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Abstract. In this article, we seek an alternative avenue–in contrast to the
conventional hypercube approach–to reckon physical or abstract dimensions from
an information perspective alone. After briefly reviewing “bit” and “quantum of
information–it”, we propose a scheme to perceive higher dimensions using bits
and concentric spherical shells that are intrinsically entangled.

1 Introduction
A bit is a binary digit, 0 or 1. Any binary set-up such as love-hatred, peace-war,
true-false, up-down, high and low voltage levels of an electrical appliance, etc.,
can be effectively mapped to a bit. It is no surprise that bits are useful. Indeed, it’s
hard to imagine to be without bits today. Despite several breakthroughs, science is
still plagued with many conceptual problems such as collapse of the wavefunction
in quantum mechanics, space and time, etc. We can bypass such crises to far ex-
tent by digging out information inherent in the system of interest. Information (the
processed data) is considered fundamental, and everything else flows and swims
in it. But if information is that irreducible fundamental how come it is not able to
identify those conceptual details, save technical ones, and paradoxes arise? May
be we are superficial and digging not deep into the problem. Or, may be our ego
and ignorance do not let us accept or see the solution. It is important to remark
here that information may not be just what we ‘learn’ about the world; it may be
what ‘makes’ the world [1]. John Archibald Wheeler, a great exponent of mod-
ern physics, in his search for links between information, physics, and quantum [2],
summarizes everything in the catchphrase it from bit. That is, every physical quan-
tity, every it, derives its ultimate significance from bits, binary yes-no questions.
It should not be an exaggeration to claim that bit is the language or tongue of it
(information). If we believe in Bohr, a qubit (quantum bit) that is a superposition
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of 0 and 1, and exhibits infinite possibilities, is not informative unless measured.
And when measured, it collapses to a bit. What is the nature of information? Is
it physical, engineered, material or non-material? The debate is still on. While
some claim that information, much like temperature, is physical because it resides
or manifests in a physical body, others insist on the idea that information exists
independently of the physical system. Landauer discusses the physical nature of
information in Ref. [3]. He argues that information is inevitably tied to a physi-
cal representation and therefore to restrictions and possibilities related to the laws
of physics and the parts available in the universe. Notwithstanding, there is no
problem with either claim, as long as information is a science. Recently, Foschini
attempts to address the question “where the it from bit come from?” [4]. He ar-
gues on various aspects of information and suggests that the it from bit is a fine
creation of the evolved mankind. Without doubt, it is clear that the knowledge of
the material aspect only is not sufficient to understand the problem of information.

Driven almost by instinct alone, we know that our everyday world is three-
dimensional, having length, width and altitude. That is, all objects in this universe
can be described by giving these three coordinates. The dimension of an object,
geometric or abstract, is a measure of its descriptive complexity. Roughly speak-
ing, it is the minimal number of independent coordinates needed to specify a point
on the object. To see how lower and higher dimensions relate to each other, take
any geometric object (like a point, line, circle, plane, etc.), and drag or smear it
in a direction perpendicular to its “embedding space” (drag a point to trace out a
line, a line to trace out a rectangle, a circle to trace out a cylinder, a disk to a solid
cylinder, etc.). The result is a one-dimension larger object than the previous one.
Points are assumed to be zero-dimensional geometrical objects. When a point is
smeared out it forms a one-dimensional object, line. Similarly, when a line is
dragged at some non-zero angle, a two-dimensional object is created, and so on.
[Dimension is formalized in mathematics as the intrinsic dimension of a topologi-
cal space. This dimension is called the Lebesgue covering dimension (simply, the
topological dimension). The archetypal example is Euclidean n-space Rn, which
has topological dimension n.]

