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Prouhet–Tarry–Escott 

The Prouhet-Tarry-Escott (PTE) problem seeks two 𝑛-tuples of integers 𝑥𝑖 and 𝑦𝑖 such that 

the sums of like powers up to 𝑘 are equal 

∑ 𝑥𝑖
𝑝

𝑛

𝑖=1

= ∑ 𝑦𝑖
𝑝

𝑛

𝑖=1

, 1 ≤ 𝑝 ≤ 𝑘 

𝑘 is called the degree, and 𝑛 the size of the problem. If 𝑥𝑖 and 𝑦𝑖 are permutations of the 

same numbers then the solution is trivial. The system of equations is written with the 

notation [𝑥𝑖] =𝑘 [𝑦𝑖]. For non-trivial solutions 𝑘 < 𝑛. If 𝑘 = 𝑛 − 1, the solution is called 

ideal. Chains of 𝑛-tuples which are PTE solutions in pairs [𝑥𝑖] =𝑘 [𝑦𝑖] =𝑘 [𝑧𝑖] … , are also of 

interest. The problem is equivalent to seeking pairs of polynomials which fully factorise over 

the integers and which differ by a polynomial of degree 𝑛 − 𝑘 − 1, a non-zero integer 

constant in the ideal case, 

∏(𝑥 − 𝑥𝑖) −

𝑛

𝑖=1

∏(𝑥 − 𝑦𝑖)

𝑛

𝑖=1

= 𝐶 

Versions of the PTE problem date back to Euler, but it was introduced in its current form by 

Prouhet in 1851 [1] and was studied in detail by Tarry who found solutions on size 6 and 8 [2] 

and Escott who found solution of size 7 [3] in the early twentieth century. Solutions of size 9 

were found by Letac in 1942 [7] 

Solutions are said to be equivalent if they differ only by permutations of the elements, 

addition of an integer constant, multiplication by a rational constant, or any combination of 

these operations.  

In particular, negating each element on both sides leads to an equivalent solution. If these 

are the same up to permutations then the solution is called symmetric. The nature of 

symmetric solutions differs for odd vs even size 𝑛.  If 𝑛 is odd then the elements on the left 

side are the negatives of the elements on the right and the even power equations are 

automatically satisfied. If 𝑛 is even, the elements on either side fall into pairs differing in 

sign, and the odd power equations are automatically satisfied. 



In the current state of art of the PTE problem, ideal solutions are known for all sizes up to 10 

[5] and also for size 12 [4,6].  

size 2 degree 1 

The ideal PTE problem of size two only requires that 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2. Any solution is 

therefore equivalent to the symmetric form [𝑎, −𝑎] =1 [𝑏, −𝑏] which can be extended to an 

infinite chain of solutions.  

size 3 degree 2 

For size three, a linear and quadratic equation in three variables must be satisfied. For the 

symmetric case [𝑥1, 𝑥2, 𝑥3] =2 [−𝑥1, −𝑥2, −𝑥3] the quadratic is satisified and the linear is  

𝑥1 + 𝑥2 + 𝑥3 = 0 

So in general for the symmetric case 

 
[𝑢, 𝑣, −𝑢 − 𝑣] =2 [−𝑢, −𝑣, 𝑢 + 𝑣] 

 
 

For the general case consider a linear substitution 

[𝑢, 𝑝 + 𝑞, 𝑟 − 𝑠, ] =2 [−𝑢, 𝑝 − 𝑞, 𝑟 + 𝑠] 

Five variables are sufficient up to equivalence. The necessary equations then reduce to 

𝑢 + 𝑞 = 𝑠 

𝑝𝑞 = 𝑟𝑠 

By the factorisation principle on the second equation take 

𝑝 = 𝑎𝑏, 𝑞 = 𝑐𝑑, 𝑟 = 𝑎𝑑, 𝑠 = 𝑐𝑏 

And then solve the first equation for 𝑢 to provide the general solution up to equivalence 

parameterised by four variables 

 
[𝑐𝑏 − 𝑐𝑑, 𝑎𝑏 + 𝑐𝑑, 𝑎𝑑 − 𝑐𝑏] =2 [𝑐𝑑 − 𝑐𝑏, 𝑎𝑏 − 𝑐𝑑, 𝑎𝑑 + 𝑐𝑏] 

