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Abstract

We study Langenscheidt Taschenwörterbuch Deutsch-Englisch / Englisch-Deutsch, Völlige

Neubearbeitung, dictionary, 2014 edition. We draw the natural logarithm of the number of the

German language words, normalised, starting with a letter vs the natural logarithm of the rank

of the letter, normalised. We find that the words underlie a magnetisation curve of a Spin-Glass

in the presence of little external magnetic field. We notice that there is no qualitative change

compared to the Langenscheidt’s German-English English-German Dictionary, 1970 edition.
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I. INTRODUCTION

”Size matters.”

.... common wisdom.

To check that we embark on studying Langenscheidt Taschenwörterbuch Deutsch-Englisch /

Englisch-Deutsch, Völlige Neubearbeitung, dictionary, 2014 edition, [1]. This is considerably

expanded in terms of total number of words compared to the Langenscheidt’s German-

English English-German Dictionary, 1970 edition, [2]. We have found the graphical law to

exist behind the german langauge entries of this dictionary, [2], in the paper, [3].

In this article, we study magnetic field pattern behind this dictionary of the German,[1].

We have started considering magnetic field pattern in [4], in the languages we converse

with. We have studied there, a set of natural languages, [4] and have found existence of a

magnetisation curve under each language. We have termed this phenomenon as graphical

law.

Then, we moved on to investigate into, [5], dictionaries of five disciplines of knowledge and

found existence of a curve magnetisation under each discipline. This was followed by finding

of the graphical law behind the bengali language,[6] and the basque language[7]. This was

pursued by finding of the graphical law behind the Romanian language, [8], five more dis-

ciplines of knowledge, [9], Onsager core of Abor-Miri, Mising languages,[10], Onsager Core

of Romanised Bengali language,[11], the graphical law behind the Little Oxford English

Dictionary, [12], the Oxford Dictionary of Social Work and Social Care, [13], the Visayan-

English Dictionary, [14], Garo to English School Dictionary, [15], Mursi-English-Amharic

Dictionary, [16] and Names of Minor Planets, [17], A Dictionary of Tibetan and English,

[18], Khasi English Dictionary, [19], Turkmen-English Dictionary, [20], Websters Univer-

sal Spanish-English Dictionary, [21], A Dictionary of Modern Italian, [22], Langenscheidt’s

German-English Dictionary, [3], Essential Dutch dictionary by G. Quist and D. Strik, [23],

Swahili-English dictionary by C. W. Rechenbach, [24], Larousse Dictionnaire De Poche for

the French, [25], the Onsager’s solution behind the Arabic, [26], respectively.

The planning of the paper is as follows. We give an introduction to the standard curves

of magnetisation of Ising model in the section II. In the section III, we describe analysis

of the words of the German language, [1]. The section IV is comparisons between two
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Langenscheidt dictionaries, [1] and [2]. Section V is Acknowledgment. The last section is

Bibliography.

II. MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is

half i.e. we will get head and tale equal number of times. If we attach value one to head,

minus one to tale, the average value we obtain, after many tossing is zero. Instead let us

consider a one-sided loaded coin, say on the head side. The probability of getting head is

more than one half, getting tale is less than one-half. Average value, in this case, after many

tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin

is like ferromagnet, the unloaded coin is like para magnet, at zero external magnetic field.

Average value we obtain is like magnetisation, loading is like coupling among the spins of

the ferromagnetic units. Outcome of single coin toss is random, but average value we get

after long sequence of tossing is fixed. This is long-range order. But if we take a small

sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed,

can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up

or, down. Assume there is a long-range order with probability to get a spin up is two third.

That would mean when we consider a long sequence of spins, two third of those are with

spin up. Moreover, assign with each up spin a value one and a down spin a value minus

one. Then total spin we obtain is one third. This value is referred to as the value of long-

range order parameter. Now consider a short-range order existing which is identical with

the long-range order. That would mean if we pick up any three consecutive spins, two will

be up, one down. Bragg-Williams approximation means short-range order is identical with

long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one

dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down

spin a value minus one, with an unspecified long-range order parameter defined as above by

L = 1
N
Σiσi, where σi is i-th spin, N being total number of spins. L can vary from minus one
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to one. N = N++N−, where N+ is the number of up spins, N− is the number of down spins.

