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5 Departamento de Matemática, Universidad Nacional de La Plata, 1900 La Plata-Argentina
6 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas

(IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata - Argentina
7 SThAR - EPFL, Lausanne, Switzerland

ahme123eda@gmail.com, bangeloplastino@gmail.com,
crocca@fisica.unlp.edu.ar,dmariocarlosrocca@gmail.com,

September 21, 2021

Abstract

In this manuscript we do the Quantum Field Theory (QFT) of Einstein’s Gravity (EG) based on the de-
velopments previously made by Suraj N. Gupta and Richard P. Feynman, using a new and more general
mathematical theory based on Ultrahyperfunctions [1]
Ultrahyperfunctions (UHF) are the generalization and extension to the complex plane of Schwartz ’tempered
distributions. This manuscript is an application to Einstein’s Gravity (EG) of the mathematical theory
developed by Bollini et al [2, 3, 4, 5] and continued for more than 25 years by one of the authors of this paper.
A simplified version of these results was given in [6] and, based on them, (restricted to Lorentz Invariant
distributions) QFT of EG [7] was obtained. We will quantize EG using the most general quantization
approach, the Schwinger-Feynman variational principle [8], which is more appropriate and rigorous than
the popular functional integral method (FIM). FIM is not applicable here because our Lagrangian contains
derivative couplings.
We use the Einstein Lagrangian as obtained by Gupta [9, 10, 11], but we added a new constraint to the
theory. Thus the problem of lack of unitarity for the S matrix that appears in the procedures of Gupta and
Feynman.
Furthermore, we considerably simplify the handling of constraints, eliminating the need to appeal to ghosts
for guarantying unitarity of the theory.
Our theory is obviously non-renormalizable. However, this inconvenience is solved by resorting to the theory
developed by Bollini et al. [2, 3, 4, 5, 6]
This theory is based on the thesis of Alexander Grothendieck [12] and on the theory of Ultrahyperfunctions
of Jose Sebastiao e Silva [1]
Based on these papers, a complete theory has been constructed for 25 years that is able to quantize non-
renormalizable Field Theories (FT).
Because we are using a Gupta-Feynman based EG Lagrangian and to the new mathematical theory we have
avoided the use of ghosts, as we have already mentioned, to obtain a unitary QFT of EG

KEYWORDS: Quantum Field Theory; Einstein gravity; Non-renormalizable theories, Unitarity. Ultrahy-
perfunctions
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1 Introduction

The problem of infinities that appear in a QFT is one of the most important problems that are present in it
These infinities emerge when defining the Lagrangians of the QFT’s, since the products of fields that arise in
them are products of Vector Distributions (VD), or more generally, Vector Ultrahyperfunctions (VUHF) in the
quantum case and products of Ultrahyperfunctions (UHF) in the case of the classic QFt’s. This was rigorously
established by L. Schwartz in two extensive papers published in the Annales del Institut Fourier, [13, 14] In
them Schwartz makes an extensive and detailed description of the DVs and shows that the product of two of
them is not defined, just like the usual distributions. A VD is a continuous linear functional defined on a space
of test functions and that takes values in a Locally Convex Topological Vector Space (LCTVS) The appearance
of those product it is what produces the appearance of the infinities in the Lagrangeans of the QFT’s and these
infinities are propagated throughout the resulting theory. In particular in the product of propagators in the
phase space, or in its convolution in the momentum space.

More than 25 years ago one of the authors of this manuscript, together with C. G. Bollini, worked to solve
this problem using a new mathematical theory: the theory of Ultrahyperfunctions [1]. It was resolved in 4
extensive papers published in IJTP, [2, 3, 4, 5] through the development of a new mathematical theory: the
Ultrahyperfunctions convolution theory. The explanation for the use of Ultrahyperfunctions instead of VU is
based on the fact that L. Schwartz proved in [13, 14] that the products of VD are completely determined if the
product of the corresponding distributions over the same test function space is known To construct this theory
Schwartz was based on the theory developed by A. Grothendieck in his thesis [12]

Ultrahyperfunctions are the generalization and extension to the complex plane of the usual distributions defined
by L. Schwartz and I. M. Guelfand and are originally known as Ultradistributions of J. Sebastiao e Silva, since
they were defined and studied by this extraordinary Portuguese mathematician in an extensive paper published
in Mathematische Annalen [1] Once the convolution of Ultrahyperfunctions is known, the convolution of distri-
butions is immediately known. Having managed to define a convolution of Ultrahyperfunctions, the infinities
of the QFT’s do not appear, and thus they are now finite, it is not necessary to regularize the integrals that
appear in them, and, furthermore, it is not necessary to renormalize said theories.

