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Abstract 

We shall use centrifugal forces to provide an explanation of dark energy by demonstrating that every orbit for a body has a 

centrifugal term in the radial equation of motion that balances gravity. Using the Schwarzschild solution of Einstein’s field 

equations, we replace the cosmological constant in the Friedman equations for the expansion of the universe with a term related to 

the ratio of rotational energy density to the rest mass energy density. The new equations explain how a flat universe can be 

expanding with a positive acceleration by spending internal rotational energy. This paper compliments the findings of several that 

have demonstrated serious problems with the analysis of experimental data justifying “dark energy”1 2 3. Instead of postulating 

dark energy, perhaps we should be taking a more careful look at the validity of the standard cosmological assumption of a 

homogenous and isotropic universe.  

Keywords: Dark energy, gravity, centrifugal, angular momentum, acceleration of universe, 

Schwarzschild solution, Friedman equation 

 

I. Newtonian two body problem with an extra force: 

Consider the two-body problem where one mass M is 

dominant, and the other mass m is infinitesimal so that we 

only need to consider the motion of the small mass m.  In 

spherical coordinates, the motion of our particle is given by 

this equation4: 

�⃗� = 𝑚�̈� = 𝑚(�̈� − 𝑟�̇�2 − 𝑟 sin2 𝜑 �̇�2)�̂�

+ 𝑚(2 sin𝜑 �̇��̇� + 2𝑟 cos𝜑 �̇��̇� + 𝑟 sin𝜑 �̈�)𝜃

+  𝑚(2�̇��̇� + 𝑟�̈� − 𝑟 sin𝜑 cos𝜑 �̇�2)�̂� 

Also, consider that there is an arbitrary additional force being 

applied to this test mass �⃗�𝑃, and assume that the extra force is 

always applied perpendicularly to the velocity and the 

position vector. 

�⃗� = �⃗�𝐺 + �⃗�𝑃 = [−
𝐺𝑀𝑚

𝑟2
�̂�] + �⃗�𝑃 , �⃗�𝑃 =

𝑓(𝑟)

𝑟3
[𝑟 × �̇�] 

The velocity vector and extra force are given by: 

�̇� =  �̇��̂� + 𝑟 sin𝜑 �̇�𝜃 + 𝑟 �̇��̂� 

�⃗�𝑃 = 
𝑓(𝑟)

𝑟
[−sin𝜑 �̇��̂� +  �̇�𝜃]  

Then the total force on our particle is given by: 

�⃗� =  �⃗�𝐺 + �⃗�𝑃 = [−
𝐺𝑀𝑚

𝑟2
�̂�] + 𝑓(𝑟)𝑟

−1[−sin𝜑 �̇��̂� +  �̇�𝜃] 

= 𝑚(�̈� − 𝑟�̇�2 − 𝑟 sin2 𝜑 �̇�2)�̂� +  𝑚(~)𝜃 +  𝑚(~)�̂� 

Then the equation of radial motion is: 

 
1 (Hunt, 2010) 
2 (Jacques Colin, 2019) 
3 (Subir Sarkar, 2020) 
4 (Weisstein, 2021) 

�̈� = −
𝐺𝑀

𝑟2
+ 𝑟(�̇�2 + sin2 𝜑 �̇�2) 

Notice that even though we assumed an extra arbitrary force 

�⃗�𝑃, because it was constrained perpendicularly to the velocity 

and position vectors, this extra force has absolutely no effect 

on the equation of motion for the �̂� direction. The equations 

for the 𝜃 and �̂� directions are very complicated, but that 

doesn’t matter. Further, the angular momentum term 

naturally appears in the radial equation: 

�̈� = −
𝐺𝑀

𝑟2
+

𝑚2𝑟4(�̇�2 + sin2 𝜑 �̇�2)

𝑚2𝑟3

= −
𝐺𝑀

𝑟2
+

(𝑚[𝑟 × �̇�])
2

𝑚2𝑟3
= −

𝐺𝑀

𝑟2
+

𝐿2

𝑚2𝑟3
  

Where 𝐿2 is the square of the angular momentum. 𝐿2 Is 

constant in any reference frame. Therefore, we can now 

imagine another observer 𝑟�̂� in a rotated reference frame 

given by the rotation of 𝜃 about the z axis, and 𝜑 about the y 

axis:  