Objects and activities in our everyday world seem obvious, and therefore of-
ten go unnoticed and unquestioned. However, an inquisitive mind is infested with
multitude of intriguing questions. Is our world really three-dimensional? Do
higher dimensions exit? If yes, why does nature appear three-dimensional? How
can we reckon higher dimensions? How does a dimension reveal itself? Is this
revelation same to all species? What is the ultimate dimension of our universe?
It is very much possible that there are certain limitations to our senses that we
perceive only three dimensions, and hence are unable to access other realms of
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universal reality. According to ancient Hindu scriptures, our space is multidimen-
sional, far greater than three. Exact figure is subject to analysis. Einstein, in his
theory of relativity [5], combined space and time into four-dimensional spacetime.
String theory [6], the most promising theory of the nature till date, claims that the
universe is 10-dimensional. However, as the argument says, the extra dimensions
cannot be detected because they are too small–just small enough to curl in on
themselves, virtually invisible. The advantage of existence of higher dimensions
is multifold. The laws of physics are simpler and elegant in higher dimensions,
and physical laws appear to be unified. This sounds convincing as space and time
together as space-time has done wonders in relativity. Another interesting obser-
vation is that an object, with access to higher dimension, if trapped or detained in
lower dimensions can simply vanish leaving behind no clue of its escape. Kaku’s
HYPERSPACE [7] is a lucid, lively, and thought-provoking account on higher-
dimensional physics.

In this article, we endeavor to perceive higher dimensions entirely from infor-
mation theoretic perspective, using bit-strings alone. For this we devise a sim-
ple though interesting scheme: consider arranging n-bit computational states (c-
states) such that the nearest c-states differ by 1-bit Hamming distance [8]. For
n-bits there are 2n c-states given as

{00 · · · 00︸ ︷︷ ︸
n

, 00 · · · 01︸ ︷︷ ︸
n

, · · · , 11 · · · 11︸ ︷︷ ︸
n

}.

d-bit Hamming distance is the number of places d in which two n-bit binary
strings differ exactly. For example, Hamming distance between the binary strings
010 and 101 is 3, that between 001 and 100101 is 2. The Hamming distance of a bi-
nary string from itself is zero. At first sight, this seems trivial. Just put the c-states
along the vertices of an “n-dimensional cube”, and we are done! Though, paradig-
matically perfectly right, there is a serious problem with this approach. Depiction
and visualization becomes more and more obscure with increasing topological di-
mension n > 3. Here we propose an elegant approach to arrange the c-states as
described earlier. This paradigm makes use of concentric (transparent!) spherical
shells. For the sake of completeness and comparison we develop our approach
along with the conventional n-cubic system upto n = 4.

2 Setup
In the conventional approach, the 2n c-states are attached to the vertices of an
n-cube such that the nearest c-states differ in 1-bit Hamming distance, and to go
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from one n-bit binary string to another which differ in d-bit Hamming distance,
1 ≤ d ≤ n, one has to traverse d-segments/steps (say, of unit length).

In our approach, n+1 concentric spherical shells are drawn. The binary string
of zeros 00 · · · 00 is associated with the innermost shell. Other binary strings
which differ in d-bit Hamming distance are placed in dth-shells, uniformly seated
on the surface. This completes the desired arrangement. To illustrate, for n = 3,
this reads as {000, {001, 010, 100}, {011, 101, 110}, 111}. That is, 000 is placed
in the innermost shell, {001, 010, 100} are placed in the next shell, {011, 101, 110}
are placed in the next to next shell, and 111 is placed in the outermost shell. (Note
that there is nothing sacred about starting with the string 00 · · · 00 of zeros. One
can associate any binary string to the innermost shell and continue placing other
binary strings in remaining shells. However, one does not need to draw 2n such
diagrams, one for each binary string.) Now we ask: is this scheme consistent
with the conventional one? How do we identify the binary strings which are d-bit
Hamming distance away from a given string, say, the pivotal string? Note that,
there are

(
n
d

)
n-bit strings which are d-bit Hamming distance away from the piv-

otal string. This task can be accomplished if we adhere to the following counting
scheme. The shells are labelled as Sk, k = 0 (for the innermost shell), 1, · · · ,
n (for the outermost shell). If the pivotal string resides in the innermost (outer-
most) shell, one has to traverse radially outward (inward). However, if the pivotal
string lies in the intermediate shell, then depending on the pivotal shell label k
(even/odd) and Hamming distance d (even/odd),

(
n
d

)
n-bit strings are located on

either even or odd labelled shells k′, within the reserved range

0 ≤ [k − d] ≤ k′ ≤ [k + d] ≤ n, (1)

as summarized in Table 1. Here, [· · · ] reminds that k′ must lie between 0 and n.

