Proof of the Riemann Hypothesis

Guilherme Rocha de Rezende

1Instituto Federal de Brasília

September 23, 2021

Abstract

In this article we will prove the problem equivalent to the Riemann Hypothesis developed by Luis Báez in the article “A sequential Riesz-like criterion for the Riemann hypothesis”.

1 Introduction

The Riemann Hypothesis is a famous conjecture made by Bernhard Riemann in his article on prime numbers. Riemann, as indicated by the title of his article [1], wanted to know the number of prime numbers in a given interval of the real line, so he extended a Euler observation and defined a function called Zeta. Riemann obtained an explicit formula, which depends on the non-trivial zeros of the Zeta function, for the quantity he was looking for. Along the way, Riemann mentions that probably all non-trivial zeros of the Zeta function are, in the now called critical line, that is, when the complex argument $s = \sigma + iT$ of the Zeta function has a real part equal to one-half. - $\sigma = \frac{1}{2}$. We will prove, using the equivalent problem developed by Luis Báez-Duarte [2], the conjecture.
2 Proof

\[q_k := \sum_{n=1}^{\infty} \left(1 - \frac{1}{n^2} \right)^k = \sum_{n=1}^{k} \left(1 - \frac{1}{n^2} \right)^k + \sum_{n=k+1}^{\infty} \left(1 - \frac{1}{n^2} \right)^k \]

(1)

We need to prove that: \(q_k = O \left(k^{-3/4} \right) \), i.e., \(q_k \leq M \cdot k^{-3/4} \) for all \(k \geq k_0 \) and \(M \) is a definite positive constant. This is equivalent to the Riemann’s hypothesis.

2.1 Treating the first sum

2.1.1 Using Hölder inequality we get

\[\sum_{n=1}^{k} \left(1 - \frac{1}{n^2} \right)^k \leq \left(\sum_{n=2}^{k} \frac{1}{n^{(1/4) + \Delta}} \right)^{1/p} \cdot \left(\sum_{n=2}^{k} \left(1 - \frac{1}{n^{(1/4) - \Delta}} \right)^{k/4} \right)^{1/q} \]

(2)

and we must determine, conveniently, \(p, q \) and \(\Delta \).

2.1.2 Finding an upper bound and changing exponent 2 of \(n \)

\[\sum_{n=2}^{k} \left(1 - \frac{1}{n^2} \right)^{k-q} \frac{e^{-kn}}{n^{(2 - \Delta) - q}} < \sum_{n=2}^{k} \frac{e^{-kn}}{n^{(2 - \Delta) - q}} < \sum_{n=2}^{k} e^{-\frac{kn}{n^{(2 - \Delta) - q}}} + \delta \left(\left(2 - \frac{1}{p} - \Delta \right) \cdot q \right) \]

(3)

where \(\delta \left(\left(2 - \frac{1}{p} - \Delta \right) \cdot q \right) \) is an error associated with exponent change, and the error is zero if \(\left(2 - \frac{1}{p} - \Delta \right) \cdot q > 2 \). This error will be analized later.

2.1.3 Finding an integral that is an upper bound of the sum

Let \(C = \left(2 - \frac{1}{p} - \Delta \right) \cdot q \), where we assume for now \(C > 1 \), we have

\[\sum_{n=2}^{k} \frac{e^{-kn}}{n^{C}} < \int_{1}^{k} \frac{e^{-xn}}{x^C} \, dx \]

