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Abstract

The article derives the Gauss Egregema by a novel technique and arrives at a surprising result that the
Gauss curvature is equal to the normal curvature. This strange result leads to discrepancies like that the
Gauss curvature of the sphere being zero. We arrive at a shocking result as that normal curvature should
be zero.The difficulties with tensor transformations their corresponding Jacobian has been dealt with in
detail.
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Introduction

The Egregema of Gauss is derived by a novel technique and analyzed. We arrive at a surprising result
that the Gauss curvature is equal to the normal curvature of the surface at a point. This strange result
leads to discrepancies like that the Gauss curvature of the sphere being zero. We have contradictions
like an object being a vector and not a vector simultaneously. Finally we arrive at a shocking result as
that normal curvature should be zero.

Gauss Egregema—A Novel Derivation
The first fundamental form™
|d7(u,v)|? = Edu? + 2Fdudv + Gdv? (1.1)
oo, _oror  oor
ou ou’ ou ov’ ov’ v
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The first point to take cognizance of is that the derivatives é and é are not vectors themselves: they do

not transform like vectors in that their dot products are not preserved. E, F and G are not invariants but
are the components of a tensor. Consequently at every step we shall verify whether an object termed as
a vector is truly a vector or not in terms of the requisite transformation properties.



Now,
|d7(u,v)|? = ds?
Thus we have the first fundamental form as
ds? = Edu? + 2Fdudv + Fdv? (1.2)
ds? = g;,1du® + 2g,,dudv + g,,dv? (1.3)

Even if we apply to the tangent plane |g;;| = 1, gix = 0 only for the rectangular Cartesian system that is
withy the x-y syatem.But the same is not valid for an arbitrary u-v system though we are not in the flat
space context.

Again[ | Expression for the normal curvature!?

_. (du)2 oF dudv +F (dv)z 21
N = ds ds ds ds @D

= kyds? = Ldu? + 2Fdudv + Fdv?

L M N
ds? = —du? + 2—dudv +K—dv2 (2.2)
N
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ds? = 22 du? + 2—2 dudv + —2dv? (2.3)
Kn Kn Kn

_ Gi1 (du 2 Giodudv Gy, dv)z
1= Ky (ds) +2 Ky ds ds + Ky (ds 24

In the above we have applied the notation,
Gll == L,Glz - M'GZZ - N

Indeed by subtracting (2.2) from (1.2) we obtain

L M N
0=(E——)duz+2<F——)dudv+(G——)dv2

Kn Kn Kn
From th arbitrariness of du and dv we claim
L M N
FE——=0F—-——=0,6——=0
Kn Kn Kn
M N
>F=—F=—,6G6=—
Kn Kn Kn
G11 G12 Go2
=011 = » 912 =K—'922 =— (3)



Thus it follows that (E 512 E) = (i, M N) = (911, 912, 922) is a tensor

kn ' Ky KN kn' Ky’ Ky
Now,

Gu  0x% 0xP Gyp

IEN dix* 0xv Ky

_ ax% dxP

Ky Gy — FETEg Gapky = 0 (4)

In the above we have three linear homogeneous equations and two unknown quantities. That should
make Ky = Ky = Ounless two of the equations are identical and the determinant of the coefficient
matrixof remaining two equations is zero .Then we might expect non trivial solutions for K, and ky

In the orthogonal system (4) reduces to two equations and two unknowns.

The issue of Ky = ky = 0 disappears if the G = {G,1, G12, G2} happens to be a tensor. We
automatically do have kyy = kyy # 0

Is G = {G11, G12, G»,} being a tensor a unique resolution to the issue? In order to have a clearer view of
the situation we proceed as follows:

First we write from (4)
Kn G;w

N = 9xa gxB
0xH dxv "B

K

(5)

It is assumed that iy # k,each non zero .Vow considering (2.4) in a transformed frame we have

_ Gy dp)z Gipdpdq Gy, (dQ)Z
1= ( +2;€Ndsds+;EN ®

Ky \ds ds
Applying (5) on (6) we obtain
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- Ox% axﬁ = Ox“ axﬂ ~ 0x® axﬁ
1 = vt g Cos dp)* , Gr gt g Gut dpda | s o gz Gy
- KNéll dS KNG_12 ds dS KNG_ZZ dS
é Ix 9xB Gaﬁ c Ox* oxP Gaﬁ G 9x% 0xP Gaﬁ ’
B knGiq ds KnGiz ds ds ey Gz ds

