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Is The Riemann Hypothesis True? Yes, It Is.
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Abstract In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = σ + it of the zeta function, defined by:

ζ(s) =

+∞∑
n=1

1

ns
, for <(s) > 1

have real part σ =
1

2
.

We give the proof that σ =
1

2
using an equivalent statement of the Riemann

Hypothesis concerning the Dirichlet η function.
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1 Introduction.

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 1 Let ζ(s) be the complex function of the complex variable s =
σ + it defined by the analytic continuation of the function:

ζ1(s) =

+∞∑
n=1

1

ns
, for <(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ζ(s) = 0 are written as :

s =
1

2
+ it

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet η function. The latter is
related to Riemann’s ζ function where we do not need to manipulate any
expression of ζ(s) in the critical band 0 < <(s) < 1. In our calculations, we
will use the definition of the limit of real sequences. We arrive to give the proof

that σ =
1

2
.

1.1 The function ζ.

We denote s = σ + it the complex variable of C. For <(s) = σ > 1, let ζ1 be
the function defined by :

ζ1(s) =

+∞∑
n=1

1

ns
, for <(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical
function of s. Denote by ζ(s) the function obtained by the analytic continua-
tion of ζ1(s) to the whole complex plane, minus the point s = 1, then we recall
the following theorem [2]:

Theorem 1 The function ζ(s) satisfies the following :
1. ζ(s) has no zero for <(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ <(s) ≤ 1 (called the critical

strip) and are symmetric about both the vertical line <(s) =
1

2
and the real

axis =(s) = 0.

The vertical line <(s) = 1

2
is called the critical line.

The Riemann Hypothesis is formulated as:
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Conjecture 2 (The Riemann Hypothesis,[2]) All nontrivial zeros of ζ(s) lie on

the critical line <(s) = 1

2
.

In addition to the properties cited by the theorem 1 above, the function ζ(s)
satisfies the functional relation [2] called also the reflection functional equation
for s ∈ C\{0, 1} :

ζ(1− s) = 21−sπ−scos
sπ

2
Γ (s)ζ(s) (1)

where Γ (s) is the gamma function defined only for <(s) > 0, given by the
formula :

Γ (s) =

∫ ∞
0

e−tts−1dt, <(s) > 0

So, instead of using the functional given by (1), we will use the one pre-
sented by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

The function eta is convergent for all s ∈ C with <(s) > 0 [2].

We have also the theorem (see page 16, [3]):

Theorem 2 For all t ∈ R, ζ(1 + it) 6= 0.

So, we take the critical strip as the region defined as 0 < <(s) < 1.

1.2 A Equivalent statement to the Riemann Hypothesis.

Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:

Equivalence 3 The Riemann Hypothesis is equivalent to the statement that
all zeros of the Dirichlet eta function :

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), σ > 1 (2)

that fall in the critical strip 0 < <(s) < 1 lie on the critical line <(s) = 1

2
.

The series (2) is convergent, and represents (1 − 21−s)ζ(s) for <(s) = σ > 0
([3], pages 20-21). We can rewrite:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), <(s) = σ > 0 (3)
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η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (4)

and η(s) = 0⇐⇒ ρ = 0.

2 Preliminaries of the proof that the zeros of the function η(s) are

on the critical line <(s) =
1

2
.

Proof . We denote s = σ+it with 0 < σ < 1. We consider one zero of η(s) that
falls in critical strip and we write it as s = σ + it, then we obtain 0 < σ < 1
and η(s) = 0⇐⇒ (1− 21−s)ζ(s) = 0. We verifies easily the two propositions:

s, is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s)

(5)
Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) =
(1− 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip. We can
write:

s, is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s)
(6)

Let us write the function η:

η(s) =

+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =

+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=

+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=

+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with <(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns
= 0

or:

∀ε′ > 0 ∃n0,∀N > n0,
∣∣∣ N∑
n=1

(−1)n−1

ns

∣∣∣ < ε′

We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =

n∑
k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n∑
k=1

(−1)k−1 sin(tLogk)
kσ
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with s = σ + it and t 6= 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with
0 < σ < 1. It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We
obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)
kσ

= 0

Using the definition of the limit of a sequence, we can write:

∀ε1 > 0∃nr,∀N > nr, |<(η(s)N )| < ε1 =⇒ <(η(s)N )2 < ε1
2 (7)

∀ε2 > 0 ∃ni,∀N > ni, |=(η(s)N )| < ε2 =⇒ =(η(s)N )2 < ε2
2 (8)

Then:

0 <

N∑
k=1

cos2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)
kσk′σ

< ε21

0 <

N∑
k=1

sin2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′sin(tLogk).sin(tLogk′)
kσk′σ

< ε22

Taking ε = ε1 = ε2 and N > max(nr, ni), we get by making the sum member
to member of the last two inequalities:

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
< 2ε2 (9)

We can write the above equation as :

0 < ρ2N < 2ε2 (10)

or ρ(s) = 0.