To quantize a non-renormalizable QFT is to find an appropriate product of distributions (a product in a ring with
zero divisors in the configuration space) an old problem of functional analysis successfully solved in [2, 3, 4, 5, 6].

At the same time, we keep all existing solutions in the problem of running coupling constants and the renormal-
ization group. With that convolution the UHF space is transformed into a ring with zero-divisors. In it, one has
now defined a product between the ring-elements. Thus, any unitary-causal-Lorentz invariant theory quantified
in such a manner becomes predictive. The distinction between renormalizable on non-renormalizable
QFT’s becomes unnecessary now.

In our work we do not use counter-terms to remove infinities from the theory bf because our convolutions are
always finite. it Also we don’t need to use counter terms, since a non-renormalizable theory involves an infinite
number of them.

With our convolution, that uses Laurent’s expansions (LE) in the parameter employed to define the LE, all finite
constants of the convolutions become completely determined, eliminating arbitrary choices of finite constants.
The independent term in the Laurent expansion yield the convolution value.

Until now, the attempts to do a QFT of Einstein’s Gravity, failed because the quantization of the theory was
carried out in: 1) In a Hilbert space with undefined metric; 2) The theory obtained was not unitary; 3) It was
not known how to treat non-renormalizable QFTs.

The only problem with the Ultrahyperfunctions theory is that it turns out to be extremely complex mathe-
matically. In a first attempt to apply our theory we achieved a QFT of EG just considering Lorentz Invariant
tempered distributions [7] through a simplified version of the UHF convolution [6]. In this manuscript we have
managed to make a general QFT of EG, using the theory of UHF to full.
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To achieve this we have resorted to the QFT of EG developed by Suraj N. Gupta [9, 10, 11] with a choice of
an additional constraint, making a theory similar to that of Quantum Electrodynamics. As a result, we obtain
a QFT of EG that is finite and unitary to all perturbative order This was attempted without success first by
Gupta and then by Feynman, in his Acta Physica Polonica work [15].
The manuscript is organized as follows:

• In Section 2 we present the preliminary material needed in this paper.

• In Section 3 we present Einstein’s Lagrangean used in this theory

• In Section 4 we quantize the theory

• In Section 5 the graviton’s self-energy is evaluated up to second order.

• In Section 6 we introduce axiones into our theory and deal with the axions-gravitons interaction.

• In Section 7 we calculate the graviton’s self-energy in the presence of axions.

• In Section 8 we evaluate, up to second order, the axion’s self-energy.

• Section 9 is dedicated to the conclusions of this work

• In Appendix A we discuss the convolution of Ultrahyperfunctions

• In Appendix B we obtain a mathematical formula used in this paper.

2 Preliminary Materials

In this paper we will not use the functional integral to quantify the gravitational field for two reasons: 1) It
does not serve to treat Ultrahyperfunctions, since it cannot take into account the singularities that said Ul-
trahyperfunctions have in a strip that surrounds the real axis. 2) The interacting Lagrangean has derivative
couplings of the graviton field. Instead we will use the most general method of quantization known, which is the
Variational Schwinger-Feynman Method [8] which is able to deal even with high order supersymmetric theories,
as exemplified by [16, 17]. Such theories can not be quantized with the usual Dirac-brackets technique.

For that purpose, we write the action for a set of fields in the form:

S[σ(x), σ0, φA(x)] =

σ(x)∫
σ0

L[φA(ξ), ∂µφA(ξ), ξ]dξ, (2.1)

where σ(x) if a space-like surface passing through the point x. σ0 is a surface at the remote past, at which all
field variations vanish. The Schwinger-Feynman variational principle establishes that:

”Any Hermitian infinitesimal variation δS of the action induces a canonical transformation of the vector space
in which the quantum system is defined, and the generator of this transformation is this same operator δS”.
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As a consequence of this statement we obtain [8]:

δφA = i[δS, φA]. (2.2)

Thus, for a Poincare transformation we have

δS = aµPµ +
1

2
aµvMµv, (2.3)

Therefore, the variation of the field is given by:

δφa = aµP̂µφA +
1

2
aµvM̂µvφA. (2.4)

From (2.2),(2.3) and (2.4) we obtain
∂µφA = i[Pµ, φA]. (2.5)

In particular µ = 0 we have:
∂0φA = i[P0, φA]. (2.6)

This result is used to quantize the QFT’s. In particular we will use it to quantize the EG. .