(4)
Change of variable:

\[y = \frac{kq}{x^C} \]
\[x = (kq)^\frac{1}{C} \cdot y^{-\frac{1}{C}} \]
\[dx = (kq)^\frac{1}{C} \cdot y^{-\frac{1}{C} - 1} dy \]

\[\int_1^k \frac{e^{-\frac{kq}{x^C}}}{x^C} dx = \int_1^k \frac{e^{-y}}{kq} \cdot y \cdot (kq)^\frac{1}{C} \cdot y^{-\frac{1}{C} - 1} dy \]

\[\frac{(kq)^\frac{1}{C} \cdot \int_0^k e^{-y} \cdot y^{-\frac{1}{C}} dy}{(kq)^\frac{1}{C} \cdot \int_0^\infty e^{-y} \cdot y^{-\frac{1}{C}} dy} < \frac{(kq)^\frac{1}{C} \cdot \int_0^k e^{-y} \cdot y^{-\frac{1}{C}} dy}{(kq)^\frac{1}{C} \cdot \int_0^\infty e^{-y} \cdot y^{-\frac{1}{C}} dy} \]

Therefore

\[\sum_{n=2}^k \frac{e^{-\frac{kq}{n^C}}}{n^C} < \frac{(kq)^\frac{1}{C} \cdot \Gamma \left(1 - \frac{1}{C} \right)}{C} \]

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \frac{(kq)^\frac{1}{C} \cdot \Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{C} \]

2.1.4 Replacing sum by integral in Hölder inequality

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \left(\sum_{n=2}^k \frac{1}{n^{(\frac{1}{C} + \frac{1}{\Delta}) p}} \right)^{1/p} \cdot \left(\frac{(kq)^\frac{1}{C} \cdot \Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{C} \right)^{1/q} \]

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \left(\sum_{n=2}^k \frac{1}{n^{(\frac{1}{C} + \frac{1}{\Delta}) p}} \right)^{1/p} \cdot \left(\frac{\Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{k^{\frac{1}{C} - 1}} \right)^{1/q} \cdot k^{\frac{1}{C} - \frac{1}{2}} \]

i.e., using Hölder’s inequality,

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \left(\sum_{n=2}^k \frac{1}{n^{(\frac{1}{C} + \frac{1}{\Delta}) p}} \right)^{1/p} \cdot \left(\frac{\Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{k^{\frac{1}{C} - 1}} \right)^{1/q} \cdot k^{\frac{1}{C} - \frac{1}{2} - 1} \]

or

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \left(\sum_{n=2}^k \frac{k}{n^{(\frac{1}{C} + \frac{1}{\Delta}) p}} \right)^{1/p} \cdot \left(\frac{\Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{k^{\frac{1}{C} - 1}} \right)^{1/q} \cdot k^{\frac{1}{C} - \frac{1}{2}} \]

\[\sum_{n=2}^k \frac{(1 - \frac{1}{n^C})^{kq}}{n^{Cq}} < \left(\sum_{n=2}^k \frac{k}{n^{(\frac{1}{C} + \frac{1}{\Delta}) p}} \right)^{1/p} \cdot \left(\frac{\Gamma \left(1 - \frac{1}{C} \right) + \delta(C)}{k^{\frac{1}{C} - 1}} \right)^{1/q} \cdot k^{\frac{1}{C} - \frac{1}{2} - 1} \]
and finally, using the fact that arithmetic mean is greater than harmonic mean, we get

\[
\sum_{n=2}^{k} \left(\frac{1 - \frac{1}{n^p}}{n^{C+q}} \right)^{kq} < \left(\sum_{n=2}^{k} \frac{1}{n^{(\frac{1}{p} + \Delta)\cdot p}} \right)^{\frac{1}{p}} \cdot \left(\frac{q^{\frac{1}{p} - 1}}{C} \Gamma \left(1 - \frac{1}{C} \right) + \frac{\delta(C)}{k^{\frac{1}{p} - 1}} \Gamma \left(\frac{2}{3} \right) \right)^{\frac{1}{q}} \cdot k^{-\frac{1}{q}} \cdot \frac{1}{\Gamma \left(\frac{2}{3} \right)} \cdot k^{\frac{1}{q}}
\]

(17)

2.1.5 Choosing \(q \) to obtain \(-\frac{3}{4}\) power

Therefore we need to solve

\[
\frac{1}{qC} - \frac{1}{q} = -\frac{3}{4}
\]