L = 1
N
(N+ −N−). As a result, N+ = N

2
(1 + L) and N− = N

2
(1− L). Magnetisation or, net

magnetic moment , M is µΣiσi or, µ(N+ −N−) or, µNL, Mmax = µN . M
Mmax

= L. M
Mmax

is

referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,[27], for the lattice of

spins, setting µ to one, is −ϵΣn.nσiσj −HΣiσi, where n.n refers to nearest neighbour pairs.

The difference △E of energy if we flip an up spin to down spin is, [28], 2ϵγσ̄ + 2H, where

γ is the number of nearest neighbours of a spin. According to Boltzmann principle, N−
N+

equals exp(− △E
kBT

), [29]. In the Bragg-Williams approximation,[30], σ̄ = L, considered in the

thermal average sense. Consequently,

ln
1 + L

1− L
= 2

γϵL+H

kBT
= 2

L+ H
γϵ

T
γϵ/kB

= 2
L+ c

T
Tc

(1)

where, c = H
γϵ

, Tc = γϵ/kB, [31].
T
Tc

is referred to as reduced temperature.

Plot of L vs T
Tc

or, reduced magentisation vs. reduced temperature is used as reference curve.

In the presence of magnetic field, c ̸= 0, the curve bulges outward. Bragg-Williams is a Mean

Field approximation. This approximation holds when number of neighbours interacting with

a site is very large, reducing the importance of local fluctuation or, local order, making the

long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising

model prediction one can refer to FIG.12.12 of [28]. W. L. Bragg was a professor of Hans

Bethe. Rudolf Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudolf

Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical

method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence

of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, [27],[28],[29],[30],[31],

due to Bethe-Peierls, [32], reduced magnetisation varies with reduced temperature, for γ

neighbours, in absence of external magnetic field, as

ln γ
γ−2

ln factor−1

factor
γ−1
γ −factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (2)
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BW BW(c=0.01) BP(4,βH = 0) reduced magnetisation

0 0 0 1

0.435 0.439 0.563 0.978

0.439 0.443 0.568 0.977

0.491 0.495 0.624 0.961

0.501 0.507 0.630 0.957

0.514 0.519 0.648 0.952

0.559 0.566 0.654 0.931

0.566 0.573 0.7 0.927

0.584 0.590 0.7 0.917

0.601 0.607 0.722 0.907

0.607 0.613 0.729 0.903

0.653 0.661 0.770 0.869

0.659 0.668 0.773 0.865

0.669 0.676 0.784 0.856

0.679 0.688 0.792 0.847

0.701 0.710 0.807 0.828

0.723 0.731 0.828 0.805

0.732 0.743 0.832 0.796

0.756 0.766 0.845 0.772

0.779 0.788 0.864 0.740

0.838 0.853 0.911 0.651

0.850 0.861 0.911 0.628

0.870 0.885 0.923 0.592

0.883 0.895 0.928 0.564

0.899 0.918 0.527

0.904 0.926 0.941 0.513

0.946 0.968 0.965 0.400

0.967 0.998 0.965 0.300

0.987 1 0.200

0.997 1 0.100

1 1 1 0

TABLE I. Reduced magnetisation vs reduced temperature data s for Bragg-Williams approxima-

tion, in absence of and in presence of magnetic field, c = H
γϵ = 0.01, and Bethe-Peierls approxima-

tion in absence of magnetic field, for four nearest neighbours .

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For a snapshot of different

kind of magnetisation curves for magnetic materials the reader is urged to give a google

search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe

data s generated from the equation(1) and the equation(2) in the table, I, and curves of

magnetisation plotted on the basis of those data s. BW stands for reduced temperature in

Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced

temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed

from the equation(2). The data set is used to plot fig.1. Empty spaces in the table, I, mean

corresponding point pairs were not used for plotting a line.
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FIG. 1. Reduced magnetisation vs reduced temperature curves for Bragg-Williams approximation,

in absence(dark) of and presence(inner in the top) of magnetic field, c = H
γϵ = 0.01, and Bethe-

Peierls approximation in absence of magnetic field, for four nearest neighbours (outer in the top).

C. Bethe-peierls approximation in presence of four nearest neighbours, in pres-

ence of external magnetic field

In the Bethe-Peierls approximation scheme , [32], reduced magnetisation varies with reduced

temperature, for γ neighbours, in presence of external magnetic field, as

ln γ
γ−2

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (3)

Derivation of this formula Ala [32] is given in the appendix of [9].

