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Abstract 

The article derives the Gauss Egregema by a novel technique and arrives at a surprising result that the 

Gauss curvature is equal to the normal curvature. This strange result leads to discrepancies like that the 
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Introduction 

The Egregema of Gauss is derived by a novel technique and analyzed. We arrive at a surprising result 

that the Gauss curvature is equal to the normal curvature of the surface at a point. This strange result 

leads to discrepancies like that the Gauss curvature of the sphere being zero.  We  have contradictions 

like an object being a vector and not a vector simultaneously. Finally we arrive at a shocking result as 

that normal curvature should be zero. 

 

Gauss Egregema—A Novel Derivation 

The first fundamental form[1] 

|𝑑𝑟(𝑢, 𝑣)|2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 (1.1) 

𝐸 =
𝜕𝑟

𝜕𝑢
.
𝜕𝑟

𝜕𝑢
, 𝐹 =

𝜕𝑟

𝜕𝑢
.
𝜕𝑟

𝜕𝑣
, 𝐺 =

𝜕𝑟

𝜕𝑣
.
𝜕𝑟

𝜕𝑣
 

The first point to take cognizance of is that the derivatives 
𝜕�⃗�

𝜕𝑢
 and 

𝜕�⃗�

𝜕𝑣
 are not vectors themselves: they do 

not transform like vectors in that their dot products are not preserved. 𝐸, 𝐹 and 𝐺 are not invariants but 

are the components of a tensor. Consequently at every step we shall verify whether an object termed as 

a vector is truly a vector or not in terms of the requisite transformation properties. 
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Now, 

 |𝑑𝑟(𝑢, 𝑣)|2 = 𝑑𝑠2 

Thus we have  the first fundamental form as 

𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐹𝑑𝑣2 (1.2) 

𝑑𝑠2 = 𝑔11𝑑𝑢2 + 2𝑔12𝑑𝑢𝑑𝑣 + 𝑔22𝑑𝑣2 (1.3) 

Even if we apply to the tangent plane |𝑔𝑖𝑖| = 1, 𝑔𝑖𝑘 = 0 only for the rectangular Cartesian system that is 

withy the x-y syatem.But the same is not valid  for an arbitrary u-v system though we are not in the flat 

space context. 

Again[|Expression for the normal curvature[2] 

𝜅𝑁 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝐹
𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+ 𝐹 (

𝑑𝑣

𝑑𝑠
)
2

 (2.1) 

⟹ 𝜅𝑁𝑑𝑠2 = 𝐿𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐹𝑑𝑣2 

𝑑𝑠2 =
𝐿

𝜅𝑁
𝑑𝑢2 + 2

𝑀

𝜅𝑁
𝑑𝑢𝑑𝑣 +

𝑁

𝜅𝑁
𝑑𝑣2 (2.2) 

𝑑𝑠2 =
𝐺11

𝜅𝑁
𝑑𝑢2 + 2

𝐺12

𝜅𝑁
𝑑𝑢𝑑𝑣 +

𝐺22

𝜅𝑁
𝑑𝑣2 (2.3) 

1 =
𝐺11

𝜅𝑁
(
𝑑𝑢

𝑑𝑠
)
2

+ 2
𝐺12

𝜅𝑁

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝐺22

𝜅𝑁
(
𝑑𝑣

𝑑𝑠
)
2

 (2.4) 

In the above we have applied the notation, 

𝐺11 = 𝐿, 𝐺12 = 𝑀,𝐺22 = 𝑁 

Indeed by subtracting (2.2) from (1.2) we obtain 

0 = (𝐸 −
𝐿

𝜅𝑁
)𝑑𝑢2 + 2(𝐹 −

𝑀

𝜅𝑁
)𝑑𝑢𝑑𝑣 + (𝐺 −

𝑁

𝜅𝑁
)𝑑𝑣2 

From th arbitrariness of 𝑑𝑢 and 𝑑𝑣 we claim 

𝐸 −
𝐿

𝜅𝑁
= 0, 𝐹 −

𝑀

𝜅𝑁
= 0, 𝐺 −

𝑁

𝜅𝑁
= 0 

⟹ 𝐸 =
𝐿

𝜅𝑁
, 𝐹 =

𝑀

𝜅𝑁
, 𝐺 =

𝑁

𝜅𝑁
 

⟹ 𝑔11 =
𝐺11

𝜅𝑁
, 𝑔12 =

𝐺12

𝜅𝑁
, 𝑔22 =

𝐺22

𝜅𝑁
  (3) 
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Thus it  follows that (
𝐺11

𝜅𝑁
,
𝐺12

𝜅𝑁
,
𝐺11

𝜅𝑁
) = (

𝐿

𝜅𝑁
,

𝑀

𝜅𝑁
,

𝑁

𝜅𝑁
) ≡ (𝑔11 , 𝑔12 , 𝑔22) is a tensor  

Now, 

�̅�𝜇𝜈

�̅�𝑁
=

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕𝑥𝛽

𝜕�̅�𝜈

𝐺𝛼𝛽

𝜅𝑁
 

𝜅𝑁�̅�𝜇𝜈 −
𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕𝑥𝛽

𝜕�̅�𝜈
𝐺𝛼𝛽�̅�𝑁 = 0 (4) 

 

In the above we have three linear homogeneous equations and two unknown quantities. That should 

make �̅�𝑁 = 𝜅𝑁 = 0unless two of the equations are identical and the determinant of the coefficient 

matrixof  remaining two equations  is zero .Then we might expect non trivial solutions for �̅�𝑁  and 𝜅𝑁 

In the orthogonal system (4) reduces to two equations and two unknowns. 

The issue of �̅�𝑁 = 𝜅𝑁 = 0 disappears if the 𝐺 ≡ {𝐺11, 𝐺12, 𝐺22} happens to be a tensor. We 

automatically do have �̅�𝑁 = 𝜅𝑁 ≠ 0 

Is 𝐺 ≡ {𝐺11, 𝐺12, 𝐺22} being a tensor a unique resolution to the issue? In order to have a clearer view of 

the situation we proceed as follows: 

First we write from (4) 

�̅�𝑁 =
𝜅𝑁�̅�𝜇𝜈

𝜕𝑥𝛼

𝜕�̅�𝜇
𝜕𝑥𝛽

𝜕�̅�𝜈 𝐺𝛼𝛽

 (5) 

It is assumed that �̅�𝑁 ≠ 𝜅𝑁,each non zero .Vow considering (2.4) in a transformed frame we have 

1 =
�̅�11

�̅�𝑁
(
𝑑𝑝

𝑑𝑠
)
2

+ 2
�̅�12

�̅�𝑁

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+

�̅�22

�̅�𝑁
(
𝑑𝑞

𝑑𝑠
)
2

 (6)  