 

 

The general solution can also be expressed in a symmetric form parameterised by six 

variables [13,14] 



𝑥1 = 𝑎𝑝 + 𝑏𝑞 + 𝑐𝑟 

𝑥2 = 𝑎𝑞 + 𝑏𝑟 + 𝑐𝑝 

𝑥3 = 𝑎𝑟 + 𝑏𝑝 + 𝑐𝑞 

𝑦1 = 𝑎𝑝 + 𝑏𝑟 + 𝑐𝑞 

𝑦2 = 𝑎𝑞 + 𝑏𝑝 + 𝑐𝑟 

𝑦3 = 𝑎𝑟 + 𝑏𝑞 + 𝑐𝑝 

 

This solution can be understood in terms of factorisations over the commutative ring 

generated by an element 𝜔 subject to 𝜔3 = 1 so that a general element takes the form 

= 𝑎 + 𝑏𝜔 + 𝑐𝜔2 . The ring has a conjugation �̅� = 𝑎 + 𝑐𝜔 + 𝑏𝜔2 . With 𝑣 = 𝑝 + 𝑞𝜔 + 𝑟𝜔2, 

𝑥 = 𝑥1 + 𝑥2𝜔 + 𝑥3𝜔2 and 𝑦 = 𝑦1 + 𝑦2𝜔 + 𝑦3𝜔2 the solution reduces 𝑥 = �̅�𝑣, 𝑦 = 𝑢𝑣.  

If the additional relation 1 + 𝜔 + 𝜔2 = 0 is imposed then the ring reduces to the Eisenstein 

integers and the general solution can be simplified to the four parameter form, but with less 

symmetry.  

Solution chains of length 2𝑙−1 can be generated using products of 𝑙 Eisenstein integers with 

arbitrary selections of conjugates taken.  

In polynomial form, the general solution to size three case above gives 

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3) − (𝑥 − 𝑦1)(𝑥 − 𝑦2)(𝑥 − 𝑦3)

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑝 − 𝑞)(𝑞 − 𝑟)(𝑟 − 𝑝) 

size 4 Degree 3 

The general size 4 ideal case requires three equations, but the symmetric case reduces to 

one 

[𝑎, −𝑎, 𝑏, −𝑏] =3 [𝑐, −𝑐, 𝑑, −𝑑] 

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 

This has the well-known general solution from products of Gaussian integers and their 

conjugates 

𝑎 = 𝑝𝑞 − 𝑟𝑠, 𝑏 = 𝑝𝑟 + 𝑞𝑠, 𝑐 = 𝑝𝑞 + 𝑟𝑠, 𝑑 = 𝑝𝑟 − 𝑞𝑠 

Chains of symmetric solutions of size 4 can be formed using products of more Gaussian 

integers and their conjugates. 

The general ideal case of size 4 was solved by “Crussol” in 1913 [15].  

The linear equation is resolved by making use of an additive constant to set both sides to 

zero 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 0 



The remaining quadratic and cubic power equations are transformed by a linear substitution 

𝑥1 = 𝑋1 + 𝑋2 + 𝑋3 

𝑥2 = 𝑋1 − 𝑋2 − 𝑋3 

𝑥3 = −𝑋1 − 𝑋2 + 𝑋3 

𝑥4 = −𝑋1 + 𝑋2 − 𝑋3 

𝑦1 = 𝑌1 + 𝑌2 + 𝑌3 

𝑦2 = 𝑌1 − 𝑌2 − 𝑌3 

𝑦3 = −𝑌1 − 𝑌2 + 𝑌3 

𝑦4 = −𝑌1 + 𝑌2 − 𝑌3 

This reduces the system of equations to 

𝑋1
2 + 𝑋2

2 + 𝑋3
2 = 𝑌1

2 + 𝑌2
2 + 𝑌3

2 

𝑋1𝑋2𝑋3 = 𝑌1𝑌2𝑌3 

Taking account of the common factors in the second equation, a general solution 

parameterised by 9 integers 𝑡𝑖𝑗 , 𝑖 = 1,2,3, 𝑗 = 1,2,3 is given by 

𝑋𝑖 = 𝑡𝑖1𝑡𝑖2𝑡𝑖3   𝑖 = 1,2,3 

𝑌𝑗 = 𝑡1𝑗𝑡2𝑗𝑡3𝑗   𝑗 = 1,2,3 

Leaving just one equation to be resolved 

𝑡11
2𝑡12

2𝑡13
2 + 𝑡21

2𝑡22
2𝑡23

2 + 𝑡31
2𝑡32

2𝑡33
2 = 𝑡11

2𝑡21
2𝑡31

2 + 𝑡12
2𝑡22

2𝑡32
2 + 𝑡13

2𝑡23
2𝑡33

2 

Crussol and other authors since have completed the solution by treating it as a quadratic in 

