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Abstract

It is well known that in Anderson localized systems, starting from a random product
state the entanglement entropy remains bounded at all times. However, we show that
adding a single boundary term to an otherwise Anderson localized Hamiltonian leads
to unbounded growth of entanglement. Our results imply that Anderson localization
is not a local property. One cannot conclude that a subsystem has Anderson localized
behavior without looking at the whole system, as a term that is arbitrarily far from the
subsystem can affect the dynamics of the subsystem in such a way that the features of
Anderson localization are lost.

Preprint number: MIT-CTP/5326

1 Introduction

In the presence of quenched disorder, the phenomenon of localization can occur not only in
single-particle systems, but also in interacting many-body systems. The former is known
as Anderson localization (AL) [1], and the latter is called many-body localization (MBL)
[2–7]. In the past decade, significant progress has been made towards understanding AL and
especially MBL.

A characteristic feature that distinguishes MBL from AL lies in the dynamics of entan-
glement. Initialized in a random product state, the entanglement entropy remains bounded
at all times in AL systems [8], but grows logarithmically with time in MBL systems [9–11].
The logarithmic growth of entanglement can be understood heuristically [12, 13] from a
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phenomenological model of MBL [14, 15]. Recently, it was rigorously proved that in MBL
systems, the entanglement entropy obeys a volume law at long times [16].

Consider the random-field XXZ chain with open boundary conditions

HXXZ =
N−1∑
j=1

(σx
j σ

x
j+1 + σy

jσ
y
j+1 + ∆σz

jσ
z
j+1) +

N∑
j=1

hjσ
z
j , (1)

where σx
j , σ

y
j , σ

z
j are the Pauli matrices at site j, and hj’s are independent and identically

distributed uniform random variables on the interval [−h, h]. For ∆ = 0, this model reduces
to the random-field XX chain

HXX =
N−1∑
j=1

(σx
j σ

x
j+1 + σy

jσ
y
j+1) +
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j=1

hjσ
z
j . (2)

Using the Jordan–Wigner transformation, HXX is equivalent to a model of free fermions
hopping in a random potential. It is AL for any h > 0. The ∆ term in Eq. (1) introduces
interactions between fermions. HXXZ is MBL for any ∆ 6= 0 and sufficiently large h [17–19].

In HXXZ , the ∆ term representing interactions between fermions is extensive in that it
is the sum of N − 1 local terms between adjacent qubits. Let

HXXb = HXX + ∆σz
N−1σ

z
N =

N−1∑
j=1

(σx
j σ

x
j+1 + σy

jσ
y
j+1) +

N∑
j=1

hjσ
z
j + ∆σz

N−1σ
z
N . (3)

Without the last term, HXXb is AL. In this paper, we show that in the dynamics generated
by HXXb, the effect of this boundary term invades into the bulk: Starting from a random
product state the entanglement entropy obeys a volume law at long times. For large h, the
coefficient of the volume law is almost the same as that in the dynamics generated by HXXZ .

Our results imply that AL is not a local property. One cannot conclude that a subsystem
has AL behavior without looking at the whole system, as a term that is arbitrarily far from
the subsystem can affect the dynamics of the subsystem in such a way that the features of
AL are lost.

We briefly discuss related works. Khemani et al. [20] showed nonlocal response to local
manipulations in localized systems. This work considers time-dependent Hamiltonians, and
is thus different from ours. Vasseur et al. [21] studied the revival of a qubit coupled to one
end of an AL system, but the coupling is chosen such that the whole system (including the
additional qubit) is a model of free fermions. This is in contrast to HXXb.

2 Results

Definition 1 (entanglement entropy). The entanglement entropy of a bipartite pure state
ρAB is defined as the von Neumann entropy

S(ρA) := − tr(ρA ln ρA) (4)

of the reduced density matrix ρA = trB ρAB.
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Figure 1: Dynamics of the half-chain entanglement entropy for HXXb (blue), HXXZ (green),
and HXX (red).

We initialize the system in a Haar-random product state.

Definition 2 (Haar-random product state). In a system of N qubits, let |Ψ〉 =
⊗N

j=1 |Ψj〉
be a Haar-random product state, where each |Ψj〉 is chosen independently and uniformly at
random with respect to the Haar measure.

For our numerical results, we choose h = 10 and ∆ = 1, and average over 1000 disorder
realizations. We choose N = 10 in Figure 1 and in the left panel of Figure 2.

Figure 1 shows the dynamics of the entanglement entropy between the left and right
halves of the system for HXXb, HXXZ , and HXX . We clearly see that the last term in Eq.
(3) leads to slow entanglement growth.

Figure 2 shows that the entanglement entropy at long times obeys a volume law for HXXb

and HXXZ , and the coefficient of the volume law is very close to 1/2. This is consistent with
the analytical prediction of Ref. [16], which assumes that the spectrum of the Hamiltonian
has non-degenerate gaps.

Definition 3 (non-degenerate gap). The spectrum {Ej} of a Hamiltonian has non-degenerate
gaps if the differences {Ej − Ek}j 6=k are all distinct, i.e., for any j 6= k,

Ej − Ek = Ej′ − Ek′ =⇒ (j = j′) and (k = k′). (5)

Indeed, we have numerically verified that the spectra of both HXXb and HXXZ almost
surely have non-degenerate gaps.

In the right panel of Figure 2, we observe a constant correction to the volume law. This
is expected, for such corrections also exist in other contexts [22–27].
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Figure 2: Left panel: The entanglement entropy between the first j and the last N−j qubits
at long times for HXXb (blue) and HXXZ (green). The black lines are S = min{j,N − j}/2.
Right panel: Finite-size scaling of the half-chain entanglement entropy at long times for
HXXb (blue) and HXXZ (green). The black line is S = N/4− 1/2.

3 Discussion

We have numerically shown that adding a single boundary term to an otherwise AL Hamilto-
nian leads to entanglement growth. Starting from a random product state the entanglement
entropy obeys a volume law at long times, and the coefficient of the volume law is consistent
with the analytical prediction of Ref. [16].

Here are some interesting problems that deserve further study.

• Can we prove that the spectrum of HXXb almost surely has non-degenerate gaps?
A positive answer to this question would allow us to rigorously prove some of the
numerical results in this paper.

• Can we develop an analytical understanding of how the entanglement entropy grows
with time for HXXb by adapting the phenomenological model of MBL [14, 15]?

• How does HXXb scramble local information as measured by the out-of-time-ordered
correlator [28–34]?

• It was argued that MBL is less stable in two and higher spatial dimensions [35]. To
what extent a single boundary term delocalizes an AL system in higher dimensions?
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