Applying (5) on (6) we obtain 

1 =
�̅�11

𝜕𝑥𝛼

𝜕�̅�1
𝜕𝑥𝛽

𝜕�̅�1 𝐺𝛼𝛽

𝜅𝑁�̅�11
(
𝑑𝑝

𝑑𝑠
)
2

+ 2
�̅�12

𝜕𝑥𝛼

𝜕�̅�1
𝜕𝑥𝛽

𝜕�̅�2 𝐺𝛼𝛽

𝜅𝑁�̅�12

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+

�̅�22
𝜕𝑥𝛼

𝜕�̅�2
𝜕𝑥𝛽

𝜕�̅�2 𝐺𝛼𝛽

𝜅𝑁�̅�22
(
𝑑𝑞

𝑑𝑠
)

2

 

1 =
�̅�11𝜅𝑁

𝜕𝑥𝛼

𝜕�̅�1
𝜕𝑥𝛽

𝜕�̅�1

𝐺𝛼𝛽

𝜅𝑁

𝜅𝑁�̅�11
(
𝑑𝑝

𝑑𝑠
)
2

+ 2
�̅�12𝜅𝑁

𝜕𝑥𝛼

𝜕�̅�1
𝜕𝑥𝛽

𝜕�̅�2

𝐺𝛼𝛽

𝜅𝑁

𝜅𝑁�̅�12

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+

�̅�22𝜅𝑁
𝜕𝑥𝛼

𝜕�̅�2
𝜕𝑥𝛽

𝜕�̅�2

𝐺𝛼𝛽

𝜅𝑁

𝜅𝑁�̅�22
(
𝑑𝑞

𝑑𝑠
)

2

 

1 =
�̅�11𝜅𝑁�̅�11

𝜅𝑁�̅�11
(
𝑑𝑝

𝑑𝑠
)
2

+ 2
�̅�12𝜅𝑁�̅�12

𝜅𝑁�̅�12

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+

�̅�22𝜅𝑁�̅�22

𝜅𝑁�̅�22
(
𝑑𝑞

𝑑𝑠
)

2
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1 = �̅�11 (
𝑑𝑝

𝑑𝑠
)
2

+ 2�̅�12

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+ �̅�22 (

𝑑𝑞

𝑑𝑠
)
2

 

𝑑𝑠2 = �̅�11𝑑𝑝2 + 2�̅�12𝑑𝑝 𝑑𝑞 + �̅�22𝑑𝑞2 (7.1) 

Equation (6) is equivalent to 

�̅�𝑁𝑑𝑠2 = �̅�11𝑑𝑝2 + 2�̅�12𝑑𝑝 𝑑𝑞 + �̅�22𝑑𝑞2 (7.2) 

From (6) and (7.2) 

�̅�𝑁𝑑𝑠2 = 𝑑𝑠2 ⟹ �̅�𝑁 = 1 (8.1) 

 

Considering  𝜅𝑁 in terms of �̅�𝑁 we may show from equation (2.4) 

𝜅𝑁 = 1 (8.2) 

�̅�𝑁 ≠ 𝜅𝑁 has led to an inconsistency. Therefore we undo our initial assumption  �̅�𝑁 ≠ 𝜅𝑁 and consider 

�̅�𝑁 = 𝜅𝑁 instead. 

We arrive at the same conclusion if an orthogonal system is considered. 

Incidentally  using various alternative replacements from (5) into (6) has the same effect. For example 

1 =
�̅�11𝜅𝑁�̅�22

𝜅𝑁�̅�22
(
𝑑𝑝

𝑑𝑠
)
2

+ 2
�̅�12𝜅𝑁�̅�33

𝜅𝑁�̅�33

𝑑𝑝

𝑑𝑠

𝑑𝑞

𝑑𝑠
+

�̅�22𝜅𝑁�̅�11

𝜅𝑁�̅�11
(
𝑑𝑞

𝑑𝑠
)

2

 

implies (7.1),(7.2),(8.1) and (8.2). 

 

Now 

𝐴𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 = �̅�𝜇𝜈𝑑�̅�𝜇𝑑�̅�𝜈 

⟹ 𝐴𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 = �̅�𝜇𝜈

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽
𝑑𝑥𝛼𝑑𝑥𝛽  

⟹ 𝐴𝛼𝛽 = �̅�𝜇𝜈

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽
   

Therefore 𝐴𝛼𝛽  is a rank two covariant tensor. But we require to vary 𝑑𝑥𝛼and 𝑑𝑥𝛽 . Therefore the 

invatriance has to hold over a continuous region no matter how small it is.We recall (7.2) 

𝜅𝑁𝑑𝑠2 = 𝐺11𝑑𝑢2 + 2𝐺12𝑑𝑢𝑑𝑣 + 𝐺22𝑑𝑣2 
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Thus(
𝐿

𝜅𝑁
,

𝑀

𝜅𝑁
,

𝑁

𝜅𝑁
)as a tensor implies  (𝐿,𝑀,𝑁) is a rank two covariant tensor in two dimensions[due to 

the invariance of 𝜅𝑁. 

�̅� =
�̅�𝑢𝑢�̅�𝑣𝑣 − �̅�𝑢𝑣

2

�̅�𝑢𝑢�̅�𝑣𝑣 − �̅�𝑢𝑣
2  

=

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑢 𝐺𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝐺𝛾𝛿 −
𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣 𝐺𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝐺𝛾𝛿

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑢 𝑔𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝑔𝛾𝛿 −
𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣 𝑔𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝑔𝛾𝛿

 

=

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑢 𝐺𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝐺𝛾𝛿 −
𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣 𝐺𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝐺𝛾𝛿

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑢 𝑔𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝑔𝛾𝛿 −
𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣 𝑔𝛼𝛽
𝜕𝑥𝛾

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 𝑔𝛾𝛿

; 𝐸𝑎𝑐ℎ 𝑜𝑓 𝛼, 𝛽, 𝛾, 𝛿 = 𝑢, 𝑣  

�̅� =

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛾

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 [𝐺𝛼𝛾𝐺𝛽𝛿 − 𝐺𝛼𝛽𝐺𝛾𝛿]

𝜕𝑥𝛼

𝜕�̅�𝑢
𝜕𝑥𝛾

𝜕�̅�𝑢
𝜕𝑥𝛽

𝜕�̅�𝑣
𝜕𝑥𝛿

𝜕�̅�𝑣 [𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛽𝑔𝛾𝛿]
= 𝜅𝑁

2 = 𝐾; 𝐸𝑎𝑐ℎ 𝑜𝑓 𝛼, 𝛽, 𝛾, 𝛿 = 𝑢, 𝑣 (6)(9) 

Thus we obtain 

𝐺𝑢𝑢𝐺𝑣𝑣 − 𝐺𝑢𝑣
2

𝑔𝑢𝑢𝑔𝑣𝑣 − 𝑔𝑢𝑣
2

=
�̅�𝑢𝑢�̅�𝑣𝑣 − �̅�𝑢𝑣

2

�̅�𝑢𝑢�̅�𝑣𝑣 − �̅�𝑢𝑣
2  (10) 

𝐾 = �̅� 

 

𝐾 =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2
=

�̅��̅� − �̅�2

�̅��̅� − �̅�2
= �̅� = 𝜅𝑁(11.1)) 

𝐾 = 𝜅𝑁 = �̅� (11.2) 

Thus we arrive at the Theorema Egregium[3]:The Gaussian curvature of an embedded surface in 𝑅3is 

invariant under local isometric. But we do have an extra bonus in tha we have discovered that the 

Gaussian curvature should be the same as normal curvature. 