the three variables 𝑡𝑖𝑖 with the remaining variables taken as givens. Standard methods can 

be used to parameterise all solutions over the rational numbers, which can then be 

transformed to integers by multiplying through by all denominators. This provides a solution 

which is complete, but opaque and unsymmetrical. An alternative approach is to recognise 

the equation as a determinant expression 

|

𝑡11
2 𝑡33

2 𝑡22
2

𝑡23
2 𝑡12

2 𝑡31
2

𝑡32
2 𝑡21

2 𝑡13
2

| = 0 

The ideal PTE problem of size 4 is therefore equivalent to seeking 3 by 3 singular matrices 

with all square elements. Note that a solution being symmetric is equivalent to one of the 

elements being zero. 

The singularity of a matrix is equivalent to there being a linear relationship between the 

rows or columns. I.e there exist integers 𝑎, 𝑏, 𝑐 such that 



𝑎𝑡11
2 + 𝑏𝑡33

2 + 𝑐𝑡22
2 = 0 

𝑎𝑡23
2 + 𝑏𝑡12

2 + 𝑐𝑡31
2 = 0 

𝑎𝑡32
2 + 𝑏𝑡21

2 + 𝑐𝑡13
2 = 0 

For example, in the specific case of 𝑎 = 𝑏 = 1, 𝑐 = −1  the problem requires three 

Pythagorean triples. 

Multiplication or division of the elements in any row or column to an integer only affects the 

overall solution by a constant multiplier. If we are interested in constructing solutions up to 

equivalence then we can freely apply such factors. It can be arranged that no element in the 

bottom row is zero. By this means it is possible to reduce the last row of the matrix to all 

unit elements while keeping the other two rows in integer form.  

|
𝑡11

2 𝑡33
2 𝑡22

2

𝑡23
2 𝑡12

2 𝑡31
2

1 1 1

| = 0 

The linear relationship is then subject to the condition 𝑎 + 𝑏 + 𝑒 = 0 and it can be assumed 

that the three coefficients are relatively prime in pairs. In this case the general solution in 

integers to 𝑎𝑥2 + 𝑏𝑦2 + 𝑒𝑐 = 0 can be parameterised up to a common factor by 

𝑥 = 𝑏𝑢2 + 𝑐𝑣2, 𝑦 = 𝑒𝑤2 + 𝑎𝑢2, 𝑧 = 𝑎𝑣2 + 𝑏𝑤2 

𝑢 + 𝑣 + 𝑤 = 0 

A general solution up to equivalence is therefore given by 

𝑋1 = (𝑏𝑢2 + 𝑐𝑣2)(𝑐𝑟2 + 𝑎𝑝2) 

𝑋2 = (𝑎𝑣2 + 𝑏𝑤2)(𝑏𝑝2 + 𝑐𝑞2) 

𝑋3 = (𝑐𝑤2 + 𝑎𝑢2)(𝑎𝑟2 + 𝑏𝑝2) 

𝑌1 = (𝑏𝑢2 + 𝑐𝑣2)(𝑎𝑟2 + 𝑏𝑝2) 

𝑌2 = (𝑎𝑣2 + 𝑏𝑤2)(𝑐𝑟2 + 𝑎𝑝2) 

𝑌3 = (𝑐𝑤2 + 𝑎𝑢2)(𝑏𝑝2 + 𝑐𝑞2) 

𝑎 + 𝑏 + 𝑐 = 𝑢 + 𝑣 + 𝑤 = 𝑝 + 𝑞 + 𝑟 = 0 

An alternative general solution is to substitute with 

𝑡11 = 𝑅 − 2𝑆𝑔 

𝑡33 = 𝑅 − 2𝑆ℎ 

𝑡22 = 𝑅 − 2𝑆𝑘 

𝑡23 = 𝑑 

𝑡12 = 𝑒 

𝑡31 = 𝑓 



Then the determinant equation becomes 

4𝑅𝑆(𝑔𝑒2 − 𝑔𝑓2 + ℎ𝑓2 − ℎ𝑑2 + 𝑘𝑑2 − 𝑘𝑒2)

