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Abstract The classical source-free electric field is a polar transverse-vector field, but the classical magnetic field is
an axial transverse-vector field. A derivative-related linear transformation (which is its own inverse) of the classical
axial magnetic field in fact produces an alternate polar transverse-vector representation of the classical magnetic
field. The classical source-free complex-valued electromagnetic polar transverse-vector field whose real part is the
classical source-free polar electric field, and whose imaginary part is the alternate polar representation of the classical
source-free magnetic field, turns out to satisfy the time-dependent Schrödinger equation whose Hamiltonian operator
is that of the free photon. That classical source-free complex-valued electromagnetic polar transverse-vector field
can, moreover, be slightly linearly modified to become the normalized wave function of the free photon.

1. The laws of classical source-free electromagnetism

The classical gauge-invariant Heaviside-Maxwell equations which apply to source-free electromagnetism are,

the source-free version of Coulomb’s Law, ∇ ·E = 0, (1.1a)

Faraday’s Law, ∇×E = −Ḃ/c, (1.1b)

Gauss’ Law, ∇ ·B = 0, (1.1c)

the source-free version of the Biot-Savart/Maxwell Law, ∇×B = Ė/c. (1.1d)

Eqs. (1.1a) and (1.1c) reveal that both E and B are transverse-vector fields, and since E is assumed to be
a polar vector field whose dimension is the square root of energy over volume, Eqs. (1.1b) and (1.1d) reveal
that B is an axial vector field which has the same dimension as E.

The axial/polar vector field dichotomy which isolates B from E obviously tends to frustrate the at-
tainment of a comprehensive understanding of the consequences of the classical source-free electromagnetic
Heaviside-Maxwell equations given in Eqs. (1.1a) through (1.1d).

Fortunately, however, there exists a derivative-related linear transformation (which is its own inverse)
of the axial transverse-vector magnetic field B into an alternate polar transverse-vector magnetic-field rep-
resentation M which has the same dimension as that of B and E,

M ≡ (−∇2)−1/2(∇×B), (1.2a)

where for arbitrary real p the linear operator (−∇2)p is given by,

(−∇2)pf(r) ≡ (2π)−3
∫
|k|2p eik·(r−r′)f(r′) d3k d3r′. (1.2b)

Two important properties of the linear operators (−∇2)p are that,

(−∇2)p(∇f(r)) = ∇((−∇2)pf(r)) = (2π)−3
∫

(ik)|k|2p eik·(r−r′)f(r′) d3k d3r′, (1.2c)

and that,

(−∇2)p2((−∇2)p1f(r)) = (−∇2)p1+p2f(r). (1.2d)

Application of the properties given by Eqs. (1.2c) and (1.2d) yield that,

∇ ·M = ∇ · ((−∇2)−1/2(∇×B)) = (−∇2)−1/2(∇ · (∇×B)) = 0, (1.3a)

so M is a transverse-vector field, just as B is (Gauss’ Law). In addition,

(−∇2)−1/2(∇×M) = (−∇2)−1/2(∇× (−∇2)−1/2(∇×B)) = (−∇2)−1(∇× (∇×B)) =

(−∇2)−1(∇(∇ ·B)−∇2B) = (−∇2)−1(−∇2B) = B, (1.3b)

so the Eq. (1.2a) linear transformation is its own inverse.
We next replace Eq. (1.1c), namely ∇ · B = 0, by Eq. (1.3a), namely ∇ ·M = 0, and furthermore

insert Eq. (1.3b), namely B = (−∇2)−1/2(∇×M) into Eqs. (1.1b) and (1.1d) in order to eliminate the axial
magnetic-field vector B from the Heaviside-Maxwell equations for source-free electromagnetism presented in
Eqs. (1.1a) through (1.1d) in favor of the alternative polar magnetic-field vector M. Thus Faraday’s Law
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of Eq. (1.1b), namely ∇ × E = −Ḃ/c, is replaced by −c∇ × E = (−∇2)−1/2(∇ × Ṁ). To solve this last
equation for Ṁ, we apply the curl operator ∇× to both its left and right sides, bearing in mind that ∇×
commutes with the operator (−∇2)−1/2 (see Eq. (1.2c)), and also that ∇× (∇×E) = −∇2E since ∇·E = 0,
and likewise that ∇× (∇× Ṁ) = −∇2Ṁ since ∇ · Ṁ = 0. The result for Ṁ in terms of E is,

Ṁ = −c(−∇2)1/2E. (1.4a)

The source-free Biot-Savart/Maxwell Law of Eq. (1.1d), namely ∇ × B = Ė/c, is replaced by Ė = c∇ ×
((−∇2)−1/2(∇ ×M)). Again, since the curl operator ∇× commutes with the operator (−∇2)−1/2, and
∇× (∇×M) = −∇2M because ∇ ·M = 0, the simplified result for Ė in terms of M is,

Ė = c(−∇2)1/2M. (1.4b)

We note in passing that Eq. (1.4b) implies that M can also be expressed in the form,

M = (−∇2)−1/2Ė/c, (1.4c)

a representation of M which follows as well from Eq. (1.2a) and the source-free Biot-Savart/Maxwell Law
given by Eq. (1.1d).