. 

[It is important to take note of the fact a zero of 𝜅𝑁 = �̅�𝑁 should simplify everything; nevertheless we 

are considering 𝜅𝑁 = �̅�𝑁 ≠ 0 cases in the following portion of this section] 

For a given surface 𝐾 is independent of the curves; it does not change as we pass from one curve to 

another. Therefore 𝐾 (or equivalently �̅�) is independent of the curves 

𝜅�̂�. �̂�

= 𝜅𝑁  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑐𝑢𝑟𝑣𝑒𝑠 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑎𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠. 
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𝜅1�̂�1. �̂� = 𝜅2�̂�2. �̂� = 𝜅3�̂�3. �̂� =,… .= 𝜅𝑖�̂�𝑖 . �̂� …… . . = 𝜅𝑁   (12) 

If for one curve at a point P[for example the generator of a cylinder]𝜅 = 0 we have 𝜅𝑁 = 0.Therefore 

𝜅𝑖�̂�𝑖 . �̂� = 0 (13) 

𝜅𝑁 = 0implies that all normals to the curves on the cylinder should lie on the tangent plane for all 𝑖.This 

is not true of the cylinder.We consider a circle on the surface of a cylinder with the axis passing through 

the center of the circle chosen. Normal to this circle at point P should lie on the tangent plane at P.We 

consider the solid of revolution for this circle along with the normal lying on the tangent plane. We end 

up with a sphere where the old normal [to the circle] by rotation has generated a tangent lane of the 

sphere. We have𝜅𝑁 = 0 implying Gaussian curvature 𝐾 = 0. This is not true. The same contradiction 

exists for an ellipsoid[by considering a curve with its normal lying on the tangent plane and then by 

rotating the curve; the tangent plane to this curve has to be considered where the major axis touches 

the surface for some ellipse] 

Next we consider a point P on a curved surface. We assume that Gaussian curvature at P ≠ 0 . At P we 

merge an infinitesimally small straight line [by lifting off and replacing a small portion of some existing 

curve portion  at P]with the final  surface  maintaining continuity and differentiability inclusive of the 

point P. We make sure that at least some part of the surface at P remains isometrically transformed. For 

other portions it is not necessary to preserve isometry while carrying out a replacement. But we have to 

preserve continuity and differentiability. 

 

Figure I 
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Referring to figure I, MN is the straight line replacing an infinitesimally small portion of the curve 

through P.’A’ represents the old surface or an isometric replacement of it. ‘B’ and ‘C’ are replacements 

in consideration of continuity and differentiability. It is not necessary to preserve isometry with ‘B’ and 

with ‘C’ 

 A similar operation is performed on the other side of the line MN keeping in the mind that the curves of 

A passing through P have to pass through its isometric counterpart A’ on the other side without 

distortion.In case we could do that in view of the failures with the sphere and the ellipsoid  shown just 

now we have the following 

𝜅𝑁 = 𝜅�̂�. �̂� = 0 for the straight line. Therefore or all other curves it should be zero inclusive of curves 

on the isometric part. But this stands out to be a contradiction since for the isometric part by Egregema 

,Gaussian curvature and hence   normal curvature 𝜅𝑁 should not change. They should remain non zero. 

 

If the surface A touched the straight line along it or a part of it then considering the fact that the 

common portion earlier was a curved line w are assuming a coincidence between a straight line and a 

curved line on an infinitesimal scale. This is impossible  because we cannot alter the curvature of a line 

at a point by taking a very small part of it in the neighborhood of the  point concerned. A practical way 

of visualizing this would be to consider the motion of a particle along a curved line at some point P.It 

would have a non zero centripetal acceleration. If we considered a straight line through P even its 

infinitesimal size would not allow any acceleration in a direction normal to it. Reducing the length of the 

curve round P will not reduce the acceleration at P to zero. We do not have this problem if the surface A 

touches the line MN at a point.  

 

Christoffel Symbols 

The second order derivative
𝑑2�⃗�

𝑑𝑠2 is not a tensor unless the transformation is of a linear nature[see 

Appendix I, equation (29)]. 

But the expression   
𝑑2𝑥𝛼

𝑑𝑠2 + Γα
βγ

dxβ

ds

dxγ

ds
 represents a tensor. 

Since
𝑑�⃗�

𝑑𝑠
 is a tensor th following inner product is an invariant 

𝑔𝜖𝛼

𝑑𝑥𝜖

𝑑𝑠
. [

𝑑2𝑥𝛼

𝑑𝑠2
+ Γα

βγ

dxβ

ds

dxγ

ds
] = 𝐼𝑁𝑉 

𝑔𝜖𝛼

𝑑𝑥𝜖

𝑑𝑠

𝑑2𝑥𝛼

𝑑𝑠2
+ 𝑔𝜖𝛼

𝑑𝑥𝜖

𝑑𝑠
Γα

βγ

dxβ

ds

dxγ

ds
= INV (14) 

Conventional material: 
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𝑑𝑟

𝑑𝑠
.
𝑑2𝑟

𝑑𝑠2
= �̂�. 𝜅�̂� = 0 (15) 

As fallout of this conventional stuff 

𝑔𝜖𝛼

𝑑𝑥𝜖

𝑑𝑠

𝑑2𝑥𝛼

𝑑𝑠2
= 0 

From equations  (14) and (15) we have, 

𝑔𝜖𝛼

𝑑𝑥𝜖

𝑑𝑠
Γα

βγ

dxβ

ds

dxγ

ds
= INV (16) 

By quotient law 

Γα
βγ

dxβ

ds

dxγ

ds
 

is a rank one contravariant tensor 

But the affine connection Γα
βγ

dxβ

ds

dxγ

ds
,is not supposed to be a tensor. 

Looking at 

𝑑2𝑥𝛼

𝑑𝑠2
+ Γα

βγ

dxβ

ds

dxγ

ds
, 

if Γα
βγ

dxβ

ds

dxγ

ds
 and 

𝑑2𝑥𝛼

𝑑𝑠2 + Γα
βγ

dxβ

ds

dxγ

ds
 are both tensors their difference 

𝑑2𝑥𝛼

𝑑𝑠2  will also be a tensor  

 

But 
𝑑2�⃗�

𝑑𝑠2 as we know is not a tensor for non linear transformations. 