− 4𝑆2(𝑔2𝑒2 − 𝑔2𝑓2 + ℎ2𝑓2 − ℎ2𝑑2 + 𝑘2𝑑2 − 𝑘2𝑒2) 

A general fifth degree polynomial solution up to equivalence parameterised by 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑘 

is therefore given by taking 

 

𝑅 = 𝑔2𝑒2 − 𝑔2𝑓2 + ℎ2𝑓2 − ℎ2𝑑2 + 𝑘2𝑑2 − 𝑘2𝑒2 

𝑆 = 𝑔𝑒2 − 𝑔𝑓2 + ℎ𝑓2 − ℎ𝑑2 + 𝑘𝑑2 − 𝑘𝑒2 

𝑥1 = (𝑒 + 𝑑 + 𝑓)𝑅 − 2(𝑒𝑔 + 𝑑𝑘 + 𝑓ℎ)𝑆 

𝑥2 = (𝑒 − 𝑑 − 𝑓)𝑅 − 2(𝑒𝑔 − 𝑑𝑘 − 𝑓ℎ)𝑆 

𝑥3 = (−𝑒 − 𝑑 + 𝑓)𝑅 − 2(−𝑒𝑔 − 𝑑𝑘 + 𝑓ℎ)𝑆 

𝑥4 = (−𝑒 + 𝑑 − 𝑓)𝑅 − 2(−𝑒𝑔 + 𝑑𝑘 − 𝑓ℎ)𝑆 

𝑦1 = (𝑓 + 𝑒 + 𝑑)𝑅 − 2(𝑓𝑔 + 𝑒𝑘 + 𝑑ℎ)𝑆 

𝑦2 = (𝑓 − 𝑒 − 𝑑)𝑅 − 2(𝑓𝑔 − 𝑒𝑘 − 𝑑ℎ)𝑆 

𝑦3 = (−𝑓 − 𝑒 + 𝑑)𝑅 − 2(−𝑓𝑔 − 𝑒𝑘 + 𝑔ℎ)𝑆 

𝑦4 = (−𝑓 + 𝑒 − 𝑑)𝑅 − 2(−𝑓𝑔 + 𝑒𝑘 − 𝑔ℎ)𝑆 
 

 

An alternative way to analyse the size 4 case is by polynomial splitting. Write a solution as 

𝑝(𝑥)𝑟(𝑥) − 𝑞(𝑥)𝑠(𝑥) = 𝐶 

Where  

𝑝(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) 

𝑟(𝑥) = (𝑥 − 𝑥3)(𝑥 − 𝑥4) 

𝑞(𝑥) = (𝑥 − 𝑦1)(𝑥 − 𝑦2) 

𝑠(𝑥) = (𝑥 −  𝑦3)(𝑥 − 𝑦4) 

Then 𝑝(𝑥) − 𝑞(𝑥) = 𝐴𝑙(𝑥) where 𝑙(𝑥) = 𝑥 − 𝑧 is linear with 𝑧 a rational number. 

Also 𝑠(𝑥) − 𝑟(𝑥) = 𝐴𝑘(𝑥) where 𝑘(𝑥) = 𝑥 − 𝑤 is linear with 𝑤 a rational number. 

Furthermore (𝑝(𝑥) − 𝑞(𝑥))𝑟(𝑥) − 𝑞(𝑥)(𝑠(𝑥) − 𝑟(𝑥)) = 𝐶 

𝑙(𝑥)𝑟(𝑥) − 𝑞(𝑥)𝑘(𝑥) = 𝐶/𝐴 

Which is an ideal solution of size 3 

In addition (𝑝(𝑥) − 𝑞(𝑥))𝑠(𝑥) − 𝑝(𝑥)(𝑠(𝑥) − 𝑟(𝑥)) = 𝐶 



𝑙(𝑥)𝑠(𝑥) − 𝑝(𝑥)𝑘(𝑥) = 𝐶/𝐴 

In summary, an ideal solution of size 4 can be split to produce two ideal solutions of size 3 

that share a number on either side and have the same constant. There are 18 ways to make 

such a split from one solution. 

size 5 degree 4 

For the symmetric case of size 5 only the linear and cubic equation need to be resolved. 