(18)

and solving the equations we arrive at

\[
q := \frac{4}{C}
\]

(19)

and because of Hölder condition \(\frac{1}{q} + \frac{1}{p} = 1 \) we get

\[
p = \frac{4}{4-C}.
\]

(20)

We can choose \(C = \left(2 - \frac{1}{p} - \Delta \right) \cdot q = 3 \) which implies \(\Delta = \frac{8p - 3Cp - 4}{4p} = \frac{8 \cdot 4 - 3 \cdot 4 - 4}{16} = -\frac{1}{2} \) therefore \(1 + \Delta \cdot p = 1 - \frac{1}{2} \cdot 4 = -1 \)

2.1.6 Final Hölder inequality

\[
\sum_{n=2}^{k} \left(\frac{1 - \frac{1}{n^p}}{n^{C+q}} \right)^{kq} < \left(\sum_{n=2}^{k} \frac{1}{n^{\frac{1}{p}}} \right)^{\frac{1}{p}} \cdot \left(\frac{\left(\frac{1}{4} \right)^{\frac{1}{3}}}{3} \Gamma \left(\frac{2}{3} \right) \right)^{\frac{3}{4}} \cdot k^{-\frac{3}{4}}
\]

(21)

2.2 Treating the second sum

We must find an upper bound to the sum

\[
\sum_{n=k+1}^{\infty} \frac{1 - \frac{1}{n^p}}{n^2}
\]

(22)

We can write

\[
k^{\frac{3}{4}} \sum_{n=k+1}^{\infty} \frac{1 - \frac{1}{n^p}}{n^2} = \sum_{n=k+1}^{\infty} \frac{k^{\frac{3}{4}}}{n^{\frac{5}{2}}} \cdot \frac{1 - \frac{1}{n^p}}{n^{\frac{5}{2}}}
\]

(23)
\[
\sum_{n=k+1}^{\infty} \frac{k^{\frac{3}{4}}}{n^{\frac{3}{4}}} \frac{(1 - \frac{1}{n^2})^k}{n^2} < \sum_{n=k+1}^{\infty} \frac{(1 - \frac{1}{n^2})^k}{n^2} < \zeta \left(\frac{5}{4} \right) \tag{24}
\]

where \(\zeta \) is the Riemann Zeta function. Therefore

\[
\sum_{n=k+1}^{\infty} \frac{(1 - \frac{1}{n^2})^k}{n^2} < \zeta \left(\frac{5}{4} \right) \cdot k^{-\frac{3}{4}}. \tag{25}
\]

2.3 Putting the two results together

\[
q_k < \left[\left(\sum_{n=2}^{k} \frac{1}{n^2} \right)^{1/4} \cdot \left(\frac{3}{4} \right)^{\frac{3}{4}} \Gamma \left(\frac{2}{3} \right) + \zeta \left(\frac{5}{4} \right) \right] \cdot k^{-\frac{3}{4}} \tag{26}
\]

or

\[
q_k < \left[\left(\frac{3}{4} \right)^{\frac{3}{4}} \Gamma \left(\frac{2}{3} \right) + \zeta \left(\frac{5}{4} \right) \right] \cdot k^{-\frac{3}{4}} \tag{27}
\]

where \(\delta(c) = 0 \) for \(C = 3 \). Consequently \(q_k = O(k^{-\frac{3}{4}}) \) or in alternative notation \(q_k << k^{-\frac{3}{4}} \). By Báez theorem RH is true and the zeroes are simple.

3 Conclusion

After the efforts of several mathematicians and scientific disseminators [3], the problem has reached maturity and can be solved.

4 Acknowledgement

Posthumously, I thank my dear mother Edna Vieira Rocha de Rezende who always motivated me in life.

I also thank my father Rodolpho Antônio de Rezende who always encouraged me in my personal life and in the habit of reading.

Finally, I thank my dear brother Gustavo Rocha de Rezende and my dear sister Gisella Rocha de Rezende.
References