NB: All objects have been considered in the ambient space[the space in which the surface has been 

considered as embedded].It is also important to take note of the fact that the Christoffel symbols 

pertaining to flat space time reduce to zero value only in the Cartesian[rectangular] system and not in 

other systems like the spherical coordinate system. 

 

Shifting the Origin 

Next[Shifting the origin] 

𝑑(𝑟. �̂�)

𝑑𝑠
=

𝑑𝑟

𝑑𝑠
. �̂� + 𝑟.

𝑑�⃗⃗�

𝑑𝑠
 (17) 
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𝑑𝑟𝑇

𝑑𝑠
= �̂�. �̂� + 𝑟.

𝑑2𝑟

𝑑𝑠2
 

𝑑𝑟𝑇

𝑑𝑠
= 1 + 𝜅𝑟. �̂� 

𝑑𝑟𝑇

𝑑𝑠
= 1 + 𝜅𝑟𝑛 (18) 

We keep changing the origin so that 𝑟𝑛 changes enormously in comparison with 
𝑑𝑟𝑇

𝑑𝑠
. That upsets the 

equation. 𝜅 being an intrinsic property does not depend on the origin. 

NB:𝑑𝑟. �̂� = 0 but 𝑟. �̂� ≠ 0.In a given frame of reference 𝑟 is a vector in the ambient space like �̂� 

and�̂�  .The ambient space is Euclidean R^3 .But 𝑟 is not a vector if the transformation is non linear. 

A Contradiction Arising from the Invariance of the Normal Curvature 

We consider the standard result[3] 

𝜅�̂�. �̂� = 𝜅𝑁  (25.1) 

[�̂�:normal to the curve, �̂�: normal to the surface,𝜅:  𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒, 𝜅𝑁: normal curvature 

𝜅�̂� =
𝜕2𝑟

𝜕𝑢2
(
𝑑𝑢

𝑑𝑠
)
2

+ 2
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕2𝑟

𝜕𝑣2
(
𝑑𝑣

𝑑𝑠
)
2

 

 We have from Appendix II, equation (54) 

𝜕2𝑟

𝜕𝑢2
(
𝑑𝑢

𝑑𝑠
)
2

+
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕2𝑟

𝜕𝑣2
(
𝑑𝑣

𝑑𝑠
)
2

=
𝑑2𝑟

𝑑𝑠2
−

𝜕𝑟

𝜕𝑢
(
𝑑𝑢

𝑑𝑠
)
2

−
𝜕𝑟

𝜕𝑣
(
𝑑𝑣

𝑑𝑠
)
2

 

𝜅�̂� =
𝑑2𝑟

𝑑𝑠2
−

𝜕𝑟

𝜕𝑢
(
𝑑𝑢

𝑑𝑠
)
2

−
𝜕𝑟

𝜕𝑣
(
𝑑𝑣

𝑑𝑠
)
2

 

𝜅�̂�. �̂� = [
𝑑2𝑟

𝑑𝑠2
−

𝜕𝑟

𝜕𝑢
(
𝑑𝑢

𝑑𝑠
)
2

−
𝜕𝑟

𝜕𝑣
(
𝑑𝑣

𝑑𝑠
)
2

] .

𝜕𝑟
𝜕𝑢

×
𝜕𝑟
𝜕𝑣

|
𝜕𝑟
𝜕𝑢 ×

𝜕𝑟
𝜕𝑣

|
 

𝜅�̂�. �̂� =
𝑑2𝑟

𝑑𝑠2
.

𝜕𝑟
𝜕𝑢 ×

𝜕𝑟
𝜕𝑣

|
𝜕𝑟
𝜕𝑢

×
𝜕𝑟
𝜕𝑣

|
 

𝜅𝑁 =
𝑑2𝑟

𝑑𝑠2
.

𝜕𝑟
𝜕𝑢 ×

𝜕𝑟
𝜕𝑣

|
𝜕𝑟
𝜕𝑢 ×

𝜕𝑟
𝜕𝑣

|
 (19) 
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Now, 
𝜕�⃗⃗⃗�

𝜕𝑢
×

𝜕�⃗⃗⃗�

𝜕𝑣

|
𝜕�⃗⃗⃗�

𝜕𝑢
×

𝜕�⃗⃗⃗�

𝜕𝑣
|
 is a vector and 𝜅𝑁 is an invariant. Therefore 

𝑑2�⃗�

𝑑𝑠2 is a vector. But this is not true from 

equation (22) unless the transformation is of a linear nature. Thus we have arrived at a 

contradiction. 

 

Taylor series Considerations 

∆𝑟(𝑢, 𝑣) =
𝜕𝑟

𝜕𝑢
∆𝑢 +

𝜕𝑟

𝜕𝑣
∆𝑣 +

1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

∆𝑢2 + 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢∆𝑣 + [
𝜕2𝑟

𝜕𝑣2
]
𝑜

∆𝑣2]

+
1

3!
[[

𝜕3𝑟

𝜕𝑢3
]
𝑜

∆𝑢3 + 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

∆𝑢2∆𝑣 + 3 [
𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

∆𝑣2∆𝑢 + [
𝜕3𝑟

𝜕𝑣3
]
𝑜

∆𝑣3]

+ 𝐻.𝑂 𝑡𝑒𝑟𝑚𝑠 (20) 

∆𝑟(𝑢, 𝑣) − (
𝜕𝑟

𝜕𝑢
∆𝑢 +

𝜕𝑟

𝜕𝑣
∆𝑣)

=
1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

∆𝑢2 + 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢∆𝑣 + [
𝜕2𝑟

𝜕𝑣2
]
𝑜

∆𝑣2]

+
1

3!
[[

𝜕3𝑟

𝜕𝑢3
]
𝑜

∆𝑢3 + 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

∆𝑢2∆𝑣 + 3 [
𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

∆𝑣2∆𝑢 + [
𝜕3𝑟

𝜕𝑣3
]
𝑜

∆𝑣3]

+ 𝐻.𝑂 𝑡𝑒𝑟𝑚𝑠 

 

∆𝑟(𝑢, 𝑣) − ∆𝑠 (
𝜕𝑟

𝜕𝑢

∆𝑢

∆𝑠
+

𝜕𝑟

𝜕𝑣

∆𝑣

∆𝑠
)

=
1

2
∆𝑠2 [[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

]

+
1

3!
∆𝑠3 [[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
∆𝑢

∆𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠4(…… .… ) 

[In the above ∆𝑠4(…… .… ) represent the higher order terms] 
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∆𝑟(𝑢, 𝑣) − ∆𝑠 (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)