Solutions can found with suitable non-general substitutions. For the symmetric cases that 

most commonly arise for low numbers it is found that one element is often the sum of two 

others on the same side. This can be written as, 

[−𝑥 − 𝑦 − 𝑧, −𝑥 − 𝑦 + 𝑧, 𝑥, 𝑦, 𝑥 + 𝑦] =4 [−𝑥 − 𝑦, −𝑦, −𝑥, 𝑥 + 𝑦 − 𝑧, 𝑥 + 𝑦 + 𝑧] 

In this case the linear equation is satisfied and the cubic reduces to 

(2𝑧𝑧 + 𝑥𝑦)(𝑥 + 𝑦) = 0 

No element can be zero so the general solution of this case is given by  

𝑧 = 𝑎𝑏, 𝑥 = −𝑎𝑎, 𝑦 = 2𝑏𝑏 

A general parameterisation for the ideal symmetric case of size 5 up to equivalence can be 

derived by a method of linear composition [10]. Suppose two solutions are known [𝑎𝑖] and 

[𝑏𝑖]  

∑ 𝑎𝑗

5

𝑗=1

= 0, ∑ 𝑎𝑗
3

5

𝑗=1

= 0 

∑ 𝑏𝑗

5

𝑗=1

= 0, ∑ 𝑏𝑗
3

5

𝑗=1

= 0 

Seek another solution [𝑥𝑖] that is a linear combination 

𝑥𝑖 = 𝐴𝑎𝑖 − 𝐵𝑏𝑖  

The linear equation ∑ 𝑥𝑖
5
𝑖=1 = 0  is immediately satisfied while the cubic ∑ 𝑥𝑖

35
𝑖=1 = 0 

reduces to 

𝐴𝐵 (𝐴 ∑ 𝑎𝑗
2𝑏𝑗

5

𝑗=1

− 𝐵 ∑ 𝑏𝑗
2𝑎𝑗

5

𝑗=1

) = 0 

The solutions given by 𝐴 = 0 and 𝐵 = 0 are equivalent to the originals, but a new solution is 

obtained from 



𝐴 = ∑ 𝑏𝑗
2𝑎𝑗

5

𝑗=1

 

𝐵 = ∑ 𝑎𝑗
2𝑏𝑗

5

𝑗=1

 

𝑥𝑖 = 𝑎𝑖 ∑ 𝑏𝑗
2𝑎𝑗

5

𝑗=1

− 𝑏𝑖 ∑ 𝑎𝑗
2𝑏𝑗

5

𝑗=1

 

To get a general solution it is then sufficient to choose trivial solutions for [𝑎𝑖] and [𝑏𝑖] such 

that any potential non-trivial general solution is a linear combination up to some factor, e.g. 

[𝑎𝑖] = [𝑚, 0, 𝑟, −𝑚, −𝑟] 

[𝑏𝑖] = [0, 𝑚, −𝑚, 𝑠, −𝑠] 

Which gives a general solution to the symmetric case of size 5 up to equivalence as follows 

 
𝐴 = 𝑚2𝑟 − 𝑠2𝑚 − 𝑠2𝑟 

𝐵 = −𝑟2𝑚 + 𝑚2𝑠 − 𝑟2𝑠 
[𝑥𝑖] = [𝑚𝐴, 𝑚𝐵, 𝑟𝐴 − 𝑚𝐵, 𝑠𝐵 − 𝑚𝐴, −𝑟𝐴 − 𝑠𝐵] 

 

 

The non-symmetric solutions of size 5 have not been fully resolved. However, there is a 

splitting theorem that can be applied when the following sum relations apply 

𝑥1 + 𝑥2 = 𝑦1 + 𝑦2, 𝑥3 + 𝑥4 + 𝑥5 = 𝑦3 + 𝑦4 + 𝑦5 

One relation implies the other. This splitting condition may seem like a very special case, but 

computational searches show that such a relation usually holds for some choice of the 

elements, at least for small solutions. Indeed it usually holds in 2, 3 or even 4 different ways. 

There are exceptions.  