= = = = = = 2
1= G11knG1q (@)2 ) G12Kn G d_Pﬂ n Ga2knGo2 (d_Q)
kyGi, \ds knGip dsds  kyGy, \ds



_ dp2 _ dpdq . dq2
1= G () + 26 gy gy + G (g,

ds? = Gy1dp? + 2G,,dp dq + G,,dq? (7.1)
Equation (6) is equivalent to
Kyds? = Gy dp? + 2G1,dp dq + Gopdq? (7.2)
From (6) and (7.2)

IENdSZ = dSZ = IEN =1 (81)

Considering Ky in terms of i, we may show from equation (2.4)
ky =1(8.2)

Ky ¥ Ky has led to an inconsistency. Therefore we undo our initial assumption Ky # kp and consider
Ky = Ky instead.

We arrive at the same conclusion if an orthogonal system is considered.

Incidentally using various alternative replacements from (5) into (6) has the same effect. For example

= = = = = = 2
1= G11Kn G2 (d_P)Z ) G12KnG33 d_Pﬂ Go2kn Gy (ﬂ)
knGyp \ds knGss dsds  kyGy \ds

implies (7.1),(7.2),(8.1) and (8.2).

Now

Agpdx®dxf = A, dx*dx”

aq B _ 7 ax* ox" 8
= Agpdx®dxf = A'”ﬁaxﬂ dx%dx
_ 0x*oxV
= Aap = A 0x 0xF

Therefore A, is a rank two covariant tensor. But we require to vary dx“and dxP . Therefore the

invatriance has to hold over a continuous region no matter how small it is.We recall (7.2)

KNdSZ = Gllduz + ZGlzdudU + Gzzdvz



L M N . . . . . . .
Thus(K—,K—,K—)as a tensor implies (L, M, N) is a rank two covariant tensor in two dimensions[due to
N N N

the invariance of k.
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7 GuuG_vv — G_uv
K=——F—"7"7"—
JuuIvv — Guv
ax® axP axY dx® ax® dxP dxY dxd
_ 0x“ 0x* 2P 0x¥ 0xv Gys — 5% oz Uab 57 97 Urs
"~ 0x® 9xP oxY 0x% 0x® dxP oxY 9x%

ox¥ ax JaB gxv axv Ivs ~ gxv axv Jab xv 9xv Iré

0x* 9xP ¢ 9x 0x° G dx* dxP ¢ 9x dx® G
_ 0x"0x® "B 9x? 9x¥ "6 — 9x* 9x? "*F 9x¥ dxv VS -
= 0x% aXB dxY ax6 Jx« axﬁ dxY 6x5 ,EaCh. Of a,B,y’(S_u’v

0x% 0x¥ gaB 0xV 0xV gy5 - 0x* 0xV gaﬁ 0xV 0xV gy6

0x® dxY dxP 9x’
377 957 937 97 | Gar Ggo — GapGysl
0x% dxY 0xP 0x9
0xX* 0x* 0xV 0xV [gaygﬁd - gaﬁgya]

K=

=ky? = K;Eachof a,B,y,6 = u,v (6)(9)

Thus we obtain

= = = 2
Guquv - Guvz — Guquv - Guv (10)
JuuIvv — guvz g_uug_vv - g_uvz

Thus we arrive at the Theorema Egregium®®:The Gaussian curvature of an embedded surface in R3is
invariant under local isometric. But we do have an extra bonus in tha we have discovered that the
Gaussian curvature should be the same as normal curvature.

[It is important to take note of the fact a zero of Ky = K should simplify everything; nevertheless we
are considering ky = Ky # 0 cases in the following portion of this section]

For a given surface K is independent of the curves; it does not change as we pass from one curve to
another. Therefore K (or equivalently K) is independent of the curves
k. N

= Ky independent of curves for a given surface and invariant in respect of transformations.
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K17i1.N = k,75,. N = k3fis. N =, ....= k;7i;. N ........= kn (12
1My 2N 3N3 iny N