Pivotal shell (k) Hamming distance (d) Allowed shells (k′)
0 d d

even even even
even odd odd
odd even odd
odd odd even
n d n− d

Table 1: The scheme for placing
(
n
d

)
n-bit strings which are d-bit Hamming dis-

tance away from given pivotal shell k to other shells k′ in the reserved range
0 ≤ [k − d] ≤ k′ ≤ [k + d] ≤ n.

As already mentioned, there are
(
n
d

)
n-bit strings which are d-bit Hamming

distance away from the pivotal shell. Here, we wish to know the distribution
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Figure 1: Single-bit strings, 0 and 1, on a line and concentric spherical shells.

Figure 2: 2-bit strings on a rectangle and concentric spherical shells, such that the
nearest strings differ by 1-bit Hamming distance.
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Figure 3: 3-bit strings on a cube and concentric spherical shells, such that the
nearest strings differ by 1-bit Hamming distance.

Figure 4: Identifying two cubes to reckon a 4-dimensional hypercube. Reckoning
such hypercubes via conventional approach becomes more and more obscure with
increasing topological dimension.
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Figure 5: 4-bit strings on concentric spherical shells, such that the nearest strings
differ by 1-bit Hamming distance.
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Figure 6: 5-bit strings on concentric spherical shells, such that the nearest strings
differ by 1-bit Hamming distance. The binary strings are encrypted into decimal
figures for convenience. For example, 31 ≡ 11111, and so on.
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of these
(
n
d

)
strings. That is, how many of these are seated above and below the

pivotal shell. Let din and dout respectively be the (Hamming) distance of the inner-
most shell and the outermost shell from the pivotal shell, such that din +dout = n.
Then the number of n-bit strings below and above the pivotal shell, at Hamming
distance d-bit away is (at least)

(
din
d

)
and

(
dout
d

)
respectively. Sometimes these two

numbers may not add up to
(
n
d

)
. The remaining strings in that situation,

∑
r xr

in number (here the subscript r is the label of the shell in which the remaining
strings reside), should be located on other allowed shells in the permissible range
stated above in Eq. (1). Note that for the kth pivotal shell, r = k + dout − din
when d = n. This observation can be framed in the following equation(

din
d

)
+

(
dout
d

)
+
∑
r

xr =

(
n

d

)
. (2)

Illustrations are given in Table 2.

This idea of placing the binary strings in concentric spherical shells can be
considered a naive proposal, but the merits of such a possibility is striking. As
our scheme is in “bijection” with the conventional n-dimensional cube approach,
this can be seen as reckoning or viewing dimensions alternatively. In this elegant
scheme, it is relatively easier to view higher dimensions. Moreover, the dimen-
sions seem to be interwoven and entangled. In transcending one dimension higher,
it is simply not addition of an extra shell; rather it is an evolved process, as seen
in Figs. 2 & 3. We will see how binary strings on intermediate shells lead natu-
rally to an important class of entangled quantum states. As any dimension greater
than three can be conceived manifestly in the concentric spherical shells model, it
appears that there is no dimension greater than three.

Additional structures can be associated with this model. Imagine that all nodes
corresponding to c-states are joined to each other with straight lines. This gives
rise to the notion of vertices, edges and faces. Faces cut and cross each other.
As all c-states are equivalent, they can be thought of rearranging their positions
in time, with the only constraint that the Hamming distance amongst the c-states
is not altered. Tesseract [7], a rotating four-dimensional hypercube, can be an
illustration of the same.