In addition to the time-dependent Eqs. (1.4a) and (1.4b), which are clearly consistent with both E and
M being polar vector fields, we of course know as well that both E and M are transverse-vector fields,

∇ ·E = 0, (1.4d)

and,

∇ ·M = 0. (1.4e)

The two real-valued vector equations given by Eqs. (1.4a) and (1.4b) can be combined into the single
complex-valued vector equation,

id(E + iM)/dt = c(−∇2)1/2(E + iM). (1.5a)

Similarly, the two real-valued equations given by Eqs. (1.4d) and (1.4e) can be combined into the single
complex-valued equation,

∇ · (E + iM) = 0. (1.5b)

Upon multiplying Eq. (1.5a) through by the constant h̄ it becomes,

ih̄d(E + iM)/dt = h̄c(−∇2)1/2(E + iM), (1.6a)

whose form is that of a time-dependent Schrödinger equation with the Hamiltonian operator,

ĥ = h̄c(−∇2)1/2 = (| − ih̄∇|2)1/2c = (|p̂|2)1/2c = |p̂|c, (1.6b)

which is the relativistic energy of a zero-mass free particle, i.e., the relativistic energy of the free photon.
Notwithstanding that the form of Eq. (1.6a) is that of the time-dependent Schrödinger equation of a

free photon, the entity (E + iM) has shortcomings for the role of a normalized quantum wave function.
For example, the dimension of (E + iM) is the square root of energy over volume, whereas the dimension
of a normalized quantum wave function is the square root of inverse volume. We now work out the linear
modification of (E + iM) which renders it a satisfactory normalized free-photon wave function.

2. The normalized free-photon wave function in terms of classical electromagnetic fields

To remove the inappropriate (for a normalized quantum wave function) dimension of the square root of
energy from (E + iM) we linearly transform it by the inverse of the square root of a pure number N times

the free-photon Hamiltonian ĥ,

Ψ = (Nĥ)−1/2(E + iM), where ĥ = h̄c(−∇2)1/2. (2.1)

Note that since (E + iM) satisfies the time-dependent free-photon Schrödinger equation whose Hamilto-

nian operator is ĥ, the Ψ of Eq. (2.1) satisfies that time-dependent Schrödinger equation as well since the
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additional linear transformation factor (Nĥ)−1/2 it features is time-independent and commutes with the

Hamiltonian operator ĥ.
We next work out the appropriate value of the pure number N which occurs in the Eq. (2.1) expression

for the complex vector wave function Ψ by considering the expectation value of the Hamiltonian operator ĥ
in the state Ψ,

〈 ĥ 〉Ψ =
∫

Ψ∗ · ( ĥΨ) d3r = N−1
∫

(E− iM) · (E + iM) d3r = N−1
∫

(|E|2 + |M|2) d3r. (2.2)

Since from Eq. (1.2a), M = (−∇2)−1/2(∇×B), and from Eq. (1.1c), ∇·B = 0, it can be demonstrated that,∫
|M|2d3r =

∫
|B|2d3r, (2.3)

by applying the lemma, ∫
((∇×U) ·V) d3r =

∫
(U · (∇×V)) d3r, (2.4)

which follows from integration by parts.
Therefore, from Eqs. (2.2) and (2.3),

〈 ĥ 〉Ψ = N−1
∫

(|E|2 + |B|2) d3r, (2.5)

and since (1/2)
∫

(|E|2 + |B|2) d3r is known to be the energy of the source-free electromagnetic field, the
value of N is 2. Upon putting this result for N into Eq. (2.1), we obtain the free-photon wave function Ψ
in terms of the source-free electric and magnetic fields,

Ψ = (2h̄c)−1/2 (−∇2)−1/4 (E + iM) = (2h̄c)−1/2 ((−∇2)−1/4 E + i(−∇2)−3/4 (∇×B)) =

(2h̄c)−1/2 ((−∇2)−1/4 E + i(−∇2)−3/4 (Ė/c)). (2.6)

Since ∇ ·E = 0 and ∇ ·M = 0, it is apparent that ∇ ·Ψ = 0, namely that the free-photon wave function Ψ
is a transverse complex-valued vector field.
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