∆𝑠2

=
1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

]

+
1

3!
𝑑𝑠 [[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠2(…… .… ) 

 [𝑑𝑠2(…… .… ) comprises higher order terms]  

[
∆𝑟
∆𝑠

𝑑𝑠 − ∆𝑠 (
𝜕𝑟
𝜕𝑢

𝑑𝑢
𝑑𝑠

+
𝜕𝑟
𝜕𝑣

𝑑𝑣
𝑑𝑠

)]

∆𝑠2

=
1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

]

+
1

3!
𝑑𝑠 [[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠2(…… .… ) 

[𝑑𝑠2(…… .… ) comprises higher order terms] 

[
∆𝑟
∆𝑠

− (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠

+
𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠

)]

∆𝑠

=
1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

]

+
1

3!
𝑑𝑠 [[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠2(…… .… ) 

 [𝑑𝑠2(…… .… ) comprises higher order terms]  

 

𝑙𝑖𝑚∆𝑠⟶0

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)]

∆𝑠

=
1

2
𝑙𝑖𝑚∆𝑠⟶0 [[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

] 
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𝑙𝑖𝑚∆𝑠⟶0

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)]

∆𝑠
=

1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
𝑑𝑣

𝑑𝑠
)
2

] (21) 

 

We may evaluate 

𝑙𝑖𝑚∆𝑠⟶0

[
∆𝑟
∆𝑠

− (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠

+
𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠

)]

∆𝑠
 

by applying L’Hospital’s rule since the limit is 0/0 form 

𝑙𝑖𝑚∆𝑠⟶0

[
∆𝑟
∆𝑠

− (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠

+
𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠

)]

∆𝑠
 

𝑙𝑖𝑚∆𝑠⟶0

𝑑
𝑑(∆𝑠)

[
∆𝑟
∆𝑠

− (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠

+
𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠

)]

𝑑
𝑑(∆𝑠)∆𝑠

 

𝑙𝑖𝑚∆𝑠⟶0

𝑑
𝑑(∆𝑠)

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)

]

1
 

Each term of the numerator with increasing smallness of ∆𝑠 becomes point functions and cease to 

depend on  ∆𝑠. As for example with∆𝑠 → 0 ⟹ ∆𝑢, ∆𝑣 ⟶ 0,   
∆�⃗�

∆𝑠
,
∆𝑢

∆𝑠
and 

∆𝑣

∆𝑠
become point functions 

𝑑�⃗�

𝑑𝑠
,
𝑑𝑢

𝑑𝑠
and 

𝑑𝑣

𝑑𝑠
 which are independent of ∆𝑠[they depend on s].Derivatives do not depend on the 

differences like 𝑑𝑟, 𝑑2𝑟, …… 

Therefore 𝑙𝑖𝑚∆𝑠⟶0
𝑑

𝑑(∆𝑠)
[
∆�⃗�

∆𝑠
− (

𝜕�⃗�

𝜕𝑢

∆𝑢

∆𝑠
+

𝜕�⃗�

𝜕𝑣

∆𝑣

∆𝑠
)] = 0 

Hence  

𝑙𝑖𝑚∆𝑠⟶0

𝑑
𝑑(∆𝑠)

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)

]

1
= 0 (22) 

⟹ [
𝜕2𝑟

𝜕𝑢2
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

𝑑𝑢

𝑑𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
𝑑𝑣

𝑑𝑠
)
2

= 0 (23) 

We have, 

𝜅�̂� = 0 ⟹ 𝜅𝑁 = 0 (24.1) 

But from equation (11.2) Gauss curvature 𝐾 = 𝜅𝑁 
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⟹ 𝐾 = 0  (24.2) 

The Egregema loses significance. 

All terms of the Taylor series like   

[
𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕2𝑢𝜕𝑣
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
2 𝑑𝑣

𝑑𝑠
+ 3 [

𝜕3𝑟

𝜕2𝑣𝜕𝑢
]
𝑜

(
𝑑𝑣

𝑑𝑠
)
2 𝑑𝑢

𝑑𝑠
+ [

𝜕3𝑟

𝜕𝑣3
]
𝑜

(
𝑑𝑣

𝑑𝑠
)
3

= 0 

and the subsequent ones disappear 

We recall 

[
∆𝑟
∆𝑠

− (
𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠

+
𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠

)]

∆𝑠

=
1

2
[[

𝜕2𝑟

𝜕𝑢2
]
𝑜

(
∆𝑢

∆𝑠
)
2

+ 2 [
𝜕2𝑟

𝜕𝑢𝜕𝑣
]
𝑜

∆𝑢

∆𝑠

∆𝑣

∆𝑠
+ [

𝜕2𝑟

𝜕𝑣2
]
𝑜

(
∆𝑣

∆𝑠
)
2

]

+
1

3!
𝑑𝑠 [[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠2(…… .… ) 

 [𝑑𝑠2(…… .… ) comprises higher order terms]  

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)]

∆𝑠2

=
1

2

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠

+ [
𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

∆𝑠

+
1

3!
[[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] + ∆𝑠(…… .… ) 
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𝑙𝑖𝑚∆𝑠⟶0

[
∆𝑟
∆𝑠 − (

𝜕𝑟
𝜕𝑢

∆𝑢
∆𝑠 +

𝜕𝑟
𝜕𝑣

∆𝑣
∆𝑠)]

∆𝑠2

=
1

2
𝑙𝑖𝑚∆𝑠⟶0

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠

+ [
𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

∆𝑠

+
1

3!
[[

𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠

+ [
𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] 

𝑙𝑖𝑚∆𝑠⟶0

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠 + [

𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

∆𝑠
 

We apply  Hospital’s rule to 

 

𝑙𝑖𝑚∆𝑠⟶0

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠 + [

𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

∆𝑠
 

𝑙𝑖𝑚∆𝑠⟶0

𝑑
𝑑(∆𝑠)

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠 + [

𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

1
 

The numerator is zero since with ∆𝑠 ⟶ 0 each term becomes a function of and is not a function of  

∆𝑠  

𝑙𝑖𝑚∆𝑠⟶0

[[
𝜕2𝑟
𝜕𝑢2]

𝑜
(
∆𝑢
∆𝑠

)
2

+ 2 [
𝜕2𝑟
𝜕𝑢𝜕𝑣

]
𝑜

∆𝑢
∆𝑠

∆𝑣
∆𝑠

+ [
𝜕2𝑟
𝜕𝑣2]

𝑜
(
∆𝑣
∆𝑠

)
2

]

∆𝑠
= 0 

 

With the limit on the left side we apply Hospital twice to prove it is zero 

Thus we conclude 

[[
𝜕3𝑟

𝜕𝑢3
]
𝑜

(
𝑑𝑢

𝑑𝑠
)
3

+ 3 [
𝜕3𝑟

𝜕𝑢2𝜕𝑣
]
𝑜

(
∆𝑢

∆𝑠
)
2 ∆𝑣

∆𝑠
+ 3 [

𝜕3𝑟

𝜕𝑣2𝜕𝑣
]
𝑜

(
∆𝑣

∆𝑠
)
2 ∆𝑢

∆𝑠
+ [

𝜕3𝑟

𝜕𝑣3
]
𝑜

(
∆𝑢

∆𝑠
)
3

] = 0 (25) 

We may apply the same technique to prove that the subsequent Taylor series terms  are zero for the 

expansion of the differential pertaining to the position vector as function of coordinates. 