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For four neighbours,

0.693

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (4)

In the following, we describe data s in the table, II, generated from the equation(4) and

curves of magnetisation plotted on the basis of those data s. BP(m=0.03) stands for re-

duced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence

of a variable external magnetic field, H, such that βH = 0.06. calculated from the equa-

tion(4). BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for

four nearest neighbours, in presence of a variable external magnetic field, H, such that
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βH = 0.05. calculated from the equation(4). BP(m=0.02) stands for reduced temperature

in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable exter-

nal magnetic field, H, such that βH = 0.04. calculated from the equation(4). BP(m=0.01)

stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours,

in presence of a variable external magnetic field, H, such that βH = 0.02. calculated from

the equation(4). BP(m=0.005) stands for reduced temperature in Bethe-Peierls approxi-

mation, for four nearest neighbours, in presence of a variable external magnetic field, H,

such that βH = 0.01. calculated from the equation(4). The data set is used to plot fig.2.

Similarly, we plot fig.3. Empty spaces in the table, II, mean corresponding point pairs were

not used for plotting a line.
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BP(m=0.03) BP(m=0.025) BP(m=0.02) BP(m=0.01) BP(m=0.005) reduced magnetisation

0 0 0 0 0 1

0.583 0.580 0.577 0.572 0.569 0.978

0.587 0.584 0.581 0.575 0.572 0.977

0.647 0.643 0.639 0.632 0.628 0.961

0.657 0.653 0.649 0.641 0.637 0.957

0.671 0.667 0.654 0.650 0.952

0.716 0.696 0.931

0.723 0.718 0.713 0.702 0.697 0.927

0.743 0.737 0.731 0.720 0.714 0.917

0.762 0.756 0.749 0.737 0.731 0.907

0.770 0.764 0.757 0.745 0.738 0.903

0.816 0.808 0.800 0.785 0.778 0.869

0.821 0.813 0.805 0.789 0.782 0.865

0.832 0.823 0.815 0.799 0.791 0.856

0.841 0.833 0.824 0.807 0.799 0.847

0.863 0.853 0.844 0.826 0.817 0.828

0.887 0.876 0.866 0.846 0.836 0.805

0.895 0.884 0.873 0.852 0.842 0.796

0.916 0.904 0.892 0.869 0.858 0.772

0.940 0.926 0.914 0.888 0.876 0.740

0.929 0.877 0.735

0.936 0.883 0.730

0.944 0.889 0.720

0.945 0.710

0.955 0.897 0.700

0.963 0.903 0.690

0.973 0.910 0.680

0.909 0.670

0.993 0.925 0.650

0.976 0.942 0.651

1.00 0.640

0.983 0.946 0.928 0.628

1.00 0.963 0.943 0.592

0.972 0.951 0.564

0.990 0.967 0.527

0.964 0.513

1.00 0.500

1.00 0.400

0.300

0.200

0.100

0

TABLE II. Bethe-Peierls approx. in presence of little external magnetic fields
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FIG. 2. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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FIG. 3. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, Tc,

for the two dimensional Ising model in absence of external magnetic field i.e. for H equal to

zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function

of reduced temperature as, [33], [34], [35], [32],

M

Mmax

= [1− (sinh
0.8813736

T
Tc

)−4]1/8.

Graphically, the Onsager solution appears as in fig.4.
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FIG. 4. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional

Ising model, due to Onsager, in absence of external magnetic field

10



E. Spin-Glass

In the case coupling between( among) the spins, not necessarily n.n, for the Ising model is(

are) random, we get Spin-Glass. When a lattice of spins randomly coupled and in an exter-

nal magnetic field, goes over to the Spin-Glass phase, magnetisation increases steeply like

1
T−Tc

i.e. like the branch of rectangular hyperbola, up to the the phase transition tempera-

ture, followed by very little increase,[36–38], in magnetisation, as the ambient temperature

continues to drop.

Theoretical study of Spin Glass started with the paper by Edwards, Anderson,[39]. They

were trying to explain two experimental results concerning continuous disordered freez-

ing(phase transition) and sharp cusp in static magnetic susceptibility. This was followed by

a paper by Sherrington, Kickpatrick, [40], who dealt with Ising model with interactions being

present among all neighbours. The interaction is random, follows Gaussian distribution and

does not distinguish one pair of neighbours from another pair of neighbours, irrespective of

the distance between two neighbours. In presence of external magnetic field, they predicted

in their next paper, [41], below spin-glass transition temperature a spin-glass phase with

non-zero magnetisation. Almeida etal, [42], Gray and Moore, [43],finally Parisi, [44], [45]

improved and gave final touch, [46], to their line of work. Parisi and collaborators, [47]-[51],

wrote a series of papers in postscript, all revolving around a consistent assumption of con-

stant magnetisation in the spin-glass phase in presence of little constant external magnetic

field.

