Hamiltonian Flow of the Riemann ξ-Function

Wiroj Homsup

Abstract

The Riemann ξ-Function can be expressed as $\xi(s)=u(x, y)+$ $i v(x, y)$ where $s=x+i y$. The structure of a Hamiltonian flow in the critical strip, $0 \leq \mathrm{x} \leq 1,0 \leq y \leq \infty$ of $\dot{x}=u(x, y), \dot{y}=-v(x, y)$ is determined by its behavior near zeros of $\xi(\mathrm{s})$. Phase portraits are considered and proved that all zeros of the Riemann ξ-Function on the critical line are saddle points.

1. Introduction

This paper is dependent on papers from [1-3]. The Riemann Zeta function $\zeta(s)$ is a function of the complex variable $s=x+i y$, defined in the half plane $x>1$ by the absolutely convergent series:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

$\zeta(s)$ can be extended by analytical continuation to the whole complex plane, with only a simple pole at $s=1$ and trivial zeros at the negative even integers that is , when s is one of $-2,-4,-6,-8$ $\zeta(s)$ has an infinity of zeros on the critical line, $x=1 / 2$. The Riemann hypothesis is stated that all the non-trivial zeros of the Riemann Zeta function must lie on the critical line, $x=1 / 2$.

In order to eliminate pole at $\mathrm{s}=0,1$ and all trivial zeros, the ξ function is formulated as

$$
\begin{equation*}
\xi(\mathrm{s})=\frac{1}{2} \mathrm{~s}(\mathrm{~s}-1) \frac{\Gamma\left(\frac{s}{2}\right) \zeta(\mathrm{s})}{\pi^{s / 2}}, \tag{2}
\end{equation*}
$$

which satisfies the functional equation

$$
\begin{equation*}
\xi(s)=\xi(1-s), \tag{3}
\end{equation*}
$$

and has the same zeros as $\zeta(\mathrm{s})$ in the critical strip , $0<x<1$.
$\xi(\mathrm{s})$ is an entire function with real and imaginary parts $u(x, y)$ and $v(x, y)$, thus

$$
\begin{equation*}
\xi(x+i y)=u(x, y)+i v(x, y) \tag{4}
\end{equation*}
$$

where $s=x+i y$.
From Eq. (3), relationship of $u(x, y), v(x, y)$ in the critical strip can be stated as:

$$
\begin{align*}
u(x, y) & =u(1-x, y) \\
v(x, y) & =-v(1-x, y) . \tag{5}
\end{align*}
$$

From these symmetries, the following results applying along $x=1 / 2$, such as

$$
\begin{gather*}
v\left(\frac{1}{2}, y\right)=0, \\
\frac{\partial u}{\partial x}(1 / 2, y)=0 \tag{6}
\end{gather*}
$$

Since $\xi(s)$ is an analytical function of s, it satisfies the CauchyRiemann equations:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{7}
\end{equation*}
$$

2. Phase Portraits of Hamiltonian Systems

The Jacobian matrix of $\dot{x}=u(x, y), \dot{y}=-v(x, y)$ is defined as

$$
\mathrm{J}=\left[\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \tag{8}\\
-\frac{\partial v}{\partial x} & -\frac{\partial v}{\partial y}
\end{array}\right]
$$

Let $\alpha=\frac{\partial u}{\partial x}$ and $\beta=\frac{\partial u}{\partial y}$. By using relationship from Eq. (7), J can be represented as

$$
\mathrm{J}=\left[\begin{array}{cc}
\alpha & \beta \tag{9}\\
\beta & -\alpha
\end{array}\right]
$$

At zeros of $\xi(\mathrm{s})$ on the critical line, $\alpha=0$ and $\beta \neq 0$, then Eigen values of J at zeros of $\xi(\mathrm{s})$ on the critical line are $\pm \beta$ and its Eigen vectors are $\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}$ and $\left[\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]^{T}$,respectively. Thus zeros of $\xi(\mathrm{s})$ on the critical line are saddle points as shown in Fig. 1 and Fig. 2 for the first zeros and the second zero at $\rho=\frac{1}{2}+i 14.1347$ and $\rho_{2}=\frac{1}{2}+i 21.0220$, respectively. As shown in [2], the vorticity of Riemann zero on the critical line alternate in sign as one move along it. The first and second Riemann zero has vorticity - and + , respectively.