Appendix I 
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1.  

𝑟 = (𝑢, 𝑣) ≡ (𝑝, 𝑞) (26.1) 

𝑟 = (𝑢(𝑝, 𝑞), 𝑣(𝑝, 𝑞)) (26.2) 

 

We have, 

𝑑𝑢

𝑑𝑠
=

𝜕𝑢

𝜕𝑝

𝑑𝑝

𝑑𝑠
+

𝜕𝑢

𝜕𝑞

𝑑𝑞

𝑑𝑠
 (27.1) 

𝑑𝑣

𝑑𝑠
=

𝜕𝑣

𝜕𝑝

𝑑𝑝

𝑑𝑠
+

𝜕𝑣

𝜕𝑞

𝑑𝑞

𝑑𝑠
 (27.2) 

 

Vector  

(
𝑑𝑢

𝑑𝑠
,
𝑑𝑣

𝑑𝑠
) ⟷ (

𝑑𝑝

𝑑𝑠
,
𝑑𝑞

𝑑𝑠
) 

They are of the form 

𝑑�̅�𝜇

𝑑𝑠
=

𝜕�̅�𝜇

𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝑠
; 𝑥𝛼 = 𝑝, 𝑞; �̅�𝜇 = 𝑢, 𝑣 (28.1) 

Transformation elements, 
𝜕�̅�𝜇

𝜕𝑥𝛼 ; 𝛼 = 1,2; 𝜇 = 1,2 

𝑀 =

[
 
 
 
 
𝜕𝑢

𝜕𝑝

𝜕𝑢

𝜕𝑞
𝜕𝑣

𝜕𝑝

𝜕𝑣

𝜕𝑞]
 
 
 
 

 (28.2) 

Considering the preservation of length 𝑀𝑀𝑇 = 𝐼[Orthogonality condition;this has nothing to do 

with the system of coordinates being orthogonal or non orthogonal] 

Now, 

𝑑2�̅�𝜇

𝑑𝑠2
=

𝜕�̅�𝜇

𝜕𝑥𝛼

𝑑2𝑥𝛼

𝑑𝑠2
+

𝜕2�̅�𝜇

𝜕2𝑥𝛼

𝑑𝑥𝛼

𝑑𝑠
 (29) 

𝑑2𝑥𝛼

𝑑𝑠2
⟶

𝑑2�̅�𝜇

𝑑𝑠2
 

is not a vector unless 
𝜕2�̅�𝜇

𝜕2𝑥𝛼 = 0 ⟹
𝜕�̅�𝜇

𝜕𝑥𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 that is unless the transformations are of a linear 

nature. 
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Next we shall prove that (
𝜕𝑥

𝜕𝑢
,
𝜕𝑥

𝜕𝑣
) ⟷ (

𝜕𝑥

𝜕𝑝
,
𝜕𝑥

𝜕𝑞
) and (

𝜕𝑦

𝜕𝑢
,
𝜕𝑦

𝜕𝑣
) ⟷ (

𝜕𝑦

𝜕𝑝
,
𝜕𝑦

𝜕𝑞
) 

 are vectors with respect to the transformations given by (21.2) 

𝜕𝑥

𝜕𝑢
=

𝜕𝑥

𝜕𝑝

𝜕𝑝

𝜕𝑢
+

𝜕𝑥

𝜕𝑞

𝜕𝑞

𝜕𝑢
 

𝜕𝑥

𝜕𝑣
=

𝜕𝑥

𝜕𝑝

𝜕𝑝

𝜕𝑣
+

𝜕𝑥

𝜕𝑞

𝜕𝑞

𝜕𝑣
 

Therefore (
𝜕𝑥

𝜕𝑢
,
𝜕𝑥

𝜕𝑣
) ⟷ (

𝜕𝑥

𝜕𝑝
,
𝜕𝑥

𝜕𝑞
) is a vector with respect to the transformations M given by (21.2) 

Again 

𝜕𝑦

𝜕𝑢
=

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑢
+

𝜕𝑦

𝜕𝑞

𝜕𝑞

𝜕𝑢
 

𝜕𝑦

𝜕𝑣
=

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑣
+

𝜕𝑦

𝜕𝑞

𝜕𝑞

𝜕𝑣
 

Therefore (
𝜕𝑦

𝜕𝑢
,
𝜕𝑦

𝜕𝑣
) ⟷ (

𝜕𝑦

𝜕𝑝
,
𝜕𝑦

𝜕𝑞
) is a vector with respect to the transformations given by (28.2) 

(
𝜕𝑥

𝜕𝑢
𝑒1 +

𝜕𝑥

𝜕𝑣
𝑒2) × (

𝜕𝑦

𝜕𝑢
𝑒1 +

𝜕𝑦

𝜕𝑣
𝑒2) =

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝑒1 × 𝑒2 +

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
𝑒2 × 𝑒1 

(
𝜕𝑥

𝜕𝑢
𝑒1 +

𝜕𝑥

𝜕𝑣
𝑒2) × (

𝜕𝑦

𝜕𝑢
𝑒1 +

𝜕𝑦

𝜕𝑣
𝑒2) = (

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
) 𝑒1 × 𝑒2 (29) 

𝑑𝑟

𝑑𝑢
×

𝑑𝑟

𝑑𝑣
= (

𝜕𝑥

𝜕𝑢
𝑒1 +

𝜕𝑦

𝜕𝑢
𝑒2) × (

𝜕𝑥

𝜕𝑣
𝑒1 +

𝜕𝑦

𝜕𝑣
𝑒2) =

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝑒1 × 𝑒2 +

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
𝑒2 × 𝑒1 

 

𝑑𝑟

𝑑𝑢
×

𝑑𝑟

𝑑𝑣
= (

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
) 𝑒1 × 𝑒2 (30) 

Therefore from (22) and (23) we obtain 

𝑑𝑟

𝑑𝑢
×

𝑑𝑟

𝑑𝑣
= (

𝜕𝑥

𝜕𝑢
𝑒1 +

𝜕𝑥

𝜕𝑣
𝑒2) × (

𝜕𝑦

𝜕𝑢
𝑒1 +

𝜕𝑦

𝜕𝑣
𝑒2) (31) 