If for one curve at a point P[for example the generator of a cylinder]x = 0 we have ky = 0.Therefore

kiA;. N =0 (13)
Ky = Oimplies that all normals to the curves on the cylinder should lie on the tangent plane for all i.This
is not true of the cylinder.We consider a circle on the surface of a cylinder with the axis passing through
the center of the circle chosen. Normal to this circle at point P should lie on the tangent plane at P.We
consider the solid of revolution for this circle along with the normal lying on the tangent plane. We end
up with a sphere where the old normal [to the circle] by rotation has generated a tangent lane of the
sphere. We haveky = 0 implying Gaussian curvature K = 0. This is not true. The same contradiction
exists for an ellipsoid[by considering a curve with its normal lying on the tangent plane and then by
rotating the curve; the tangent plane to this curve has to be considered where the major axis touches
the surface for some ellipse]

Next we consider a point P on a curved surface. We assume that Gaussian curvatureat P # 0. At P we
merge an infinitesimally small straight line [by lifting off and replacing a small portion of some existing
curve portion at P]with the final surface maintaining continuity and differentiability inclusive of the
point P. We make sure that at least some part of the surface at P remains isometrically transformed. For
other portions it is not necessary to preserve isometry while carrying out a replacement. But we have to
preserve continuity and differentiability.

MN: infinitesimally small straight
line replacing an existing curve

A represents a portion of the old
surface

or an isometric
relacement

Portions B and C have to be filled up with surfas
maintaining continuity and differentiability with MN ,B
and C

Figure |



Referring to figure I, MN is the straight line replacing an infinitesimally small portion of the curve
through P.’A’ represents the old surface or an isometric replacement of it. ‘B’ and ‘C’ are replacements
in consideration of continuity and differentiability. It is not necessary to preserve isometry with ‘B’ and
with ‘C’

A similar operation is performed on the other side of the line MN keeping in the mind that the curves of
A passing through P have to pass through its isometric counterpart A’ on the other side without
distortion./n case we could do that in view of the failures with the sphere and the ellipsoid shown just
now we have the following

ky = kfi. N = 0 for the straight line. Therefore or all other curves it should be zero inclusive of curves
on the isometric part. But this stands out to be a contradiction since for the isometric part by Egregema
,Gaussian curvature and hence normal curvature ky should not change. They should remain non zero.

If the surface A touched the straight line along it or a part of it then considering the fact that the
common portion earlier was a curved line w are assuming a coincidence between a straight line and a
curved line on an infinitesimal scale. This is impossible because we cannot alter the curvature of a line
at a point by taking a very small part of it in the neighborhood of the point concerned. A practical way
of visualizing this would be to consider the motion of a particle along a curved line at some point P.It
would have a non zero centripetal acceleration. If we considered a straight line through P even its
infinitesimal size would not allow any acceleration in a direction normal to it. Reducing the length of the
curve round P will not reduce the acceleration at P to zero. We do not have this problem if the surface A
touches the line MN at a point.

Christoffel Symbols

.

... dPF L .
The second order derlvatlved is not a tensor unless the transformation is of a linear nature[see

s2

Appendix |, equation (29)].

d?x® dxB dxY

But the expression —— a, — represents a tensor.
P ds? BY ds ds P

. dar . L . . .
SmceE is a tensor th following inner product is an invariant

dx€ dzxa+F°‘ dxP dxY Ny
Jea "1 7 ds? By'ds ds |

dx€ d?x“ N dx€ ra dxP dxY NV (14
Jea "y qsz T 9ea g gy ds ds (14)

Conventional material:



ds ds?
As fallout of this conventional stuff
dx€ d?x* _ 0
Jea g5 ds?
From equations (14) and (15) we have,
dx€ ra dxP dxY — INV (16
Jea s BY Qs ds (16)

By quotient law

dxP dxY
By ds ds

is a rank one contravariant tensor

. . dxP dxY .
But the affine connection FaBY%d_XS'IS not supposed to be a tensor.

Looking at

d?x“ dxP dxY

(04

[%g, ——
ds? T8y ds ds

dxP dxY d%x“® dxP dxY L. d2x@
— O‘Byg—are both tensors their difference

s 2.z Will also be a tensor

d37 . . .
But —zaswe know is not a tensor for non linear transformations.

NB: All objects have been considered in the ambient space[the space in which the surface has been
considered as embedded].It is also important to take note of the fact that the Christoffel symbols
pertaining to flat space time reduce to zero value only in the Cartesian[rectangular] system and not in
other systems like the spherical coordinate system.