3 The Gupta-Feynman based Lagrangian of Einstein’s QFT

According to Gupta, the Lagrangian of EG is given by [9, 10, 11]:

LG =
1

κ2
R
√
|g| − 1

2
ηµv∂αh

µα∂βh
vβ , (3.1)

where ηµν = diag(1, 1, 1,−1), hµν =
√
|g|gµν The effect of the second term in (3.1) is to fix the gauge. We

effect now the linear approximation
hµv = ηµv + κφµv, (3.2)

where κ2 is the gravitation’s constant and φµv the graviton field. We write then:

LG = LL + LI , (3.3)

where

LL = −1

4

[
∂λφµv∂

λφµv − 2∂αφµβ∂
βφµα + 2∂αφµα∂βφ

µβ
]

(3.4)

and, up to 2nd order, one has [9, 10, 11]:

LI = −1

2
κφµv

[
1

2
∂µφ

λρ∂vφλρ + ∂λφµβ∂
βφλv − ∂λφµρ∂λφρv

]
(3.5)

where we have made use of the constraint:
φµµ = 0. (3.6)

This constraint is required in order to satisfy gauge invariance [18] As a consequence, the equation of motion of
the graviton is given by:

�φµv = 0, (3.7)

The solution of the previous equation is given by:

φµv =
1

(2π)
3
2

∫ [
aµv(~k)√

2k0

eikµx
µ

+
a+
µv(
~k)

√
2k0

e−ikµx
µ

]
d3k, (3.8)

with k0 = |~k|.
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4 The correct quantization of the theory

We need remember some usual definitions. The energy-momentum tensor is given by

Tλρ =
∂L

∂∂ρφµv
∂λφµv − δλρL, (4.1)

From this definition we obtain the time-component of the four-momentum vector

P0 =

∫
T 0

0 d
3x. (4.2)

Using the expression (3.4) of the Lagrangian of the free fields we obtain:

T 0
0 =

1

4

[
∂0φµv∂

0φµv + ∂jφµv∂
jφµv − 2∂αφµ0∂

0φµα − 2∂αφµj∂
jφµα+

2∂αφ
µα∂0φ

0
µ + 2∂αφ

µα∂jφ
j
µ

]
. (4.3)

Consequently, from this last equation we arrive at:

P0 =
1

4

∫
|~k|
[
aµv(~k)a+µv(~k) + a+µv(~k)aµv(~k)

]
d3k. (4.4)

We now use the equation (2.6) and we have

[P0, aµv(~k)] = −k0aµv(~k)

[P0, a
+µv(~k)] = k0a

+µv(~k). (4.5)

Replacing (4.4) im (4.5) we obtain at the integral equation:

|~k|a+ρλ(~k′) =
1

2

∫
|~k|[aµv(~k), a+ρλ(~k′)]a+µv(~k) d3k. (4.6)

The solution of this equation is [
aµv(~k), a+ρλ(~k′)

]
=
[
δρµδ

λ
v + δρvδ

λ
µ

]
δ(~k − ~k′). (4.7)

As customary, in the Gupta quantization for the graviton, the physical state |ψ > of the theory is defined via
the equation

φµµ|ψ >= 0. (4.8)

We use now the the usual definition for the graviton’s propagator

∆ρλ
µν(x− y) =< 0|T [φµν(x)φρλ(y)]|0 > . (4.9)

Thus the propagator then turns out to be

∆ρλ
µν(x− y) =

i

(2π)4
(δρµδ

λ
v + δρvδ

λ
µ)

∫
eikµ(xµ−yµ)

k2 − i0
d4k. (4.10)

Usando (4.4) we can write:

P0 =
1

4

∫
|~k|
[
aµv(~k)a+µv(~k′) + a+µv(~k′)aµv(~k)

]
δ(~k − ~k′)d3kd3k

′
, (4.11)

According (4.7) we get:

P0 =
1

4

∫
|~k|
[
2a+µv(~k′)aµv(~k) + δ(~k − ~k′)

]
δ(~k − ~k′)d3kd3k

′
. (4.12)
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We then obtain:

P0 =
1

2

∫
|~k|a+µv(~k)aµv(~k)d3k, (4.13)

Here where we have used the fact that the product of two deltas with the same argument vanishes [2], i.e.,

δ(~k − ~k′)δ(~k − ~k′) = 0. This proves that using Ultrahyperfunctions is here equivalent to adopting the normal
order in the definition of the time-component of the four-momentum

P0 =
1

4

∫
|~k| :

[
aµv(~k)a+µv(~k) + a+µv(~k)aµv(~k)

]
: d3k. (4.14)

Now, we must insist on the fact that the physical state should satisfy not only Eq. (4.8) but also the relation
(see [9, 10, 11])

∂µφ
µv|ψ >= 0. (4.15)

The resulting theory is similar to that obtained for QED, using the Guppta-Bleuler quantization method. This
show that the obtained heory is unitary for any finite perturbative order. If we take into account the degrees of
freedom of the theory, we conclude that we have only one type of free graviton φ12.Thus we have only one type
of graviton with two possible transverse polarizations. Obviously, this happens for a non-interacting theory, as
remarked by Gupta.