(
𝜕𝑥

𝜕𝑢
𝑒1 +

𝜕𝑥

𝜕𝑣
𝑒2) and (

𝜕𝑦

𝜕𝑢
𝑒1 +

𝜕𝑦

𝜕𝑣
𝑒2) being vectors the left side of (24) is a vector. Therefore the right 

side is also a vector: 
𝑑�⃗�

𝑑𝑢
×

𝑑�⃗�

𝑑𝑢
 is a vector 

Thus the cross product transforms like a vector 
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One should take note of the formula[4] that  

(𝑀𝑎) × (𝑀𝑏) = det[𝑀](𝑀𝑇)−1 𝑎 × 𝑏 

M is an invertible transformation matrix.For length preserving transformations [|𝑑𝑟|2 invariant:we 

have the orthogonality condition 𝑀𝑀𝑇 = 𝐼 ⟹ 𝑀𝑇 = 𝑀−1. Therefore (𝑀𝑇)−1 = (𝑀−1)−1 = 𝑀 

Again 𝑀𝑀𝑇 = 𝐼 ⟹ det [𝑀𝑀𝑇] = 1 ⟹ det [𝑀]𝑑𝑒𝑡[𝑀𝑇] = 1 ⟹ [det[𝑀]]2 = 1 ⟹ det[𝑀] = ±1 

    [The orthogonality condition 𝑀𝑀𝑇 = 𝐼 is not related to the system of coordinates being orthogonal or 

non orthogonal] 

Thus considering the positive value for orthogonal transformations we do have, 

(𝑀�⃗�) × (𝑀�⃗⃗�) = 𝑀(�⃗� × �⃗⃗�) (32.1) 

�⃗�′ × �⃗⃗�′ = 𝑀(�⃗� × �⃗⃗�) (32.2) 

[Prime in the above does not denote differentiation; it denote an objet in a different frame of 

reference] 

Since the cross product is a vector we have from (32.2)  

(�⃗�′ × �⃗⃗�′)
𝜇

=
𝜕�̅�𝜇

𝜕𝑥𝛼
(�⃗� × �⃗⃗�)

𝛼
 (33) 

We also do have the following invariance, 

𝑔𝛼𝛽(�⃗� × �⃗⃗�)
𝛼
(�⃗� × �⃗⃗�)

𝛽
= �̅�𝜇𝜈(�⃗�

′ × �⃗⃗�′)
𝜇
(�⃗�′ × �⃗⃗�′)

𝜈
  (34) 

The preservation of the inner product is related to the preservation of length---the orthogonality 

condition tht we took into account in obtaining (32.1) 

That cross product is formally a vector rests heavily on the fact that 𝑀𝑀𝑇 = 𝐼 

Relevant Considerations 1 

�̅�𝜇𝜈𝜎 =
𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜎

𝜕𝑥𝛾
𝐴𝛼𝛽𝛾  (35.1) 

�̅�𝜇𝜈𝜎 =
𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽
(
𝜕�̅�𝜎

𝜕𝑥𝛾
𝐴𝛼𝛽𝛾) (35.2) 

�̅�𝜇𝜈𝜎 =
𝜕𝑥𝜎

𝜕�̅�𝜀
�̅�𝜇𝜈𝜀  (35.3) 

 For fixed 𝜇and 𝜈 (35.3) exhibits the transformation of a tank one contravatiant tensor: 

�̅�𝜇𝜈𝜀 ⟶ �̅�𝜇𝜈𝜎  
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Combining (35.1) and (35.3) we obtain 

𝜕𝑥𝜎

𝜕�̅�𝜀
�̅�𝜇𝜈𝜀 =

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽
(
𝜕�̅�𝜎

𝜕𝑥𝛾
𝐴𝛼𝛽𝛾)  (36) 

Therefore from (36)  

𝜕�̅�𝜎

𝜕𝑥𝛾
𝐴𝛼𝛽𝛾 ⟷

𝜕𝑥𝜎

𝜕�̅�𝜀
�̅�𝜇𝜈𝜀  

𝑖𝑠is a rank two contravariant tensor.Since 𝐴𝛼𝛽𝛾 is a rank three contravariant tensor 

𝜕�̅�𝜎

𝜕𝑥𝛾
⟷

𝜕𝑥𝜎

𝜕�̅�𝜀
 

is a rank one covariant tensor 

Consequently we have, 

𝜕�̅�𝜎

𝜕𝑥𝛾
=

𝜕�̅�𝜀

𝜕𝑥𝛾

𝜕𝑥𝜎

𝜕�̅�𝜀
 (37) 

⟹
𝜕�̅�𝜎

𝜕𝑥𝛾
= 𝛿𝜎

𝛾 

⟹ 𝐽 = 𝐼 (38) 

This ensures 𝐽𝐽𝑇 = 𝐼 nevertheless it is too restrictive. 

Relevant Considerations 2 

If 𝐴𝛼𝛽  is symmetric[or antisymmetric] the 𝑛2 × 𝑛2coeffiecient matrix effectively reduces to a 

singular matrix;else not.This stands independent of how J is related to K 

Proof 

We consider a general type of a matrix[irrespective of being symmetric or antiymmetric].Our 

transformation matrix is J 

  

                                                                     �̅�𝜇𝜈 =
𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕�̅�𝜈

𝜕𝑥𝛽  𝐴𝛼𝛽(46.1)  

�̅�𝜈𝜇 =
𝜕�̅�𝜈

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕𝑥𝛽
𝐴𝛼𝛽(46.2) 

𝐿𝑒𝑡 Let us inspect the 𝑛2 × 𝑛2transformation matrix 
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[�̅�]𝑛2×1 = [𝑇]𝑛2×𝑛2[𝐴]𝑛2×1 (47) 

The elements of the rows of 𝑇 and 𝐴 have to be arranged with a view to the sequence of the 

elements in �̅�[the elements of the column matrix  �̅� are the n2  elements �̅�𝜇𝜈  while the elements of 

𝐴 are the n2 , 𝐴𝛼𝛽. The matrices 𝐴and �̅� in (47) are not identical with those of (35.3).In (35.3) we 

have 𝑛 × 𝑛 matrices each 𝐴and �̅� while in (47) 𝐴and �̅� are column matrices. Equation (47) depicts 

(46.1) or equivalently (46.2).In the general case the rows in T against �̅�𝜇𝜈 and �̅�𝜈𝜇 are not identical. 

Keeping the row against �̅�𝜇𝜈  fixed if we reverse  order of elements in the  row against �̅�𝜈𝜇, the two 

rows become identical and T becomes a singular matrix. This operation cannot be performed for the 

general case but it works perfectly well for symmetric and the antisymmetric matrices. 