3 Entanglement on Shells
We have seen what a bit is. It is a binary digit. Now, we learn about qubit. A
qubit is an acronym for quantum binary digit. To understand the notion of qubit,
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k din dout d
(
din
d

)
+
(
dout
d

) ?
=
(
n
d

)
xr

n = 3 (see Fig. 3)
1 1+2=3 NA
2 0+1 6= 3 x1 = 21 1 2
3 0+0 6= 1 x2 = 1
1 2+1=3 NA
2 1+0 6= 3 x2 = 22 2 1
3 0+0 6= 1 x1 = 1

n = 4 (see Fig. 5)
1 1+3=4 NA
2 0+3 6= 6 x1 = 3
3 0+1 6= 4 x2 = 3

1 1 3

4 0+0 6= 1 x3 = 1
1 2+2=4 NA
2 1+1 6= 6 x2 = 4
3 0+0 6= 4 x1 = x3 = 2

2 2 2

4 0+0 6= 1 x2 = 1
1 3+1=4 NA
2 3+0 6= 6 x3 = 3
3 1+0 6= 4 x2 = 3

3 3 1

4 0+0 6= 1 x1 = 1

Table 2: Distribution of
(
n
d

)
n-bit strings at d-bit Hamming distance from the kth-

pivotal shell as described in Table 1 under the constraint in Eq. (1). The subscript
r in xr denotes the allowed shell(s) in which the remaining strings are located
when

(
din
d

)
+
(
dout
d

)
6=
(
n
d

)
. For the kth pivotal shell, when Hamming distance d

equals number of bits n in the binary strings, r = k + dout − din. NA stands for
“not applicable”.

ask a person what he sees showing him a half-full glass of water. While an op-
timist will say glass is half-full, a pessimist will say glass is half-empty. What
if the person is a quantum physicist? His answer that glass is both half-full and
half-empty may drive you nuts! Similarly, a tossed-up coin while still in the air
has both head and tail simultaneously. Interestingly, a quantum physicist opts for
the holistic approach. He considers a linear “superposition” of all the possible
(stationary) states of a physical system. In this spirit, a qubit, |ψ〉 = α|0〉 + β|1〉
with |α|2 + |β|2 = 1 (the latter expression is a statement of the conservation of
probability), is a generalized state of a two-level quantum system. Similarly, if a
quantum system is multilevel, its generalized state is called “qudit”. Two variables
are said to be correlated when they cannot assume independent values in their al-
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lowed intervals, i.e., they are constrained. So, correlation is a constrained relation
between two or more variables or quantities. Analogously, a two or more party
quantum system is said to be entangled (entanglement is a kind of correlation) if
its whole state cannot be “tensor factorized” into their individual quantum states.
Yes, a whole can be different from its parts! Bell states [8], |φ±〉 = |00〉±|11〉√

2
and

|ψ±〉 = |01〉±|10〉√
2

, are the best examples of two-qubit maximally entangled quan-
tum states.

Imagine that each c-state is endowed with a “phase-clock”. Then the afore-
mentioned model can be used to describe entanglement on shells. Starting with
c-state |0〉⊗n as pivotal element, and labelling the concentric shells as 0, 1, · · · , n
(the innermost shell being the zeroth shell), the set of c-states residing in rth shell
naturally constitute the generalized Dicke state [9] |gDn

r 〉 =
∑
cPP

(
|0〉⊗(n−r)|1〉⊗r

)
with the normalization

∑
|cP |2 = 1, where the summation is over all permutations

of (n − r)-|0〉s and r-|1〉s. All Dicke states but |Dn
0 〉 = |0〉⊗n and |Dn

n〉 = |1〉⊗n
are entangled. If the pivotal element is other than |0〉⊗n the resulting state is again
a generalized Dicke state upto local unitaries. Furthermore, two or more general-
ized Dicke states can be superposed together to give other entangled states. The
most general state being |Ψ〉 =

∑n
r=0 αr|gDn

r 〉, where
∑n

r=0 |αr|2 = 1.

4 Conclusion
To sum up, bit is potent and it–the quantum of information–emerges from it. We
have shown that how a naive arrangement of bit-strings on concentric spherical
shells can help us to perceive higher topological dimensions greater than three
in an elegant fashion. The dimensions appear intrinsically entangled. As a by-
product of it, we see that such an arrangement gives rise to an important class of
entangled quantum states.
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