Shifting the Origin
Next[Shifting the origin]

d(7.T) ar TVdT 1
ds ds’ 7a'ds( )



drr Pz d*r
ds "ds?
drr
el S 1 ->. ~
ds + kr.n
T _ 1 4w, (18)
s = KTy,

We keep changing the origin so that 7;; changes enormously in comparison with %. That upsets the

equation. k being an intrinsic property does not depend on the origin.

NB:d7.7i = 0 but 7.7 # 0.In a given frame of reference 7 is a vector in the ambient space like i
andN .The ambient space is Euclidean RA3 .But # is not a vector if the transformation is non linear.

A Contradiction Arising from the Invariance of the Normal Curvature
We consider the standard result®
k. N = iy (25.1)

[fi:normal to the curve, N: normal to the surface,k: curvature, ky: normal curvature

Kl =

927 (du)z 92# dudv N 927 (dv)z
Ju? \ds Judvds ds 0v?\ds

We have from Appendix Il, equation (54)

627<du>2+ 0% dudv 0% (dv)z_dzf' aF(du)z a?(dv)z
du? \ds oudv ds ds 6172 ds) — ds? 0du\ds dv \ds

_adct 6F(du)2 aF(dv)z
Kn=—=———\|5] —=—\|-

ds? Ju\ds Jv \ds

27 a7 sd 67‘ or
Lo |4 or u au 617
Kn'N_[dsz 6u(ds ]| |
ou X ov

~ o _ 4T Ju” Jv

Kn'N_d52'|6_?x6_F

ou” ov

or o7

a*? Fu>xav
T ds?’|o7F a?| (19)

oul v
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ar ﬂ| is a vector and kyis an invariant. Therefor =

equation (22) unless the transformation is of a linear nature. Thus we have arrived at a
contradiction.

Taylor series Considerations

A7 (u, v)—a—Au+—Av+ H 2-)] Au +2[a Aulv + ﬁ Av?
ou oudv ov?
H 39] [ o°r ] Au?Av + 3 i Av?Au + ﬁ Av3]
ou?ov . ov?ov ov3
+ H.O terms (20)
. or or
AP (u,v) — | —Au + —Av
<6u ov >
—l[[a_] Au2+2[62F] sutw + |22 a2
2||ou? o dudv| ov? o
I o] o 2] e 2] ]
3!{|oud o ou?dv . dv?adv ov3 o
+ H.O terms
or Au 07 Av
AP (u,v) — AS(@E-F%E)
0% | AulAv [9%F
Hauz] Z[Guav]oEAs [6172] ]
A CRCLERTEE
oud auzavo As) As avzavo As/ As
037 Au .
[avs] ]+As ()

[In the above As*(..........) represent the higher order terms]
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S or Au | 07 Av
Ar(u, 17) —As (ﬁA_S + %A_S)

Asz

927 Au AuAv+ 0%7 (Av)z
6u2 auav , As As 0v? , \As
63* 3 3r (Au)z Av+ 5 937 (Av)z Au
6u3 ou?ov , \As/ As 0vZov , \As/ As
Au
6173 + As? (ceeeennr)
[ds?(..........) comprises higher order terms]
A7 0frdu 07 dv
A_SdS_AS<%%+%% ]
A52
927 (Au , %7 AuAv+ %7 (Av)z
ou? o As oudv As As  |0v? . As
2937 637_“' Aun? Av 237 Av\? Au
(] (2
3! 6u3 auzav . As/) As 0v2ov o As/) As
[61}3 ) ] + A (e )
[ds?(..........) comprises higher order terms]
A7 (a_?A_u+a_fA_v>]
As Juls ' 0vAs
%7 Au o %7 AuAv %7
6u2 ouov . As As 6172
3 L3 237 (Au) Av+3 237 (Av)zAu
6u3 du?ov . As/) As d0v2ov o As/) As
[aw] ) ] +AS2 ()
[ds?(..........) comprises higher order terms]

As  \Ouds " 0ovAs
As

1l 62% Au) o
lmAs—>0 AS

A7 (GFAu aFAv)]

limAs—>0

%7 AuAv+ %7 (Av)z
Jouov . As As  |0v? . As



AY 0r Au 07 Av
y As ~\guds T avas)| 1[[a*F (du)z 0°7 | dudv  [0%F
HMtas—o As 2 ||ou? , \ds oudv ds ds