We recall (46.2) 

�̅�𝜈𝜇 =
𝜕�̅�𝜈

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕𝑥𝛽
𝐴𝛽𝛼 

𝛼 and 𝛽 being dummy indices we interchange them: 

�̅�𝜈𝜇 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛽𝛼  (48) 

For the Symmetric case: 𝐴𝛼𝛽 = 𝐴𝛽𝛼  

 

�̅�𝜈𝜇 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼𝛽  

We recall  

�̅�𝜇𝜈 = −
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼𝛽(49) 

 

 The rows of T against �̅�𝜇𝜈  and �̅�𝜈𝜇are identical.Consequently T is a singular matrix. 

For the antisymmetric case 

𝐴𝛼𝛽 = −𝐴𝛽𝛼  

�̅�𝜈𝜇 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼𝛽  

We recall  

�̅�𝜇𝜈 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼𝛽  
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The rows of T against �̅�𝜇𝜈  and �̅�𝜈𝜇are identical except for the factor (-1).Consequently T is a singular 

matrix. 

One should keep in the mind that a singular matrix implies that either solution does not exist or 

there exists an infinitude of solutions 

Next we consider the following two points 

1. An arbitrary matrix can be decomposed into the sum of a symmetric and an antisymmetric 

matrix 

2. A symmetric matrix[of rank two] transforms to a symmetric matrix and an anti symmetric matrix 

transforms to an antisymmetric matrix. 

With that in view we consider an arbitrary matrix  

Now an arbitrary matrix 𝐶𝛼𝛽 = 𝐴𝛼𝛽 + 𝐵𝛼𝛽  where A is a symmetric matrix and B an antisymmetric 

matrix 

�̅�𝜇𝜈 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐶𝛼𝛽  (50.1) 

�̅�𝜇𝜈 + �̅�𝜇𝜈 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
(𝐴𝛼𝛽 + 𝐵𝛼𝛽) 

By point (2) 

�̅�𝜇𝜈 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐴𝛼𝛽  (50.2) 

�̅�𝜇𝜈 =
𝜕�̅�𝜈

𝜕𝑥𝛽

𝜕�̅�𝜇

𝜕𝑥𝛼
𝐵𝛼𝛽  (50.3) 

Now the transformation matrices of (50.2) and (50.3) are effectively singular matrices as we have shown 

earlier.Either solution does not exist or we have an infinitude of solution. Theory fails unless J=I . 

 

Appendix II 

𝑑𝑟

𝑑𝑠
=

𝜕𝑟

𝜕𝑢

𝑑𝑢

𝑑𝑠
+

𝜕𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑠
 (51.1) 

 

𝑑2𝑟

𝑑𝑠2
=

𝑑

𝑑𝑠
[
𝜕𝑟

𝜕𝑢

𝑑𝑢

𝑑𝑠
+

𝜕𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑠
] (52.2) 
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𝑑2𝑟

𝑑𝑠2
=

𝑑

𝑑𝑠
(
𝜕𝑟

𝜕𝑢
)

𝑑𝑢

𝑑𝑠
+

𝜕𝑟

𝜕𝑢

𝑑2𝑢

𝑑𝑠2
+

𝑑

𝑑𝑠
(
𝜕𝑟

𝜕𝑣
)

𝑑𝑣

𝑑𝑠
+

𝜕𝑟

𝜕𝑣

𝑑2𝑣

𝑑𝑠2
 

𝑑

𝑑𝑠
(
𝜕𝑟

𝜕𝑢
) =

𝜕2𝑟

𝜕𝑢2

𝑑𝑢

𝑑𝑠
+

𝜕2𝑟

𝜕𝑣𝜕𝑢

𝑑𝑣

𝑑𝑠
 

𝑑

𝑑𝑠
(
𝜕𝑟

𝜕𝑣
) =

𝜕2𝑟

𝜕𝑣2

𝑑𝑣

𝑑𝑠
+

𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠
 

Therefore 

 

𝑑2𝑟

𝑑𝑠2
=

𝜕2𝑟

𝜕𝑢2
(
𝑑𝑢

𝑑𝑠
)
2

+
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕𝑟

𝜕𝑢

𝑑2𝑢

𝑑𝑠2
+

𝜕2𝑟

𝜕𝑣2
(
𝑑𝑣

𝑑𝑠
)
2

+
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕𝑟

𝜕𝑣

𝑑2𝑣

𝑑𝑠2
 

𝑑2𝑟

𝑑𝑠2
=

𝜕2𝑟

𝜕𝑢2
(
𝑑𝑢

𝑑𝑠
)
2

+ 2
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕2𝑟

𝜕𝑣2
(
𝑑𝑣

𝑑𝑠
)
2

+
𝜕𝑟

𝜕𝑢

𝑑2𝑢

𝑑𝑠2
+

𝜕𝑟

𝜕𝑣

𝑑2𝑣

𝑑𝑠2
 (53) 

We have by transposition, 

[
𝜕2𝑟

𝜕𝑢2
(
𝑑𝑢

𝑑𝑠
)
2

+ 2
𝜕2𝑟

𝜕𝑢𝜕𝑣

𝑑𝑢

𝑑𝑠

𝑑𝑣

𝑑𝑠
+

𝜕2𝑟

𝜕𝑣2
(
𝑑𝑣

𝑑𝑠
)
2

] = [
𝑑2𝑟

𝑑𝑠2
−

𝜕𝑟

𝜕𝑢

𝑑2𝑢

𝑑𝑠2
−

𝜕𝑟

𝜕𝑣

𝑑2𝑣

𝑑𝑠2
] (54) 

Conclusion 

As asserted at the outset the egregema of Gauss has been derived by a novel process. We have arrived 

at an amazing result that the Gauss curvature is equal to the normal curvature of the surface at a point. 

This strange result leads to discrepancies like that the Gauss curvature of the sphere being zero.  We  

have contradictions like an object being a vector and not a vector simultaneously. Finally we arrive at a 

shocking result as that normal curvature should be zero. 

[Data sharing is not applicable to this article as no new data were created or analyzed in this study.] 

 

References 

[1] https://www.cis.upenn.edu/~cis610/gma-v2-chap20.pdf p592-593 

[2] https://www.cis.upenn.edu/~cis610/gma-v2-chap20.pdf,p599 

 

[3] https://en.wikipedia.org/wiki/Gaussian_curvature 

 

https://www.cis.upenn.edu/~cis610/gma-v2-chap20.pdf
https://en.wikipedia.org/wiki/Gaussian_curvature


22 
 

[4] https://math.stackexchange.com/questions/859836/cross-product-matrix-transformation-

identity] 

 

 

https://math.stackexchange.com/questions/859836/cross-product-matrix-transformation-identity
https://math.stackexchange.com/questions/859836/cross-product-matrix-transformation-identity