4.1 Loss of unitarity if our constraint is not used

If we do NOT use the new constraint (4.8), we have

P0 =
1

2

∫
|~k|
[
a+µv(~k)aµv(~k)− 1

2
a+µ
µ (~k)avv(

~k)

]
d3k, (4.16)

The Feynman-Schwinger variational principle [8] now leads us to:

|~k|a+
ρλ(~k′) =

1

2

∫
|~k|
{
a+µv(~k)[aµv(~k), a+

ρλ(~k′)]− 1

2
a+µ
µ (~k)[avv(

~k), a+
ρλ(~k′)]

}
d3k, (4.17)

The solution of this integral equation is now given by:[
aµv(~k), a+

ρλ(~k′)
]

= [ηµρηvλ + ηvρηµλ − ηµvηρλ] δ(~k − ~k′). (4.18)

The above is the usual graviton’s quantification.The resulting theory leads to a S matrix that is not unitary
[9, 10, 11, 15].

5 The exact self energy of the graviton

To evaluate the self-energy (SE) of the graviton, we make use of the generalized Feynman parameters. This is:

1

AαBβ
=

Γ(α+ β))

Γ(α)Γ(β)

1∫
0

xα−1(1− x)β−1

[Ax+B(1− x)]α+β
dx (5.1)

We now make use of the interaction Hamiltonian HI . Note that the Lagrangian contains derivative interaction
terms.

HI =
∂LI

∂∂0φµν
∂0φµν − LI . (5.2)

A typical SE term has the form:

ΣGα1α2α3α4(k) = kα1kα2(ρ− i0)λ−1 ∗ kα3kα4(ρ− i0)λ−1. (5.3)
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where ρ = k2
1 + k2

2 + k2
3 − k2

0

A = (p− k)2 − i0 ; α = 1− λ

B = ρ− i0 ; β = 1− λ

n As we already said, to evaluate the integral, we use the Feynman parameters. After a Wick rotation we obtain

kα1kα2(ρ− i0)1−λ ∗ kα3kα4(ρ− i0)1−λ =

i

1∫
0

x−λ(1− x)−λdx×

Γ(2− 2λ)

Γ2(1− λ)

∫
(pα1 − kα1)(pα2 − kα2)pα3pα4

[(p− kx)2 + a]2−2λ
d4p (5.4)

Here we have:
a = k2x(1− x) (5.5)

After the variables-change u = p− kx we find

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1. =

i

1∫
0

x−λ(1− x)−λdx×

Γ(2− 2λ)

Γ2(1− λ)

∫
f(α1, α2, α3, α4, x, u)

(u2 + a)2−2λ
d4p (5.6)

where f has the form:

f(α1, α2, α3, α4, x, u) =
1

24
[ηα1α2ηα3α4 + ηα1α3ηα2α4 + ηα1α4ηα2α3 ]u4 +

1

4
[ηα1α2kα3kα4(1− x)2+

ηα1α3
kα2

kα4
x(x− 1) + ηα1α4

kα2
kα3

x(x− 1) + ηα2α3
kα1

kα4
x(x− 1)+

ηα2α4
kα1

kα3
x(x− 1) + ηα3α4

kα1
kα2

(1− x)2]u2 + kα1
kα2

kα3
kα4

x2(x− 1)2 (5.7)

5.1 Self-Energy evaluation for λ = 0

To evaluate SE we must do the Laurent expansion of the preceding result around λ = 0, according to (A.4) of
Appendix A. We obtain like this:

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1 =

−i π
2

5!λ

{
6(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)ρ2 −

[6(ηα1α2kα3kα4 + ηα3α4kα1kα2) −

4(ηα1α3
kα2

kα4
+ ηα1α4

kα2
kα3

+

ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)] ρ+ 2kα1
kα2

kα3
kα4
}−

i6π2

5!
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)

[
ln ρ2 − 137

30

]
ρ2+

i
π2

5!