We may evaluate

O (grdu, ordv))
. As Juls ' 0vAs
limys—0 As

by applying L'Hospital’s rule since the limit is 0/0 form
AF (07 Bu , 07 Av
As duls ' 0vAs
As

limys—0

4[ar_ (28, oray)
. d(As)|As \duAs ' JdvAs
limys—0 d
= As
d(As)
4_[o7_ (24, orom)
. d(As) |As Juls ' 0vAs
llmAs—>0

1

12

@)2] 1)

ovz| \d
o

Each term of the numerator with increasing smallness of As becomes point functions and cease to

depend on As. As for example withAs - 0 = Au,Av — 0, i_r i_”
dr du
ds ds

d|fferences I|ke dr,d?r, ... ...

Therefore limys_,o d(is) ar_ (6r fu o AU)] =0

ou As v As
Hence
d 'A_?_(a_m_u o7 av)
d(As) |A ou A v A
limy,_, JASNAS \Ouls  vAS)]_ oo
'62? duAv %7 023
6u2 auav dsAs 6172 =0(3)
We have,

kil =0 = Ky = 0(24.1)

But from equation (11.2) Gauss curvature K = ky

A ) ,
and —vbecome point functions

and — Wh|ch are independent of As[they depend on s].Derivatives do not depend on the
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= K =0 (24.2)
The Egregema loses significance.

All terms of the Taylor series like

037 <du)2dv+3 037 (dv)zdu+ 237 (dv)3 o
6u3 62u6v ds/ ds 0%2vou . ds/ ds |ov3 o ds)
and the subsequent ones disappear
We recall
A7 _ (6_M_u+a_m_v)]
As Juls ' 0vAs
927 Au 927 AuAv+ 9% (Av)z
auz oudv . As As  |0v? . As
3 937 (Au)z Av+ ; 937 (Av)z Au
6u3 Ju?ov . As/) As 0v2ov o As/) As
Au + As?
av3 S (v en)
[ds?(..........) comprises higher order terms]
o _(Ehu, 07d)
As Juls ' 0vAs
As?
[62* byt o[ Z20] Sudv, [0%F] (duy’
6u2 dudv|, As As * |9v?|, \As
As
3 L3 237 (Au)z Av+ 3 237 (Av)z Au
3' 6u3 du?ov . As/) As d0v2ov o As/) As

+ [Z_ZL (i—Z) ] + DS (on )
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AT (6?Au GFAU)]

. As  \Ouds " 0vAs
llmAS—)O ASZ
027 1 Audv  [9%7] [Av\?
[[auz + 2[5 ,BAshs T [W] (z) ]
lmAs—)O As
937 3 3 937 (Au)z Av+ 5 937 (Av)z Au
6u3 ou?ov , \As/ As 0vZov , \As/ As
N 63F (Au)
0v3| \As
o
[62* Au 42 [ 07 | Audv [ﬁ] (A_v)z
6u2 dudv], As As " |ov?], \As
limas_yo As
We apply Hospital’s rule to
[62* Au 42 [ 07 | Aubv [a_zr] (A_v)z
. 6u2 dudv|, As As * |ov?| \As
limpg_so As
%7 %27 1 Auldv  [3%F] [Av\?
. d(As) [[6u2 + 2 [auav , As As + [W]o (E) ]
IMps—o 1

The numerator is zero since with As — 0 each term becomes a function of and is not a function of
As

Au %27 1 Audv  [9%7] [Av\?
[[auz E +2 [auav AshAs + [W]o (E) ]

limps—o As =0
With the limit on the left side we apply Hospital twice to prove it is zero
Thus we conclude
037 037 (Au)ZAv+3 037 Au 025
6u3 auzav As/ As 6172617 As 6173 (25)

We may apply the same technique to prove that the subsequent Taylor series terms are zero for the
expansion of the differential pertaining to the position vector as function of coordinates.

Appendix |
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1
7= (u,v) = (p,q) (26.1)
7= (ulp, @), v(p,9)) (26.2)
We have,
d dudp odud
u _dudp dudq @7.1)
ds ap ds aq ds
dv dvdp Jdvdg
— 27.2
ds opds Togds 7H
Vector

(du dv)
—,— |
ds’ds

They are of the form

D)
ds’ds

dxt  oxtdx® )
15 " aga g5 X =P axt =wv(281)
Transformation eIements A= 1,20 =12
[Ou ouj
|a a_|
p q|
M= [0v ov| (28.2)
lap an

Considering the preservation of length MMT = I[Orthogonality condition;this has nothing to do

with the system of coordinates being orthogonal or non orthogonal]

Now,
d’x#  9x* d*x® N 9%x* dx* -
ds?2  9x% ds? = 92%x% ds (29)
d?x®  d?xt
ds? - ds?