3 Case σ =
1

2
=⇒ 2σ = 1.

We suppose that σ =
1

2
=⇒ 2σ = 1. Let’s start by recalling Hardy’s theorem

(1914) ([2], page 24):

Theorem 4 There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (5-6), it follows the proposition :
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Proposition 1 There are infinitely many zeros of η(s) on the critical line.

Let sj = 1
2 + itj one of the zeros of the function η(s) on the critical line, so

η(sj) = 0. The equation (9) is written for sj :

0 <

N∑
k=1

1

k
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

< 2ε2

or:
N∑
k=1

1

k
< 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

If N −→ +∞, the series
N∑
k=1

1

k
is divergent and becomes infinite. then:

+∞∑
k=1

1

k
≤ 2ε2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

Hence, we obtain the following result:

limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

= −∞ (11)

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1

ksj
= 0⇐⇒ η(s) is convergent for sj =

1

2
+ itj

4 Case 0 < <(s) <
1

2
.

4.1 Case there is no zeros of η(s) with s = σ + it and 0 < σ <
1

2
.

As there is no zeros of η(s) with s = σ + it and 0 < σ <
1

2
, it follows from

the proposition (5) that ζ(s) has also no zeros with 0 < σ <
1

2
. Using the

symmetry of ζ(s), there is no zeros of ζ(s) with s = σ + it and
1

2
< σ < 1.

We deduce from the proposition (6) that the function η(s) has no zeros with

s = σ + it and
1

2
< σ < 1. Then, the function η(s) has all its nontrivial zeros

only on the critical line <(s) = σ =
1

2
and from the equivalent statement 3,

we conclude that the Riemann Hypothesis is true.
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4.2 Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1

2
.

Suppose that there exists s = σ+ it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0
with 0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation (9):

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
< 2ε2

or:
N∑
k=1

1

k2σ
< 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1

k2σ
−→ +∞ and then, we obtain :

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
= −∞ (12)

5 Case
1

2
< <(s) < 1.

Let s = σ + it be the zero of η(s) in 0 < <(s) < 1
2 , object of the previous

paragraph. From the proposition (5), ζ(s) = 0. According to point 4 of theorem
1, the complex number s′ = 1 − σ + it = σ′ + it′ with σ′ = 1 − σ, t′ = t and
1
2 < σ′ < 1 verifies ζ(s′) = 0, so s′ is also a zero of the function ζ(s) in the band
1
2 < <(s) < 1, it follows from the proposition (6) that η(s′) = 0 =⇒ ρ(s′) = 0.
By applying (9), we get:

0 <

N∑
k=1

1

k2σ′
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(t′Log(k/k′))

kσ′k′σ′
< 2ε2 (13)

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series

∑N
k=1

1

k2σ′
is

convergent to a positive constant not null C(σ′). As 1/k2 < 1/k2σ
′
, then :

0 < ζ(2) =
π2

6
=

+∞∑
k=1

1

k2
≤

+∞∑
k=1

1

k2σ′
= C(σ′) = ζ1(2σ

′) = ζ(2σ′)

From the equation (13), it follows that :

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(t′Log(k/k′))

kσ′k′σ′
= −C(σ

′)

2
= −ζ(2σ

′)

2
> −∞ (14)
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Let sl = σl + itl with σl ∈]0, 1/2[ such that η(sl) = 0.

Firstly, we suppose that tl 6= 0. For each s′l = σ′l + it′l = 1− σl + itl, we have:

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(t′lLog(k/k

′))

kσ
′
lk′σ

′
l

= −C(σ
′
l)

2
= −ζ(2σ

′
l)

2
> −∞ (15)

the left member of the equation (15) above is finite and depends of σ′l and t
′
l,

but the right member is a function only of σ′l equal to −ζ(2σ′l)/2. But for all σ”
so that 2σ” > 1, we have ζ(2σ”) depends only of σ”, then in particular for all
σ” with 2 > 2σ” > 1, ζ(2σ”) depends only of σ”, it follows that the left term

of (15) is infinite, then the contradiction with −C(σ
′
l)

2
= −ζ(2σ

′
l)

2
> −∞.