{
3

2
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln ρ2 − 56

15

]
−

(ηα1α3
kα2

kα4
+ ηα1α4

kα2
kα3

+ ηα2α3
kα1

kα4
+

ηα2α4
kα1

kα3
)

[
ln ρ2 − 97

30

]}
ρ−
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i
2π2

5!
kα1

kα2
kα3

kα4

[
ln ρ2 − 47

30

]
+

∞∑
n=1

anλ
n

}
. (5.8)

The exact value of the convolution is the independent term of λ in (5.8). So we get

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)−1 ∗ kα3

kα4
(ρ− i0)−1 = −

i6π2

5!
(ηα1α2ηα3α4 + ηα2α3ηα1α4 + ηα2α4ηα1α3)

[
ln ρ2 − 137

30

]
ρ2+

i
π2

5!

{
3

2
(ηα1α2kα3kα4 + ηα3α4kα1kα2)

[
ln ρ2 − 56

15

]
−

(ηα1α3
kα2

kα4
+ ηα1α4

kα2
kα3

+ ηα2α3
kα1

kα4
+

ηα2α4kα1kα3)

[
ln ρ2 − 97

30

]}
ρ−

i
2π2

5!
kα1kα2kα3kα4

[
ln ρ2 − 47

30

]}
. (5.9)

We have to deal with 1296 diagrams of this kind.

6 Including Axions into the theory

In 1977 Peccei and Quinn postulated a hypothetical elementary particle to solve the strong CP problem in
quantum chromodynamics. [19] They called that particle axion. It should have a low enough mass (within
a certain range). As the Dark Matter theory evolved, several experts concluded that the axion could be a
candidate for a component of dark matter. It is for this reason that we have included axions in our theory.
Thus we have now axions interacting with the graviton. The Lagrangian becomes

LGM =
1

κ2
R
√
|g| − 1

2
ηµv∂αh

µα∂βh
vβ − 1

2

[
hµv∂µφ∂vφ+m2φ2

]
. (6.1)

The complete Lagrangian now has the form::

LGM = LL + LI + LLM + LIM , (6.2)

where

LLM = −1

2

[
∂µφ∂

µφ+m2φ2
]
, (6.3)

so that LIM becomes the interaction Lagrangian for the axion-graviton action

LIM = −1

2
κφµν∂µφ∂νφ. (6.4)

The new term in the interaction Hamiltonian is

HIM =
∂LIM
∂∂0φ

∂0φ− LIM . (6.5)

7 The complete Self Energy of the Graviton

To evaluate the complete SE, we again resort to generalized Feynman parameters, only in this case the calculation
is more complex.

1

AαBβCγDδ
=

Γ(α+ β + γ + δ))

Γ(α)Γ(β)Γ(γ)Γ(δ)
×

1∫
0

1∫
0

1∫
0

xα−1(1− x)β−1xα+β−1
1 (1− x1)γ−1xα+β+γ−1

2 (1− x2)δ−1

{{[Ax+B(1− x)]x1 + C(1− x1)}x2 +D(1− x2)}α+β+γ+δ
dx dx1 dx2 (7.1)
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donde:
A = (p− k)2 +m2 − i0 ; α = 1

B = (p− k)2 − i0 ; β = −λ

C = ρ+m2 − i0 ; γ = 1

D = ρ− i0 ; δ = −λ

The new contribution to the SE of the graviton due to the presence of the axions is given by:

ΣGMα1α2α3α4
(k) = kα1

kα2
(ρ+m2 − i0)−1 ∗ kα3

kα4
(ρ+m2 − i0)−1. (7.2)

After a Wick rotation we obtain

kα1
kα2

(ρ− i0)λ(ρ+m2 − i0)−1 ∗ kα3
kα4

(ρ− i0)λ(ρ+m2 − i0)−1. =

i

1∫
0

1∫
0

1∫
0

(1− x)−λ−1x−λ1 x1−λ
2 (1− x2)−λ−1dx dx1 dx2×

Γ(2− 2λ)

Γ2(−λ)

∫
pµpr(kv − pv)(ks − ps)
[(p− kx1x2)2 + a]2−2λ

d4p (7.3)

where
a = k2x1x2(1− x1x2) +m2.(xx1x2 + x2 − x1x2) (7.4)

After the variables-change u = p− kx1x2 we find

kα1
kα2

ρλ(ρ+m2 − i0)−1 ∗ kα3
kα4

ρλ(ρ+m2 − i0)−1. =

i

1∫
0

1∫
0

1∫
0

(1− x)−λ−1x−λ1 x1−λ
2 (1− x2)−λ−1dx dx1 dx2×

Γ(2− 2λ)