9%xH
2 a 0
x dax
nature.

axH . . .
= — = constant that is unless the transformations are of a linear
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x 0x ox Ox oy 6y) (6y 6y)
Next we shall prove that( 617) — (ap’aq) and (au ) < 30’ 3q

are vectors with respect to the transformations given by (21.2)

Ox 0x ap op  0x dx aq
E ap Jdu 0dq ou

dx axap axaq
v apav aqav

Therefore (ax 6x)

Pt R (6x 0x ) is a vector with respect to the transformations M given by (21.2)

ap’ aq
Again

dy 6y6p+6y6q
du dpou dqdu

dy _dyadp +6y6q
v ap v dq dv

Therefore (gy ay) — (6y'g_3(;) is a vector with respect to the transformations given by (28.2)

v %
dx dx dy dy _ 0x 0y dx dy
(auel+avez)x(auel+ave2)‘auavel 2t g u®2 e
dx dx dy dy dxdy 0xdy
(e + 3e2) * Gaer +5v%2) = (Guzw ~ w1 X2 @9
dr dr  (0x ay ox ay dx ay dx dy
@XE‘<@ au )X<% v ) quav X2 pau % X
dr dr <6x6y axay) o 30
du dv dudv dvadu er X €2 (30)
Therefore from (22) and (23) we obtain
d?xd?_<ax +6x ) (6y +6y ) 31
du’ dv 6uel avez % auel avez B

(Z—i e+ Z ) and (— e+ Z—zez) being vectors the left side of (24) is a vector. Therefore the right

sideisalsoa vector: — >< — is a vector
du du

Thus the cross product transforms like a vector
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One should take note of the formula® that
(Ma) x (Mb) = det[M](MT)"Ya x b

M is an invertible transformation matrix.For length preserving transformations [|d#|? invariant:we
have the orthogonality condition MMT = = MT = M~1. Therefore MT) "1 = (M) 1 =M

Again MMT = | = det[MMT] = 1 = det[M]det[MT] = 1 = [det[M]]? = 1 = det[M] = +1

[The orthogonality condition MMT = [ is not related to the system of coordinates being orthogonal or
non orthogonal]

Thus considering the positive value for orthogonal transformations we do have,
(M&) x (Mb) = M(@ x b) (32.1)
@ xb' =M(dxb) (32.2)

[Prime in the above does not denote differentiation; it denote an objet in a different frame of
reference]

Since the cross product is a vector we have from (32.2)

u_af

(@' xb) —

s L \a
z(@axb) (33)
We also do have the following invariance,
9ap(@xB)“(@x5)’ = g (@ x5)' (@ x5)" 349

The preservation of the inner product is related to the preservation of length---the orthogonality
condition tht we took into account in obtaining (32.1)

That cross product is formally a vector rests heavily on the fact that MMT = |

Relevant Considerations 1

ox* 0x¥ 0x°

Auvoe — ——_ paBy

AT = 0x% 0xP dxY AT (35
e OFL IR (0X°
A = Gt (A7) (352

g

AUVo 0x AUVE

For fixed puand v (35.3) exhibits the transformation of a tank one contravatiant tensor:

A_!Wf SN Auva
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Combining (35.1) and (35.3) we obtain

%€ T 9x® 9xP

ox7 - ox* 9x (0x°
Anve (mmﬁy) (36)

Therefore from (36)

0x° ox? _
—Z_A%BY — Amve
oxY 0x¢

isis a rank two contravariant tensor.Since A%fYis a rank three contravariant tensor

0x° 0x°
—_—
oxY 0i¢

is a rank one covariant tensor

Consequently we have,
0x° B 0x¢ 0x°
dx¥  9xY dx¢

0x° B
axy

(37)
5%,
=] =1(38)

This ensures JJT = I nevertheless it is too restrictive.