We conclude that the equation (15) is false for the cases t′l 6= 0. (16)

Secondly, we suppose that tl = 0 =⇒ t′l = 0. The equation (14) becomes:

+∞∑
k,k′=1;k<k′

(−1)k+k
′ 1

kσ
′
lk′σ

′
l

= −C(σ
′
l)

2
= −ζ(2σ

′
l)

2
> −∞ (17)

Then s′l = σ′l > 1/2 is a zero of η(s), we obtain :

η(s′l) =

+∞∑
n=1

(−1)n−1

ns
′
l

= 0 (18)

Let us define the sequence Sm as:

Sm(s′l) =

m∑
n=1

(−1)n−1

ns
′
l

=

m∑
n=1

(−1)n−1

nσ
′
l

= Sm(σ′l) (19)

From the definition of Sm, we obtain :

limm−→+∞Sm(s′l) = η(s′l) = η(σ′l) (20)

We have also:

S1(σ
′
l) = 1 > 0 (21)

S2(σ
′
l) = 1− 1

2σ
′
l

> 0 because 2σ
′
l > 1 (22)

S3(σ
′
l) = S2(σ

′
l) +

1

3σ
′
l

> 0 (23)

We proceed by recurrence, we suppose that Sm(σ′l) > 0.
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1. m = 2q =⇒ Sm+1(σ
′
l) =

m+1∑
n=1

(−1)n−1

ns
′
l

= Sm(σ′l) +
(−1)m+1−1

(m+ 1)σ
′
l

, it gives:

Sm+1(σ
′
l) = Sm(σ′l) +

(−1)2q

(m+ 1)σ
′
l

= Sm(σ′l) +
1

(m+ 1)σ
′
l

> 0⇒ Sm+1(σ
′
l) > 0

2. m = 2q + 1, we can write Sm+1(σ
′
l) as:

Sm+1(σ
′
l) = Sm−1(σ

′
l) +

(−1)m−1

mσ′l
+

(−1)m+1−1

(m+ 1)σ
′
l

We have Sm−1(σ′l) > 0, let T =
(−1)m−1

mσ′l
+

(−1)m

(m+ 1)σ
′
l

, we obtain:

T =
(−1)2q

(2q + 1)σ
′
l

+
(−1)2q+1

(2q + 2)σ
′
l

=
1

(2q + 1)σ
′
l

− 1

(2q + 2)σ
′
l

> 0 (24)

and Sm+1(σ
′
l) > 0.

Then all the terms Sm(σ′l) of the sequence Sm are great then 0, it follows that
limm−→+∞Sm(s′l) = η(s′l) = η(σ′l) > 0 and η(σ′l) < +∞ because <(s′l) = σ′l >
0 and η(s′l) is convergent. We deduce the contradiction that s′l is a zero of η(s)
and:

The equation (17) is false for the case t′l = tl = 0. (25)

From (16-25), we conclude that the function η(s) has no zeros for all s′l = σ′l+it
′
l

with σ′l ∈]1/2, 1[, it follows that the second case of the paragraph (4) above

concerning the case 0 < <(s) < 1

2
is false. Then, the function η(s) has all its

zeros on the critical line σ =
1

2
. From the equivalent statement (3), it follows

that the Riemann hypothesis is verified.

From the calculations above, we can verify easily the following known propo-
sition:

Proposition 2 For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

6 Conclusion.

In summary: for our proofs, we made use of Dirichlet’s η(s) function:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), s = σ + it

on the critical band 0 < <(s) < 1, in obtaining:

- η(s) vanishes for 0 < σ = <(s) = 1

2
;
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- η(s) does not vanish for 0 < σ = <(s) < 1

2
and

1

2
< σ = <(s) < 1.

Consequently, all the zeros of η(s) inside the critical band 0 < <(s) < 1

are on the critical line <(s) = 1

2
. Applying the equivalent proposition to the

Riemann Hypothesis (3), we conclude that the Riemann hypothesis is ver-
ified and all the nontrivial zeros of the function ζ(s) lie on the critical line

<(s) = 1

2
. The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 5 The Riemann Hypothesis is true:
All nontrivial zeros of the function ζ(s) with s = σ+ it lie on the vertical line

<(s) = 1

2
.
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