In another sequence of theoretical work, by Fisher etal,[52–54], concluded that for Ising

model with nearest neighbour or, short range interaction of random type spin-glass phase

does not exist in presence of external magnetic field.

For recent series of experiments on spin-glass, the references, [55, 56], are the places to look

into.

For an in depth account, accessible to a commoner, the series of articles by late P. W.

Anderson in Physics Today, [57]-[63], is probably the best place to look into. For a book to

enter into the subject of spin-glass, one may start at [64].

Here, in our work to follow, spin-glass refers to spin-glass phase of a system with infinite

range random interactions.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3290 2605 277 1489 2193 1958 2403 2145 660 308 2813 1381 1716 1043 603 1838 127 1649 4646 1320 1452 1946 1523 14 11 1260

TABLE III. German words

FIG. 5. Vertical axis is number of words of the German, [1], and horizontal axis is respective letters.

Letters are represented by the sequence number in the alphabet or, dictionary sequence,[1].

III. ANALYSIS OF WORDS OF THE GERMAN-ENGLISH DICTIONARY

The German language alphabet is composed of twenty six letters like English. We take a

German-English dictionary,[1]. Then we count all the ”simple” words, [1], one by one from

the beginning to the end, starting with different letters. The result is the table, III. Highest

number of words, four thousand six hundred forty six, starts with the letter S followed by

words numbering three thousand two hundred ninety beginning with A, two thousand eight

hundred thirteen with the letter K etc. To visualise we plot the number of words against

respective letters in the dictionary sequence, [1], in the figure fig.5.

For the purpose of exploring graphical law, we assort the letters according to the number

of words, in the descending order, denoted by f and the respective rank, denoted by k. k

is a positive integer starting from one. The lowest value of f is eleven, corresponding to the

letter Y. Hence we attach a limiting f equal to one. The corresponding rank, k, denoted as

klim is twenty seven. As a result both lnf
lnfmax

and lnk
lnklim

varies from zero to one. Then we

tabulate in the adjoining table, IV and plot lnf
lnfmax

against lnk
lnklim

in the figure fig.6. We then
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k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfnmax lnf/lnfnnmax lnf/lnfnnnmax lnf/lnfnnnnmax

1 0 0 4646 8.444 1 Blank Blank Blank Blank

2 0.69 0.209 3290 8.099 0.959 1 Blank Blank Blank

3 1.10 0.333 2813 7.942 0.941 0.981 1 Blank Blank

4 1.39 0.421 2605 7.865 0.931 0.971 0.990 1 Blank

5 1.61 0.488 2403 7.784 0.922 0.961 0.980 0.990 1

6 1.79 0.542 2193 7.693 0.911 0.950 0.969 0.978 0.990

7 1.95 0.591 2145 7.671 0.908 0.947 0.966 0.975 0.988

8 2.08 0.630 1958 7.580 0.898 0.936 0.954 0.964 0.982

9 2.20 0.667 1946 7.574 0.897 0.935 0.954 0.963 0.977

10 2.30 0.697 1838 7.516 0.890 0.928 0.946 0.956 0.965

11 2.40 0.727 1716 7.448 0.882 0.920 0.938 0.947 0.962

12 2.48 0.752 1649 7.408 0.877 0.915 0.933 0.942 0.952

13 2.56 0.776 1523 7.328 0.868 0.905 0.923 0.932 0.936

14 2.64 0.800 1489 7.306 0.865 0.902 0.920 0.929 0.922

15 2.71 0.821 1452 7.281 0.862 0.899 0.917 0.926 0.918

16 2.77 0.839 1381 7.231 0.856 0.893 0.910 0.919 0.897

17 2.83 0.858 1320 7.185 0.851 0.887 0.905 0.914 0.893

18 2.89 0.876 1260 7.139 0.845 0.881 0.899 0.908 0.868

19 2.94 0.891 1043 6.950 0.823 0.858 0.875 0.884 0.845

20 3.00 0.909 660 6.492 0.769 0.802 0.817 0.825 0.830

21 3.04 0.921 603 6.402 0.758 0.790 0.806 0.814 0.763

22 3.09 0.936 308 5.730 0.679 0.707 0.721 0.729 0.737

23 3.14 0.952 277 5.624 0.666 0.694 0.708 0.715 0.686

24 3.18 0.964 127 4.844 0.574 0.598 0.610 0.616 0.642

25 3.22 0.976 14 2.639 0.313 0.326 0.332 0.336 0.545

26 3.26 0.988 11 2.398 0.284 0.296 0.302 0.305 0.359

27 3.30 1 1 0 0 0 0 0 0

TABLE IV. German language words: ranking,natural logarithm, normalisations

ignore the letter with the highest of words, tabulate in the adjoining table, IV and redo the