𝑟�̂� = �̂� 𝑅𝑥(𝜃) 𝑅𝑦(𝜑)

= �̂� [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

cos𝜑 0 sin𝜑
0 1 0

−sin𝜑 0 cos𝜑
] = �̂� 

In this reference frame, the extra force we applied �⃗�𝑃 and the 

values of 𝜃 and 𝜑 are completely meaningless to our 

observer, and the orbit is a one-dimensional problem 

completely controlled by the equation of motion in the radial 

direction: 

�̈� = −
𝐺𝑀

𝑟2
+

𝐿2

𝑚2𝑟3
  (1) 



 

 2  
 

Assume that this hypothetical observer is completely 

ignorant of the existence of 𝜃 and 𝜑 dimensions of reality. 

They would observe that the motion of bodies is always 

governed by a balance between an attractive gravitational 

force and a repulsive centrifugal force. If this observer 

noticed that the rate of expansion of the universe was 

accelerating, would they not deduce that the centrifugal term 

was probably dominant?  

II. Building on the Schwarzschild solution: 

Having done a Newtonian derivation, how does this affect 

appear in General Relativity? We will start with the 

Schwarzschild solution5 to Einstein’s field equations since it 

correlates with the previous derivation: 

(1 −
2𝐺𝑀

𝑐2𝑟
) 𝑐2𝑑𝑡2 =

𝑑𝑟2

(1 −
2𝐺𝑀
𝑐2𝑟

)
+ 𝑟2(𝑑𝜑2 + sin2 𝜑 𝑑𝜃2)  

With this metric, the equation of motion for the radial 

direction is similar to (1) except with an extra attractive 

factor: 

�̈� = −
𝐺𝑀

𝑟2
+

𝐿2

𝑚2𝑟3
−

3𝐺𝑀𝐿2

𝑚𝑐2𝑟4
 (2) 

Within this equation, we can see that the relativistic factor 

will dominate if the radius is less than the Schwarzchild 

radius 𝑅𝑠 =
2𝐺𝑀

𝑐2 . Although these last two terms are often 

neglected, we shall include them in our rederivation of the 

Friedman equations using (2). 

III. Adding centrifugal forces to the Freidman 

equation:  

How does rotational energy impact the expansion rate of the 

Universe? We shall rederive the classical version of the 

Freidman equations with these centrifugal forces included6 7.  

Therefore, consider an infinitesimal mass at the edge of a 

sphere with a radius of 𝑅(𝑡) within a universe of 

homogeneous and isotropic material density. However, 

instead of considering that this is a point mass, we shall 

assume that it is a homogeneous and isotropic distribution of 

matter with a significant amount of rotational energy.  

In order to be isotropic, the total angular momentum must be 

zero, but this does not mean that the total rotational energy 

must also be zero. This distribution of matter is held within 

randomly oriented rotating gravitational structures. 

 
5 (Schwarzschild, 1916) 
6 (Ryden, 2003, pp. 43-59) 

 

Figure 1: Replace point mass with rotating mass 

We model it by assuming its rotational energy is equally split 

between 6 rings, with 2 in each of the three planes (Spin up 

and down for each axis). We can assume 𝑟𝜔 represents the 

characteristic radius and angular velocity magnitudes and the 

rotational energy 𝐸𝑅  is given by: 

𝐸𝑅 = 6
1

2

𝑚

6
 (𝑟𝜔)2 =

𝑚

2
 (

𝑅(𝑡)𝑚𝑟𝜔

𝑅(𝑡)𝑚
)

2

=
𝑚

2
 (

𝐿

𝑅(𝑡)𝑚
)

2

(3) 

We need to apply a factor of 2/3 due to the equal partition of 

the rotational energy in the 6 degrees of freedom for our 

mass and the fact that on average one plane of the rotating 

masses are tangential to the sphere, while the other two 

planes are perpendicular and contribute only half as much 

centrifugal force as the tangential plane.  

