (1.2d) yield that,
V-M=V-((-V?)"*(V xB)) = (-V?~*(V-(VxB)) =0, (1.3a)

so M is a transverse-vector field, just as B is (Gauss’ Law). In addition,
(=V2) 2 (V x M) = (=V?)12(V x (=V?)2(V x B)) = (=V?)"}(V x (V x B)) =
(-V?)~YV(V-B) - V?B) = (-V?)71(-V?B) = B, (1.3b)
so the Eq. (1.2a) linear transformation is its own inverse.
We next replace Eq. (1.1c¢), namely V - B = 0, by Eq. (1.3a), namely V- M = 0, and furthermore
insert Eq. (1.3b), namely B = (—V?)"1/2(V x M) into Egs. (1.1b) and (1.1d) in order to eliminate the axial

magnetic-field vector B from the Heaviside-Maxwell equations for source-free electromagnetism presented in
Egs. (1.1a) through (1.1d) in favor of the alternative polar magnetic-field vector M. Thus Faraday’s Law
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of Eq. (1.1b), namely V x E = —B/c, is replaced by —cV x E = (=V?)~2(V x M). To solve this last
equation for M, we apply the curl operator Vx to both its left and right sides, bearing in mind that Vx
commutes with the operator (—V?)~/2 (see Eq. (1.2c)), and also that V x (V x E) = —V2E since V-E = 0,
and likewise that V x (V x M) = —V?M since V - M = 0. The result for M in terms of E is,

M = —¢(—V?)'"/?E. (1.4a)

The source-free Biot-Savart/Maxwell Law of Eq. (1.1d), namely V x B = E/c, is replaced by E = ¢V x
((=V?)7'/2(V x M)). Again, since the curl operator Vx commutes with the operator (—V?)~'/2, and
V x (V x M) = —V2M because V - M = 0, the simplified result for E in terms of M is,

E = ¢(-V?)"/*M. (1.4b)
We note in passing that Eq. (1.4b) implies that M can also be expressed in the form,
M = (-V?)"'?E/c, (1.4c)

a representation of M which follows as well from Eq. (1.2a) and the source-free Biot-Savart/Maxwell Law
given by Eq. (1.1d).

In addition to the time-dependent Eqs. (1.4a) and (1.4b), which are clearly consistent with both E and
M being polar vector fields, we of course know as well that both E and M are transverse-vector fields,

V-E =0, (1.44d)
and,
V-M=0. (1.4e)

The two real-valued vector equations given by Eqgs. (1.4a) and (1.4b) can be combined into the single
complex-valued vector equation,

id(E + iM) /dt = ¢(—V2)"/*(E + iM). (1.52)

Similarly, the two real-valued equations given by Egs. (1.4d) and (1.4e) can be combined into the single
complex-valued equation,

V- (E+iM) =0. (1.5b)
Upon multiplying Eq. (1.5a) through by the constant 7 it becomes,
ihd(E + iM)/dt = he(—V?)Y2(E + iM), (1.6a)
whose form is that of a time-dependent Schrodinger equation with the Hamiltonian operator,
h = he(=V2)12 = (| = ihV )72 = (|B])/c = [Ble, (L.6b)

which is the relativistic energy of a zero-mass free particle, i.e., the relativistic energy of the free photon.
Notwithstanding that the form of Eq. (1.6a) is that of the time-dependent Schrodinger equation of a
free photon, the entity (E + iM) has shortcomings for the role of a normalized quantum wave function.
For example, the dimension of (E + ¢{M) is the square root of energy over volume, whereas the dimension
of a normalized quantum wave function is the square root of inverse volume. We now work out the linear
modification of (E 4+ iM) which renders it a satisfactory normalized free-photon wave function.

2. The normalized free-photon wave function in terms of classical electromagnetic fields

To remove the inappropriate (for a normalized quantum wave function) dimension of the square root of
energy from (E 4 iM) we linearly transform it by the inverse of the square root of a pure number N times
the free-photon Hamiltonian h,

@ = (Nh)/2(E + iM), where h = fic(—V?2)"/2, (2.1)

Note that since (E + iM) satisfies the time-dependent free-photon Schrodinger equation whose Hamilto-
nian operator is h, the ¥ of Eq. (2.1) satisfies that time-dependent Schrédinger equation as well since the
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additional linear transformation factor (Nﬁ)*l/ ? it features is time-independent and commutes with the
Hamiltonian operator h.

We next work out the appropriate value of the pure number N which occurs in the Eq. (2.1) expression
for the complex vector wave function ¥ by considering the expectation value of the Hamiltonian operator h
in the state ¥,

(h)yg = [ (h®)d’r = N7 [(E—iM) - (E+iM)d’r = N~! [(|E]2 + [M[?) d°r. (2.2)
Since from Eq. (1.2a), M = (=V?)~/2(V x B), and from Eq. (1.1c), V-B = 0, it can be demonstrated that,
J IM]2d®r = [|B|?d®r, (2.3)

by applying the lemma,
J(VxU)-V)dr = [(U-(VxV))d, (2.4)

which follows from integration by parts.
Therefore, from Egs. (2.2) and (2.3),

(h)e = N~ [([E? + |BJ?) d°r, (2.5)

and since (1/2) [(|JE[* 4+ |B|?) d°r is known to be the energy of the source-free electromagnetic field, the
value of N is 2. Upon putting this result for N into Eq. (2.1), we obtain the free-photon wave function ¥
in terms of the source-free electric and magnetic fields,

W = (2hc) /2 (=V?)" V4 (E 4 iM) = (2h¢) /> ((-V?)V*E+i(—V?)~*/*(V x B)) =
(2hc) V2 ((=V2) V1 E +i(—V?)"¥/* (E/c)). (2.6)

Since V-E =0 and V-M = 0, it is apparent that V- ¥ = 0, namely that the free-photon wave function ¥
is a transverse complex-valued vector field.