Relevant Considerations 2

If A%F is symmetric[or antisymmetric] the n? X n?coeffiecient matrix effectively reduces to a
singular matrix;else not.This stands independent of how J is related to K

Proof

We consider a general type of a matrix[irrespective of being symmetric or antiymmetric].Our
transformation matrix is J

— axt oxv
w — 2X 9%  gap
AW = A% (46.1)
AVH = 0x” 0x* A%P (46.2
T 0x® 9xP (46.2)

Let Let us inspect the n? X n?transformation matrix
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[A_]nle = [T]nzxn2 [A]nle (47)

The elements of the rows of T and A have to be arranged with a view to the sequence of the
elements in A[the elements of the column matrix A are the n? elements A*¥ while the elements of
Aare the n?, A%F . The matrices Aand 4 in (47) are not identical with those of (35.3).In (35.3) we
have n X n matrices each Aand A while in (47) Aand A are column matrices. Equation (47) depicts
(46.1) or equivalently (46.2).In the general case the rows in T against A*Y and AY* are not identical.

Keeping the row against A" fixed if we reverse order of elements in the row against AV#, the two
rows become identical and T becomes a singular matrix. This operation cannot be performed for the
general case but it works perfectly well for symmetric and the antisymmetric matrices.

We recall (46.2)

a and 8 being dummy indices we interchange them:

v = 0% 0% g (48)
~ 9xB ax“
For the Symmetric case: A%F = AP
_ axv dxH
VU — ap
0xP 0x«
We recall
Ty _ ax¥ dxH 428 (49
~ 9xP ox> (49)

The rows of T against A¥Y and A are identical.Consequently T is a singular matrix.

For the antisymmetric case

Aaﬂ — _Aﬂa
_ axY axt
AVH = ap
0xB dx«
We recall
T _ 0x" ox* ap
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The rows of T against A*¥ and AV*are identical except for the factor (-1).Consequently T is a singular
matrix.

One should keep in the mind that a singular matrix implies that either solution does not exist or
there exists an infinitude of solutions

Next we consider the following two points

1. An arbitrary matrix can be decomposed into the sum of a symmetric and an antisymmetric
matrix

2. A symmetric matrix[of rank two] transforms to a symmetric matrix and an anti symmetric matrix
transforms to an antisymmetric matrix.

With that in view we consider an arbitrary matrix

Now an arbitrary matrix C = A%B 4 BB where Ais a symmetric matrix and B an antisymmetric

matrix
S dxV dixt ap
CcH = py ax“C (50.1)
_ _ axv ax*
A‘uv+B‘uv :ﬁax‘l (Aa‘g-l'Baﬁ)
By point (2)
T _ axv dx* ap
AW = 9P ax“A (50.2)
T axV ox* af
B¥ = 9P 6x“B (50.3)

Now the transformation matrices of (50.2) and (50.3) are effectively singular matrices as we have shown
earlier.Either solution does not exist or we have an infinitude of solution. Theory fails unless J=I .

Appendix Il

d?_a?du_l_ade 511
ds duds avds( 1)

d** d[ordu o7rdv

ds? ~ ds |ouds +%£] (522)
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dZF_ d (o7 du+6Fd2u+d o7 dv+6?d2v
ds?  ds\ou/ds ouds? ds\ov/ds dvds?

d (o7 azfdu_l_ %7 dv
du?ds Ovouds

d (07\ _9%dv 0% du
ds\ov] ov?ds oudvds

Therefore

d?7 62F<du)2+ 027 dudv 07d*u 0%F (dv)2+ 027 dudv 07 d%v

ds? _ouz\ds) T udvdsds  duds®  0vE\ds) ' oudvdsds @ dvds?

d27 627<du)2 927 dudv GZF(dv)Z oF d*u o7 d?v
ds2 ~ ou?

= 9z\as) TPauwovasas Tove\as) Tauasz Tavasz O

We have by transposition,

d*?  odrd*u 07 d*v

_[E duds? dvds?

(54)

627<du)2 . 927 dudv_l_ 927 (dv)z
Ju? \ds Judvdsds 0v?\ds

Conclusion

As asserted at the outset the egregema of Gauss has been derived by a novel process. We have arrived
at an amazing result that the Gauss curvature is equal to the normal curvature of the surface at a point.
This strange result leads to discrepancies like that the Gauss curvature of the sphere being zero. We
have contradictions like an object being a vector and not a vector simultaneously. Finally we arrive at a
shocking result as that normal curvature should be zero.

[Data sharing is not applicable to this article as no new data were created or analyzed in this study.]
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