1

6
[(1 + 1) + (

1

2
+

1

2
) + (

1

2
+

1

2
)] =  

2

3
 

Combining this factor with equation (2) gives: 

�⃗�𝑚  =  𝑚 [−
𝐺𝑀𝑠

𝑅(𝑡)
2  +

2

3

𝐿2

𝑚2𝑅(𝑡)
3 −

2𝐺𝑀𝑠𝐿
2

𝑚𝑐2𝑅(𝑡)
4 ] �̂� 

Next, we can calculate the acceleration like this: 

𝑑2𝑅(𝑡)

𝑑𝑡2
= −

𝐺𝑀𝑠

𝑅(𝑡)
2  +

2

3

𝐿2

𝑚2𝑅(𝑡)
3 −

2𝐺𝑀𝑠𝐿
2

𝑚2𝑐2𝑅(𝑡)
4  

∫
𝑑2𝑅(𝑡)

𝑑𝑡2

𝑑𝑅(𝑡)

𝑑𝑡
𝑑𝑡 =  −∫

𝐺𝑀𝑠

𝑅(𝑡)
2

𝑑𝑅(𝑡)

𝑑𝑡
 

+
2

3
∫

𝐿2

𝑚2𝑅(𝑡)
3

𝑑𝑅(𝑡)

𝑑𝑡
𝑑𝑡 − ∫

2𝐺𝑀𝑠𝐿
2

𝑐2𝑅(𝑡)
4

𝑑𝑅(𝑡)

𝑑𝑡
𝑑𝑡 

1

2
(
𝑑𝑅(𝑡)

𝑑𝑡
)

2

=
𝐺𝑀𝑠

𝑅(𝑡)

− 2
𝐿2

𝑚2𝑅(𝑡)
2 +

8𝐺𝑀𝐿2

𝑚2𝑐2𝑅(𝑡)
3 + 𝑈 

7 (Weinberg, 2008, pp. 34-40) 
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Next we use that the mass of the sphere remains constant as 

it expands or contracts, and we also express 𝑅(𝑡) in the form: 

𝑀𝑠 =
4𝜋

3
𝜌(𝑡)𝑅(𝑡)

3 , 𝑅(𝑡) = 𝐴(𝑡)𝑅 

Plugging in these equations gives a correction term to the 

classical version of the Freidman equation: 

(
�̇�

𝐴
)

2

=
8𝜋𝐺𝜌

3
−

4𝐿2

𝑚2𝑅4𝐴4
+

32𝜋𝐺𝜌𝐿2

3𝑚2𝑐2𝑅2𝐴2
+

2𝑈

𝑅2𝐴2
  

Replacing the angular momentum with equation (2) and rest 

energy 𝐸𝑀 = 𝑚𝑐2 derives a more intuitive version of the 

Freidman equation: 

(
�̇�

𝐴
)

2

=
8𝜋𝐺𝜌

3
−

8 𝐸𝑅

𝐸𝑀

 (
𝑐2

𝑅2𝐴2
−

8𝜋𝐺𝜌

3
) +

2𝑈

𝑅2𝐴2
  (4) 

What exactly is this term 
𝐸𝑅

𝐸𝑀
? It is the average density of 

rotational energy per unit volume per average density of rest 

mass energy per unit volume. To estimate the value of this 

term, one would need to perform the following calculation 

over a representative sample of the universe where it is fairly 

homogenous. Using our derivation above: 

𝐸𝑅

𝐸𝑀

= (
1

𝑚𝑐2
)
1

2
 

𝐿2

𝑚𝑅(𝑡)
2 ,   𝐸𝑀 = 𝑐2 ∮𝜌(𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗ ) 𝑑𝑣 = 𝜌(𝑡)𝑉𝑐2  

𝐸𝑅 =
1

2
 ∮

𝑑𝐿2 𝑑𝑣

𝑑𝑚 𝑅(𝑡)
2 , 𝑑�⃗⃗� = 𝑑𝑚 (𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗ ×   𝑅(𝑡)
⃗⃗⃗⃗⃗⃗⃗⃗̇ )  