Γ2(−λ)

∫
f(α1, α2, α3, α4, x1, x2, u)

(u2 + a)2−2λ
d4p (7.5)

where f is given by:

f(α1, α2, α3, α4, x1, x2, u) =
1

24
[ηα1α2ηα3α4 + ηα1α3ηα2α4 + ηα1α4ηα2α3 ]u4 +

1

4
[ηα1α2kα3kα4(1− x1x2)2+

ηα1α3kα2kα4x1x2(x1x2 − 1) + ηα1α4kα2kα3x1x2(x1x2 − 1) + ηα2α3kα1kα4x1x2(x1x2 − 1)+

ηα2α4
kα1

kα3
x1x2(x1x2 − 1) + ηα3α4

kα1
kα2

(1− x1x2)2]u2 + kα1
kα2

kα3
kα4

(x1x2)2(x1x2 − 1)2 (7.6)

Evaluating the first integral in p and x we obtain for example:

iπ2

4
[ηα1α2ηα3α4 + ηα1α3ηα2α4 + ηα1α4ηα2α3 ]×

Γ(−2− 2λ)

Γ(1− λ)Γ(−λ)

1∫
0

x1∫
0

x−3−λ
1 y3+λ(x− y)−1−λ[k2x1(1− y) +m2]2+2λ

F

(
−2− 2λ,−λ; 1− λ;

m2x1

k2x1(1− y) +m2

)
dx1dy (7.7)

Since the integral is convergent at λ = 0 using our theory, which partly uses Guelfand’s regularization, we
obtain:

iπ2

64
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]×

10



1∫
0

x1∫
0

x−3
1 y3(x− y)−1[k2x1(1− y) +m2]2+2λdx1dy (7.8)

When evaluating this last integral we have:

−iπ2

64
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]

(
5

2
ρ2 + 4m2ρ+

9

4
m4

)
(7.9)

The other integrals are calculated in a similar way. The end result is:

kµkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1 =

−iπ2

64
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]

(
5

2
ρ2 + 4m2ρ+

9

4
m4

)
+

1π2

8
[ηα1α2kα3kα4 + ηα3α4kα1kα2 ]

(
41

400
ρ− 3

2
m2

)
+

iπ2

8
[ηα1α3kα2kα4 + ηα1α4kα2kα3 + ηα2α3kα1kα4 + ηα2α4kα1kα3 ]

(
103

900
ρ+

35

144
m2

)
(7.10)

We have to deal with 9 diagrams of this kind.
Accordingly, our desired self-energy total is a combination of ΣGα1α2α3α4(k) and ΣGMα1α2α3α4(k).

8 Self Energy of the Axion

We now proceed to evaluate the SE of the axion. A typical term of the self-energy is:

Σvr(k) = kα1
kα2

(ρ+m2 − i0)−1 ∗ (ρ− i0)−1. (8.1)

In four dimensions one has

pα1pα2(ρ+m2 − i0)−1 ∗ (ρ− i0)−1] =

∫
pα1pα2

(p2 +m2 − i0)[(p− k)2 − i0]
d4p. (8.2)

With the Feynman generalized parameters used above we obtain

kα1kα2(ρ+m2 − i0)−1(ρ− i0)λ ∗ (ρ− i0)λ−1 =

i
Γ(2− 2λ)

Γ(−λ)Γ(1− λ)

1∫
0

(1− x)−1−λx−λ1 (1− x)−λ
∫

pα1
pα2

[(p− kx1)2 + a]2−2λ
d4kdx, (8.3)

where
a = m2x(1− x1) + k2x1(1− x1) (8.4)

We evaluate the integral (8.3) and find

kα1
kα2

(ρ+m2 − i0)−1 ∗ (ρ− i0)−1 =
iηα1α2

π2m2

8
(8.5)

9 Discussion

In this paper we have performed the Quantum Field Theory of Einstein’s gravity using a very advanced math-
ematical theory: the Lorentz Invariant Ultrahyperfunctions convolution theory.. [2, 3, 4, 5] It is nothing more
than having defined a product in a ring with divisors of zero in the configuration space. This theory is not
a regularization method. It is a theory apt to quantize non-renormalizable QFT’s

Since the functional integral is not a suitable mathematical tool to perform the quantization of a theory that
contains Ultrahyperfunctions, we have resorted to the more general quantization method for the QFT ’s known

11



until now. The variational principle of Feynman and Schwinger

The resulting QFT is finite, unitary, and Lorentz Invariant. As an example of the power of the theory used,
we have calculated the SE of the graviton, adding to it the presence of dark matter, represented in this case
by axions. It should also be noted that we have added to the QFT of the Gupta-Feynman EG, an additional
constraint The addition of this new constraint allows us to make a QFT of the unit EG.