plot, normalising the lnfs with next-to-maximum lnfnextmax, and starting from k = 2 in the

figure fig.7. This program then we repeat up to k = 5, resulting in figures up to fig.10.
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FIG. 6. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in the absence of external magnetic field. The uppermost curve is the Onsager solution.

FIG. 7. The vertical axis is lnf
lnfnext−max

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.01 or, βH = 0.02. The uppermost curve is

the Onsager solution.
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FIG. 8. The vertical axis is lnf
lnfnextnext−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.025 or, βH = 0.05. The uppermost curve is

the Onsager solution.

FIG. 9. The vertical axis is lnf
lnfnextnextnext−max

and the horizontal axis is lnk
lnklim

. The + points

represent the words of the German language with the fit curve being the Bethe-Peierls curve with

four nearest neighbours, in presence of little magnetic field, m=0.03 or, βH = 0.06. The uppermost

curve is the Onsager solution.
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FIG. 10. The vertical axis is lnf
lnfnextnextnextnext−max

and the horizontal axis is lnk
lnklim

. The + points

represent the words of the German language with the fit curve being the Bethe-Peierls curve with

four nearest neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost

curve is the Onsager solution.
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Matching of the plots in the figures fig.(6-10), with comparator curves i.e. the magnetisation

curves of Bethe-Peierls approximations, is with dispersion and dispersion does not reduce

over higher orders of normalisations. On the top of it, on successive higher normalisations,

words of the German language,[1], do not go over to Onsager solution in the normalised lnf

vs lnk
lnklim

graphs.

To explore for possible existence of spin-glass transition, in presence of little external mag-

netic field, lnf
lnfmax

, lnf
lnfnext−max

and lnf
lnfnn−max

are drawn against lnk in the figures fig.11-fig.13.

17



FIG. 11. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk. The + points represent the

words of the German language.

FIG. 12. The vertical axis is lnf
lnfnext−max

and the horizontal axis is lnk. The + points represent the

words of the German language.

A. conclusion

In the figures Fig.11-Fig.13, the points has a clear-cut transition. Above the transition

point(s), the lines are almost horizontal and below the transition point(s), points-line rises

like the branch of a rectangular hyperbola. Hence, the words of the German, [1], is well-
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FIG. 13. The vertical axis is lnf
lnfnn−max

and the horizontal axis is lnk. The + points represent the

words of the German language.

suited to be described by a Spin-Glass magnetisation curve, [36], in the presence of little

magnetic field.
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FIG. 14. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk. The + points represent the

words of the German language, [1]. The × points represent the words of the German language, [2].

Spin-glass behaviour is remaining the same.

IV. GERMAN WORDS: LANGENSCHEIDT, LANGENSCHEIDT

We compare the two Langenscheidt dictionaries, [1] and [2]. We compare spin-glass be-

haviour of these two in the figure14. In the figure15, we compare the frequencies. Next in

the subsection, we go on comparing the naturalness number.
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FIG. 15. The vertical axis is number of words of the German and the horizontal axis is the

respective letters. Letters are represented by the sequence number in the English alphabet. The

+ points represent the words of the German language, [1]. The × points represent the words of

the German language, [2].
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A. Naturalness number

It is noticable of the lessness of the number of major peaks compared to the number of

minor peaks. It was proposed in [24], that it may be reasonable to define naturalness of a

language by the ratio of number of major peaks to the number of minor peaks. One may

take major peaks as those with height up to the half of the height of the highest peak. The

naturalness number of the French, [25], tuned out to be 11/5.

In this case,[1], the highest peak has the frequency 4646. Half of it is 2323. Number of

peaks greater than 2323 is 31
2
. Number of peaks less than 2323 is 41

2
. Hence the naturalness

number is 7/9. In the earlier case, [2], the highest peak has the frequency 2801. Half of it

is 1400. Number of peaks greater than 1400 is 31
2
. Number of peaks less than 1400 is 41

2
.

Hence the naturalness number is 7/9. Hence, the naturalness number is not changing as we

are moving from [2] to [1].
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