𝐸𝑅 = 
1

2
∮

𝑑𝑚2 (𝑅(𝑡)
⃗⃗⃗⃗⃗⃗⃗⃗ ×  𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗̇ )
2

𝑑𝑚 𝑅(𝑡)
2

=
1

2
∮𝜌(𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗ )
|𝑅(𝑡)
⃗⃗⃗⃗⃗⃗⃗⃗ ×   𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗̇ |
2

𝑅(𝑡)
2 𝑑𝑣 

(2)  
𝐸𝑅

𝐸𝑀

=
1

2𝑉𝜌(𝑡)𝑐
2
 ∮ 𝜌(𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗ )
|𝑅(𝑡)
⃗⃗⃗⃗⃗⃗⃗⃗ ×  𝑅(𝑡)

⃗⃗⃗⃗⃗⃗⃗⃗̇ |
2

𝑅(𝑡)
2 𝑑𝑣 

𝑉

0

 

From this equation, we can see that 
𝐸𝑅

𝐸𝑀
 clearly depends upon 

the local distribution of matter in the universe. We can use 

the relativistic Friedman equation to replace the 

cosmological constant with the centrifugal term like this: 

(
�̇�

𝐴
)
2

=
8𝜋𝐺𝜖

3𝑐2 −
𝑘 𝑐2

𝑅2𝐴2 +
Λ

3
, Λ = −

8 𝐸𝑅

𝐸𝑀
 (

3𝑐2

𝑅2𝐴2 −
8𝜋𝐺𝜖

𝑐2
) 

 
8 (Ryden, 2003, p. 53) 

(
�̇�

𝐴
)

2

=
8𝜋𝐺

3𝑐2
(1 + 8

𝐸𝑅

𝐸𝑀

)𝜖 −
𝑐2

𝑅2𝐴2
(𝑘 + 8

𝐸𝑅

𝐸𝑀

) (5) 

If we use our centrifugal term for the cosmological factor Λ 

then also apply the fluid equation8 we can derive the equation 

for the acceleration factor. We take the derivative, and divide 

both sides by 2𝐴�̇� : 

𝑑

𝑑𝑡
�̇�2 =

𝑑

𝑑𝑡
[
8𝜋𝐺

3𝑐2
𝜖𝐴2 −

8 𝐸𝑅

3𝐸𝑀

 (
3𝑐2

𝑅2
−

8𝜋𝐺𝜖

𝑐2
𝜖𝐴2) −

𝑘 𝑐2

𝑅2
] 

2�̈��̇�

2𝐴�̇�
=

1

2𝐴�̇�
 [
8𝜋𝐺

3𝑐2
(𝜖�̇�2 + 2𝜖𝐴�̇�) −

8𝑐2

𝑅2
 [

𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

)]

+
64𝜋𝐺𝐸𝑀

3𝑐4
 [

𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

) 𝜖𝐴2 +
𝐸𝑅

𝐸𝑀

(𝜖̇𝐴2 + 2𝜖𝐴�̇�)]] 

𝑢𝑠𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝜖̇ + 3
�̇�

𝐴
(𝜖 + 𝑃) = 0 

�̈�

𝐴
= −

4𝜋𝐺

3𝑐2
(1 + 8

𝐸𝑅

𝐸𝑀

) (𝜖 + 3𝑃) + 4 [
8𝜋𝐺

3𝑐2
𝜖 −

𝑐2

𝑅2𝐴2
] [

𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

)]
𝐴

�̇�
 (6) 

 
�̈�

𝐴
= −

4𝜋𝐺

3𝑐2
(1 + 8

𝐸𝑅

𝐸𝑀

) (𝜖 + 3𝑃)

+
4 [

8𝜋𝐺
3𝑐2 𝜖 −

𝑐2

𝑅2𝐴2] [
𝑑
𝑑𝑡

(
𝐸𝑅

𝐸𝑀
)]