We must clarify that the scarcity of bibliography in this paper is due to the fact that the theory developed in
it is completely new.
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A The Convolution of two Lorentz Invariant Ultrahyperfunctions

We clarify that the content of this appendix has been taken from the references [4, 5] in order to simplify the
reading of the paper.

In [4] formula (7.34) we have obtained a conceptually simple but rather lengthy expression for the convolution
of two Lorentz invariant tempered ultradistributions:

Hλ(ρ,Λ) =
1

8π2ρ

∫
Γ1

∫
Γ2

F (ρ1)G(ρ2)ρλ1ρ
λ
2 {Θ[=(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)]×

[ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]
√

4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√

(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√

(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}}
−

Θ[−=(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√

(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√

(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×
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ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}}
− i

2
×

{[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 + Λ

ρ2 + Λ

)
+ ln

(
−i

√
ρ1 − Λ

ρ2 − Λ

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1

Λ− ρ2

)
+ ln

(
i

√
Λ + ρ1

Λ + ρ2

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ + ρ1

Λ− ρ2

)
+ ln

(√
Λ− ρ1

Λ + ρ2

)]
+

(ρ1 − ρ2)

2
[ln(−ρ1 − ρ2 + Λ)− ln(−ρ1 − ρ2 − Λ) −

ln(ρ1 + ρ2 + Λ) + ln(ρ1 + ρ2 − Λ)] + ρ2 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1

Λ + ρ2

)
+ ln

(√
Λ + ρ1

Λ− ρ2

)]
+

(ρ1 − ρ2)

2
[ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ) −

ln(−ρ1 − ρ2 + Λ) + ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ2 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}}} dρ1 dρ2 (A.1)

This defines an ultradistribution in the variables ρ and Λ for
|=(ρ)| > =(Λ) > |=(ρ1)|+ |=(ρ2)|
Let B be a vertical band contained in the complex λ-plane P. Integral (A.1) is an analytic function of λ defined
in the domain B. Moreover, it is bounded by a power of |ρΛ|. Then, Hλ(ρ,Λ) can be analytically continued to
other parts of P. Thus, we define

H(ρ) = H(0)(ρ, i0+) (A.2)

Hλ(ρ, i0+) =

∞∑
−m

H(n)(ρ, i0+)λn (A.3)

As in the other cases, we define now
{F ∗G}(ρ) = H(ρ) (A.4)

as the convolution of two Lorentz invariant tempered ultradistributions.

Alternatively we can use the formula obtained in [5], formula (10.1) for Ultrahyperfunctions of exponential type:
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Hγλ(ρ,Λ) =
1

8π2ρ

∫
Γ1

∫
Γ2

[2 cosh(γρ1)]−λF (ρ1)[2 cosh(γρ2)]−λG(ρ2)

{Θ[=(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)]×

[ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]
√

4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√

(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√

(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}}
−

Θ[−=(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√

(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√

(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×
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{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}}
− i

2
×

{[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 + Λ

ρ2 + Λ

)
+ ln

(
−i

√
ρ1 − Λ

ρ2 − Λ

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1

Λ− ρ2

)
+ ln

(
i

√
Λ + ρ1

Λ + ρ2

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ + ρ1

Λ− ρ2

)
+ ln

(√
Λ− ρ1

Λ + ρ2

)]
+

(ρ1 − ρ2)

2
[ln(−ρ1 − ρ2 + Λ)− ln(−ρ1 − ρ2 − Λ) −

ln(ρ1 + ρ2 + Λ) + ln(ρ1 + ρ2 − Λ)] + ρ2 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1

Λ + ρ2

)
+ ln

(√
Λ + ρ1

Λ− ρ2

)]
+

(ρ1 − ρ2)

2
[ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ) −

ln(−ρ1 − ρ2 + Λ) + ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ2 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}}} dρ1 dρ2 (A.5)

|=(ρ)| > =(Λ) > |=(ρ1)|+ |=(ρ2)| ; γ < min

(
π

2 | =(ρ1) |
;

π

2 | =(ρ2) |

)
We define

H(ρ) = H(0)(ρ, i0+) = H(0)
γ (ρ, i0+) (A.6)

Hγλ(ρ, i0+) =

∞∑
−m

H(n)
γ (ρ, i0+)λn (A.7)