Given this relation, a split can be made using a similar procedure as was done for the size 

four case  

𝑝(𝑥)𝑟(𝑥) − 𝑞(𝑥)𝑠(𝑥) = 𝐶 

Where  



𝑝(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) 

𝑟(𝑥) = (𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5) 

𝑞(𝑥) = (𝑥 − 𝑦1)(𝑥 − 𝑦2) 

𝑠(𝑥) = (𝑥 − 𝑦3)(𝑥 − 𝑦4)(𝑥 − 𝑥5) 

Then 𝑝(𝑥) − 𝑞(𝑥) = 𝐴. 

Also 𝑠(𝑥) − 𝑟(𝑥) = 𝐴𝑘(𝑥) where 𝑘(𝑥) = 𝑥 − 𝑤 is linear with 𝑤 a rational number. 

Furthermore (𝑝(𝑥) − 𝑞(𝑥))𝑟(𝑥) − 𝑞(𝑥)(𝑠(𝑥) − 𝑟(𝑥)) = 𝐶 

𝑟(𝑥) − 𝑞(𝑥)𝑘(𝑥) = 𝐶/𝐴 

Which is an ideal solution of size 3 

In addition (𝑝(𝑥) − 𝑞(𝑥))𝑠(𝑥) − 𝑝(𝑥)(𝑠(𝑥) − 𝑟(𝑥)) = 𝐶 

𝑠(𝑥) − 𝑝(𝑥)𝑘(𝑥) = 𝐶/𝐴 

In summary, an ideal solution of size 5 with a splitting condition can be split into two ideal 

solutions of size three with the same constant and an element shared on one side when the 

linear sums in each are made equal. 

The complete solution to the general ideal case of size 5 is not known, but non-symmetric 

parametric solutions have been given by Choudhry [11]  

size 6 degree 5 

Consider an ideal solution of size 3 in zeroed form 

[𝑥1, 𝑥2, 𝑥3] =2 [𝑦1, 𝑦2, 𝑦3] 

𝑥1 + 𝑥2 + 𝑥3 = 0 

𝑝(𝑥) − 𝑞(𝑥) = 𝐶 = 𝑦1𝑦2𝑦3 − 𝑥1𝑥2𝑥3 

The negatives of each side can be used to provide a chain of solutions. 

[𝑥1, 𝑥2, 𝑥3] =2 [−𝑥1, −𝑥2, −𝑥3] =2 [𝑦1, 𝑦2, 𝑦3] =2 [−𝑦1, −𝑦2, −𝑦3] 

𝑝(𝑥) + 𝑞(−𝑥) = 𝐷 = −𝑦1𝑦2𝑦3 − 𝑥1𝑥2𝑥3 

It follows that 

𝑝(𝑥)𝑝(−𝑥) − 𝑞(𝑥)𝑞(−𝑥) 

= 𝑝(𝑥)(𝑝(−𝑥) − 𝑞(−𝑥))  +  𝑞(−𝑥)(𝑝(𝑥) − 𝑞(𝑥)) 

= 𝑝(𝑥)𝐶 + 𝑞(−𝑥)𝐶 = 𝐶𝐷 



So for any ideal solution of size 3 there is a symmetric ideal solution of size 6 

[𝑥1, 𝑥2, 𝑥3, −𝑥1, −𝑥2, −𝑥3] =5 [𝑦1, 𝑦2, 𝑦3, −𝑦1, −𝑦2, −𝑦3] 

This relation implies in particular that 𝑥1
4 + 𝑥2

4 + 𝑥3
4 = 𝑦1

4 + 𝑦4 + 𝑦3
4, a result that could 

have been derived by direct algebraic means from the original ideal solution. A more 

general result is that if [𝑥𝑖] =𝑛−1 [𝑦𝑖] is an ideal solution of size 𝑛 and ∑ 𝑥𝑖 = 0𝑛
𝑖=1  then 

∑ 𝑥𝑖
𝑛+1 = ∑ 𝑦𝑖

𝑛+1𝑛
𝑖=1

𝑛
𝑖=1  [9], which can be derived most simply using a polynomial method 

as above. 

There are symmetric ideal solutions of size 6 that do not take the above form. There are also 

non-symmetric ideal solutions. Again Choudhry provides parametric solutions [11] 

size 7 degree 6 

A parameterisation for a class of symmetric ideal solutions is known [5,11] Choudhry has 

already provided an elegant derivation but an alternative method using a relation with the 

general case of size 4 may provide some new light. 