√
8𝜋𝐺𝜖
3𝑐2 (1 + 8

𝐸𝑅

𝐸𝑀
) −

𝑐2

𝑅2𝐴2 (𝑘 + 8
𝐸𝑅

𝐸𝑀
)

(7) 

Therefore, including the centrifugal forces in the Friedman 

equations shows that the acceleration of the universe is 

affected by the ratio of 
𝐸𝑅

𝐸𝑀
. We can clarify these equations by 

substituting: 

𝑐2

𝑅2𝐴2
=

1

𝑇2
, 𝑇 𝑖𝑠 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑙𝑖𝑔ℎ𝑡 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 𝑅𝐴 

8𝜋𝐺𝜖

3𝑐2
= (

2𝐺

𝑐2
 
4𝜋𝑅3𝐴3

3

𝜖

𝑐2
)

𝑐2

𝑅3𝐴3
 =

𝑅𝑠

𝑅(𝑡)

1

𝑇2
 

Where 𝑅𝑠 is the Schwarzchild radius of the black hole size 

for our universe. Then we can express the equations for the 

expansion rate and the acceleration rate like this: 

(
�̇�

𝐴
)

2

=
1

𝑇2
[
𝑅𝑠

𝑅(𝑡)
(1 + 8

𝐸𝑅

𝐸𝑀

) − (𝑘 + 8
𝐸𝑅

𝐸𝑀

)] (8) 

�̈�

𝐴
=

1

2𝑇2

[
 
 
 𝑇[

𝑅𝑠
𝑅(𝑡)

−1][
𝑑

𝑑𝑡
(1+8

𝐸𝑅
𝐸𝑀

)]

√
𝑅𝑠

𝑅(𝑡)
(1+8

𝐸𝑅
𝐸𝑀

)−(𝑘+8
𝐸𝑅
𝐸𝑀

)

−
𝑅𝑠

𝑅(𝑡)
(1 + 8

𝐸𝑅

𝐸𝑀
) (1 +

3𝑃

𝜖
)

]
 
 
 

 (9) 
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Notice that equations (8) and (9) reduce to the normal 

Friedman equations without the cosmological constant when 
𝐸𝑅

𝐸𝑀
= 0 and 

𝑑

𝑑𝑡
(

𝐸𝑅

𝐸𝑀
) = 0.  

IV. Evaluation of new equations for expansion: 

Now we shall evaluate equations (8) and (9) to see if they are 

able to explain the current observations of cosmology. To 

summarize these observations: 

1. The universe is expanding9: �̇�

𝐴
> 0  

2. The acceleration of expansion is positive10 11: 
�̈�

𝐴
> 0  

3. The universe appears to be flat12 13: 𝑘 = 0  

4. The universe is not inside a black hole14: 
𝑅𝑠

𝑅(𝑡)
< 1  

First, we use (9) to find three possible explanations for the 

positive acceleration of the universe. These possible 

solutions may be reasoned by plugging in that 𝑘 = 1, −1, 0. 

For example, if we assume that 𝑘 = 1, equation (9) 

simplifies to: 

�̈�

𝐴
=

1

2

1

𝑇2
[𝑇√

𝑅𝑠

𝑅(𝑡)
− 1

[
𝑑

𝑑𝑡
(1+8

𝐸𝑅
𝐸𝑀

)]

√1+8
𝐸𝑅
𝐸𝑀

−
𝑅𝑠

𝑅(𝑡)
(1 + 8

𝐸𝑅

𝐸𝑀
) (1 +

3𝑃

𝜖
)]  

Then if we try to use this to explain observation #2, we arrive 

at the contradiction that: 

𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

) < 0 

𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

) >

(1 + 8
𝐸𝑅

𝐸𝑀
)

3
2 𝑅𝑠

𝑅(𝑡)
(1 +

3𝑃
𝜖 )

8 𝑇(𝑡)√
𝑅𝑠

𝑅(𝑡)
− 1

> 0 

Therefore there is no solution for 𝑘 = 1. Similarly, for 𝑘 =

−1, we can show that the only possible explanation for a 

positive acceleration requires that: 

𝑅𝑠

𝑅(𝑡)

> 1,
𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

) > 0 

This solution applies to the situation where a universe is 

inside a black hole and the ratio of 
𝐸𝑅

𝐸𝑀
 is increasing. 

