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Abstract

It is well known that in Anderson localized systems, starting from a random product
state the entanglement entropy remains bounded at all times. However, we show that
adding a single boundary term to an otherwise Anderson localized Hamiltonian leads
to unbounded growth of entanglement. Our results imply that Anderson localization
is not a local property. One cannot conclude that a subsystem has Anderson localized
behavior without looking at the whole system, as a term that is arbitrarily far from the
subsystem can affect the dynamics of the subsystem in such a way that the features of
Anderson localization are lost.
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1 Introduction

In the presence of quenched disorder, the phenomenon of localization can occur not only in
single-particle systems, but also in interacting many-body systems. The former is known
as Anderson localization (AL) [1], and the latter is called many-body localization (MBL)
[2-7]. In the past decade, significant progress has been made towards understanding AL and
especially MBL.

A characteristic feature that distinguishes MBL from AL lies in the dynamics of entan-
glement. Initialized in a random product state, the entanglement entropy remains bounded
at all times in AL systems [8], but grows logarithmically with time in MBL systems [9-11].
The logarithmic growth of entanglement can be understood heuristically [12, |13] from a
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phenomenological model of MBL |14, [15]. Recently, it was rigorously proved that in MBL
systems, the entanglement entropy obeys a volume law at long times [16].
Consider the random-field X X Z chain with open boundary conditions

N—1 N
— T T YLy Z Z z
Hxxz = E (0joiy +ojoi, +Acjoi,) + E hjos, (1)
Jj=1 J=1

where o7, a?, o; are the Pauli matrices at site j, and h;’s are independent and identically

distributed uniform random variables on the interval [—h, h]. For A = 0, this model reduces
to the random-field X X chain

N-1 N
Hxx = Z(Ufaﬁrl +ojof,) + Z hjos. (2)
P =1

Using the Jordan—Wigner transformation, Hx x is equivalent to a model of free fermions
hopping in a random potential. It is AL for any A > 0. The A term in Eq. introduces
interactions between fermions. Hx yz is MBL for any A # 0 and sufficiently large h [17-19].

In Hxxz, the A term representing interactions between fermions is extensive in that it
is the sum of N — 1 local terms between adjacent qubits. Let

N-1 N
Hyxy = Hxx + Aoy _y0% = Y _(0f0h,, +0%0l,) + > ol + Aok o5, (3)
j=1 j=1

Without the last term, Hxx; is AL. In this paper, we show that in the dynamics generated
by Hxxs, the effect of this boundary term invades into the bulk: Starting from a random
product state the entanglement entropy obeys a volume law at long times. For large h, the
coefficient of the volume law is almost the same as that in the dynamics generated by Hxx .

Our results imply that AL is not a local property. One cannot conclude that a subsystem
has AL behavior without looking at the whole system, as a term that is arbitrarily far from
the subsystem can affect the dynamics of the subsystem in such a way that the features of
AL are lost.

We briefly discuss related works. Khemani et al. [20] showed nonlocal response to local
manipulations in localized systems. This work considers time-dependent Hamiltonians, and
is thus different from ours. Vasseur et al. [21] studied the revival of a qubit coupled to one
end of an AL system, but the coupling is chosen such that the whole system (including the
additional qubit) is a model of free fermions. This is in contrast to H x xp.

2 Results

Definition 1 (entanglement entropy). The entanglement entropy of a bipartite pure state
pap is defined as the von Neumann entropy

S(pa) = —tr(palnpa) (4)

of the reduced density matrix ps = trg pap.
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Figure 1: Dynamics of the half-chain entanglement entropy for Hx y, (blue), Hxxz (green),
and HXX (red).

We initialize the system in a Haar-random product state.

Definition 2 (Haar-random product state). In a system of N qubits, let |¥) = ®5V:1 |W;)
be a Haar-random product state, where each |¥;) is chosen independently and uniformly at
random with respect to the Haar measure.

For our numerical results, we choose h = 10 and A = 1, and average over 1000 disorder
realizations. We choose N = 10 in Figure [I] and in the left panel of Figure [2|

Figure (1| shows the dynamics of the entanglement entropy between the left and right
halves of the system for Hxxy, Hxxz, and Hxyx. We clearly see that the last term in Eq.
leads to slow entanglement growth.

Figure[2[shows that the entanglement entropy at long times obeys a volume law for Hx xy
and Hxxz, and the coefficient of the volume law is very close to 1/2. This is consistent with
the analytical prediction of Ref. [16], which assumes that the spectrum of the Hamiltonian
has non-degenerate gaps.

Definition 3 (non-degenerate gap). The spectrum {E;} of a Hamiltonian has non-degenerate
gaps if the differences {E; — Ej};» are all distinct, i.e., for any j # £,

Ej — Ek: = Ej/ — Ek.l — (] = j/) and (k = k’,) (5)

Indeed, we have numerically verified that the spectra of both Hxx, and Hyxyxz almost
surely have non-degenerate gaps.

In the right panel of Figure 2] we observe a constant correction to the volume law. This
is expected, for such corrections also exist in other contexts [22-27].

3



251

» 15 2

05 L L L L L L L 0.8

Figure 2: Left panel: The entanglement entropy between the first j and the last N — j qubits
at long times for Hxx; (blue) and Hxxz (green). The black lines are S = min{j, N —j}/2.
Right panel: Finite-size scaling of the half-chain entanglement entropy at long times for
Hxxyp (blue) and Hxxz (green). The black line is § = N/4 —1/2.

3 Discussion

We have numerically shown that adding a single boundary term to an otherwise AL Hamilto-
nian leads to entanglement growth. Starting from a random product state the entanglement
entropy obeys a volume law at long times, and the coefficient of the volume law is consistent
with the analytical prediction of Ref. [16].

Here are some interesting problems that deserve further study.

e Can we prove that the spectrum of Hyx, almost surely has non-degenerate gaps?
A positive answer to this question would allow us to rigorously prove some of the
numerical results in this paper.

e Can we develop an analytical understanding of how the entanglement entropy grows
with time for Hxy, by adapting the phenomenological model of MBL [14] |15]?

e How does Hyxx; scramble local information as measured by the out-of-time-ordered
correlator [28-34]7

e It was argued that MBL is less stable in two and higher spatial dimensions [35]. To
what extent a single boundary term delocalizes an AL system in higher dimensions?
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