Start by assuming a splitting condition 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑥5 + 𝑥6 + 𝑥7 = 0.  

𝑝(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4) 

𝑞(𝑥) == (𝑥 − 𝑥5)(𝑥 − 𝑥6)(𝑥 − 𝑥7) 

𝑝′(𝑥) = 𝑝(−𝑥) 

𝑞′(𝑥) = −𝑞(−𝑥) 

Then 

𝑝(𝑥)𝑞(𝑥) − 𝑝′(𝑥)𝑞′(𝑥) = 𝐶 

𝑝(𝑥) − 𝑝′(𝑥) = 𝐴𝑥 

𝑞′(𝑥) − 𝑞(𝑥) = 𝐴 

(𝑝(𝑥) − 𝑝′(𝑥))𝑞(𝑥) − 𝑝′(𝑥)(𝑞′(𝑥) − 𝑞(𝑥)) = 𝐶 

𝑞(𝑥)𝑥 − 𝑝′(𝑥) = 𝐶/𝐴 

Therefore finding a symmetric ideal solution of size 7 with this splitting condition is 

equivalent to finding a general ideal solution of size 4 which includes a zero element when 

zeroed. I.e. when 𝑥5 + 𝑥6 + 𝑥7 = 0 then 

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] =6 [−𝑥1, −𝑥2, −𝑥3, −𝑥4, −𝑥5, −𝑥6, −𝑥7] 

Is equivalent to 



[0, 𝑥5, 𝑥6, 𝑥7] =3 [−𝑥1, −𝑥2, −𝑥3, −𝑥4] 

Using the analysis of the size 4 case above, this is equivalent to finding a 3 by 3 singular 

matrix with square elements 

  

|
𝐴1

2 𝐴2
2 𝐴3

2

𝑎1
2 𝑎2

2 𝑎3
2

1 1 1

| = 0 

With the extra condition that 

𝐴1𝑎2 + 𝐴2𝑎3 + 𝐴3𝑎1 = 0 

This is more tractable if the further ansatz 𝑎1 + 𝑎2 + 𝑎3 = 0 is imposed. A general solution 

giving the zero element is then  

𝐴1 = 𝑃 − 2(𝑎3 − 𝑎1)𝑄 

𝐴2 = 𝑃 − 2(𝑎1 − 𝑎2)𝑄 

𝐴3 = 𝑃 − 2(𝑎2 − 𝑎3)𝑄 

And the determinant equation is resolved up to common factors by 

𝑄 = (𝑎3 − 𝑎1)(𝑎2
2 − 𝑎3

2) + (𝑎1 − 𝑎2)(𝑎3
2 − 𝑎1

2) + (𝑎2 − 𝑎3)(𝑎1
2 − 𝑎2

2) 

𝑃 = (𝑎3 − 𝑎1)2(𝑎2
2 − 𝑎3

2) + (𝑎1 − 𝑎2)2(𝑎3
2 − 𝑎1

2) + (𝑎2 − 𝑎3)2(𝑎1
2 − 𝑎2

2) 

𝑥5 = 𝐴1𝑎2 − 𝐴2𝑎3 − 𝐴3𝑎1 

𝑥6 = −𝐴1𝑎2 − 𝐴2𝑎3 + 𝐴3𝑎1 

𝑥7 = −𝐴1𝑎2 + 𝐴2𝑎3 − 𝐴3𝑎1 

−𝑥1 = 𝐴1𝑎3 + 𝐴2𝑎1 + 𝐴3𝑎2 

−𝑥2 = 𝐴1𝑎3 − 𝐴2𝑎1 − 𝐴3𝑎2 

−𝑥3 = −𝐴1𝑎3 − 𝐴2𝑎1 + 𝐴3𝑎2 

−𝑥4 = −𝐴1𝑎3 + 𝐴2𝑎1 − 𝐴3𝑎2 

 

Setting 𝑎1 = 𝑔, 𝑎2 = ℎ, 𝑎3 = −(𝑔 + ℎ) , these equations can be combined to give a 

parameterised (partial) solution for the ideal symmetric case of size 7 in terms of degree 5 

polynomials in two integer parameters. 
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