If we take into account that singularities (in the variable Λ) are contained in a horizontal band of width |σ0| we
have:

Hγλ(ρ, i0+) =

∞∑
−m

H
(n)
γλ (ρ, iσ)

(−iσ)n

n!
σ > |σ0| (A.8)

As in the other cases we define now
{F ∗G}(ρ) = H(ρ) (A.9)

as the convolution of two Lorentz invariant ultradistributions of exponential type.
Let Ĥγλ(x) be the Fourier antitransform of Hγλ(ρ, i0+):

Ĥγλ(x) =

∞∑
n=−m

Ĥ(n)
γ (x)λn (A.10)
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If we define:
f̂γλ(x) = F−1{Fγλ(ρ)} = F−1{[cosh(γρ)]−λF (ρ)}

ĝγλ(x) = F−1{Gγλ(ρ)} = F−1{[cosh(γρ)]−λG(ρ)} (A.11)

then
Ĥγλ(x) = (2π)4f̂γλ(x)ĝγλ(x) (A.12)

and taking into account the Laurent’s developments of f̂ and ĝ:

f̂γλ(x) =

∞∑
n=−mf

f̂ (n)
γ (x)λn

ĝγλ(x) =

∞∑
n=−mf

ĝ(n)
γ (x)λn (A.13)

we can write:
∞∑

n=−m
Ĥ(n)
γ (x)λn = (2π)4

∞∑
n=−m

(
n∑

k=−m

f̂ (k)
γ (x)ĝ(n−k)

γ (x)

)
λn (A.14)

(m = mf +mg)
and as a consequence:

Ĥ(0)(x) =

0∑
k=−m

f̂ (k)
γ (x)ĝ(n−k)

γ (x) (A.15)

The Feynman propagators corresponding to a massless particle F and a massive particle G are, respectively,
the following ultrahyperfunctions:

F (ρ) = −Θ[−=(ρ)]ρ−1

G(ρ) = −Θ[−=(ρ)](ρ+m2)−1 (A.16)

where ρ is the complex variable, such that on the real axis one has ρ = k2
1 + k2

2 + k2
3 − k2

0. On the real axis, the
previously defined propagators are given by:

f(ρ) = F (ρ+ i0)− F (ρ− i0) = (ρ− i0)−1

g(ρ) = G(ρ+ i0)−G(ρ− i0) = (ρ+m2 − i0)−1 (A.17)

These are the usual expressions for Feynman propagators.

Consider first the convolution of two massless propagators . We use (A.17), since here the corresponding
ultrahyperfunctions do not have singularities in the complex plane. We obtain from (A.1) a simplified expression
for the convolution:

hλ(ρ) =
π

2ρ

∞x

−∞
(ρ1 − i0)λ−1(ρ2 − i0)λ−1

[
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

] 1
2

+
dρ1 dρ2 (A.18)

This expression is nothing other than the usual convolution:

hλ(ρ) = (ρ− i0)λ−1 ∗ (ρ− i0)λ−1 (A.19)

B A Mathematical Proof

According to the Ultrahyperfunctions theory we can write:

∮
Γ

ln(a− z)φ(z)dz =

∞∫
−∞

[ln(a− x− i0)− ln(a− x+ i0)]φ(x)dx = −2iπ

∞∫
−∞

H(x− a)φ(x)dx (B.1)
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So we have the correspondence:

− 1

2πi
ln(a− z)←− H(x− a) (B.2)

Using now the Dirac formula for Ultrahyperfunctions we obtain:

− 1

2πi
ln(a− z) =

1

2πi

∞∫
−∞

H(x− a)

x− z
dx =

1

2πi

∞∫
a

1

x− z
dx (B.3)

Thus:

ln(a− z) = −
∞∫
a

1

x− z
dx (B.4)

We then have for a > 0

ln a = −
∞∫
a

1

x
dx (B.5)

According to the result obtained by Guelfand in [20]

∞∫
0

1

x
dx = 0 (B.6)

And therefore:

ln a =

a∫
0

1

x
dx (B.7)

19


	Introduction
	Preliminary Materials
	The Gupta-Feynman based Lagrangian of Einstein's QFT
	 The correct quantization of the theory
	Loss of unitarity if our constraint is not used

	The exact self energy of the graviton
	Self-Energy evaluation for =0

	Including Axions into the theory
	The complete Self Energy of the Graviton
	Self Energy of the Axion
	Discussion
	The Convolution of two Lorentz Invariant Ultrahyperfunctions
	A Mathematical Proof