 
9 (Hubble, 1929) 
10 (Perlmutter, 1998) 
11 (AG Riess, 1998) 
12 (Balbi A, 2021) 
13 (de Bernardis, 2000) 

Although this would explain observation #2, it fails to 

explain observation #1, #3, and #4. 

For 𝑘 = 0 there are two solutions that explain observation 

#2. One solution is like the previous solution for 𝑘 = −1, but 

the other solution is consistent with our other observations. 

For 𝑘 = 0, equation (9) simplifies to: 

�̈�

𝐴
=

1

2𝑇2

[
 
 
 𝑇[

𝑅𝑠
𝑅(𝑡)

−1][
𝑑

𝑑𝑡
(1+8

𝐸𝑅
𝐸𝑀

)]

√
𝑅𝑠

𝑅(𝑡)
+(

𝑅𝑠
𝑅(𝑡)

−1) 8
𝐸𝑅
𝐸𝑀

−
𝑅𝑠

𝑅(𝑡)
(1 + 8

𝐸𝑅

𝐸𝑀
) (1 +

3𝑃

𝜖
)

]
 
 
 

 (10)  

Observation #2 is possible if: 

𝑅𝑠

𝑅(𝑡)

< 1,
𝑑

𝑑𝑡
(
𝐸𝑅

𝐸𝑀

) < 0 

Then if we check equation (8), this solution implies: 

�̇�

𝐴
> 0  𝑖𝑓𝑓 [

𝑅𝑠

𝑅(𝑡)

+ (
𝑅𝑠

𝑅(𝑡)

− 1)  8
𝐸𝑅

𝐸𝑀

] > 0 

This is also required by equation (9) since the same term 

appears in the radical. Therefore, we arrive at the 

requirement that: 

(1 + 8
𝐸𝑅

𝐸𝑀

) < (1 −
𝑅𝑠

𝑅(𝑡)
)

−1

 (11) 

Therefore, this solution explains observation #1. The 

requirement for this solution assumes 𝑘 = 0 and 
𝑅𝑠

𝑅(𝑡)
< 1. 

Therefore, it is obviously consistent with observation #3 and 

#4. This theory explains the cosmological observations 

without any need for dark energy. 

VI. Conclusion: 

Could dark energy be explained by centrifugal forces? This 

seems like the most reasonable explanation because 

including centrifugal forces in the derivation of the Friedman 

equations removes some of the original reasons why dark 

energy was postulated15 16. 

In addition to explaining the general observations of 

cosmology, this explanation also addresses several other 

problems with dark energy. For example, is it a coincidence 

that we find ourselves in a universe where “dark energy” and 

normal matter are approximately in balance17? No, because it 

is normal for systems to have a balance of kinetic and 

14 (Edwin Loh, 1986) 
15 (Weinberg, 2008, p. 54) 
16 (Smethurst, 2021) 
17 (O'Dowd, 2021) 
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rotational energy. Further, dark energy allowed for the 

universe to be at an unstable equilibrium. However, these 

equations allow for stable equilibriums where the 

acceleration rate can oscillate18.  

We must be careful to consider that energy is not only 

exchanged between gravitational potential energy and kinetic 

energy, but also exchanged with rotational energy. Equations 

(8) and (9) can most intuitively be thought of as equations 

that govern a universal trade between kinetic energy, 

rotational energy, and gravitational potential energy, 

governed by conservation of angular momentum and energy. 

Combining our results with those of authors who did a 

critical analysis of the accelerated expansion data19 20 

provides a more compelling argument against “dark energy” 

by undermining the theoretical need for the cosmological 

constant to balance the Friedman equations. Given that “dark 

energy” feels unintuitive, lacks reasonable explanation, and 

seems to violate conservation of energy: I have become 

convinced that “dark energy” is simply not real.  
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