Figure 1. The phase portrait of $\dot{x}=u(x, y), \dot{y}=-v(x, y)$

$$
\text { near } \rho_{1}=\frac{1}{2}+i 14.1347
$$

Figure 2. The phase portrait of $\dot{x}=u(x, y), \dot{y}=-v(x, y)$

$$
\text { near } \rho_{2}=\frac{1}{2}+i 21.0220
$$

3. Index Theory of Dynamical Systems and Application to the Critical Strip

Consider a dynamical system in the plane represented by

$$
\begin{align*}
\dot{x} & =f(x, y) \\
\dot{y} & =g(x, y) \tag{10}
\end{align*}
$$

Index theory provides global information as compared with local information from linearization about fixed points. To find an index of a closed curve, pick some curve C that does not have a fixed point on it. Let \emptyset be the angle that the flow vector on C make w.r.t x-axis and $[\varnothing]_{C}$ be a net change in \emptyset over one counterclockwise of C (in radians). Then the index of the closed C, I_{C}, defined as

$$
\begin{equation*}
I_{C}=\frac{1}{2 \pi}[\varnothing]_{C} \tag{11}
\end{equation*}
$$

As shown in [4], the index of a closed curve C encloses a saddle point is -1 . By the index theory, the index of a closed curve is additive, that is, when C is sub-divided as
then

$$
\begin{align*}
\mathrm{C} & =\mathrm{C}_{1}+\mathrm{C}_{2}, \\
I_{C} & =I_{C_{1}}+I_{C_{2}} \tag{12}
\end{align*}
$$

Let consider the Hamiltonian system $\dot{x}=u(x, y), \dot{y}=-v(x, y)$ in the critical strip, $0 \leq x \leq 1,0 \leq y \leq \infty$. This critical strip can be subdivided into $R_{i, i+1}$, $\mathrm{i}=1,2, \ldots \ldots$. ∞ that index theory can be applied to each subdivision separately.

The first region $R_{1,2}$ is defined as a rectangle with four corners at $(1,0),\left(1, y_{12}\right),\left(0, y_{12}\right)$ and $(0,0), \operatorname{Im}\left(\rho_{1}\right)<y_{12}<\operatorname{Im}\left(\rho_{2}\right)$. A path from $\left(1, y_{12}\right)$ to ($0, y_{12}$) does not pass through any zeros of $\xi(\mathrm{s})$.

All other regions $R_{i, i+1}, \mathrm{I}=2,3, \ldots$..are defined as a rectangle with four corners at $\left(1, y_{i-1, i}\right),\left(1, y_{i, i+1}\right),\left(0, y_{i, i+1}\right)$, and $\left(0, y_{i-1, i}\right)$, $\operatorname{Im}\left(\rho_{i-1}\right)<y_{i-1, i}<\operatorname{Im}\left(\rho_{i}\right)$ and $\operatorname{Im}\left(\rho_{i}\right)<y_{i, i+1}<\operatorname{Im}\left(\rho_{i+1}\right)$.

Paths from (1, $y_{i, i+1}$) to ($0, y_{i, i+1}$) and from ($0, y_{i-1, i}$) to (1, $y_{i-1, i}$) do not pass through any zeros of $\xi(\mathrm{s})$.

Let $C_{i, i+1}$ be a closed path along the perimeter of $R_{i, i+1}$ in the counter clockwise direction, $\left(1, y_{i-1, i}\right) \rightarrow\left(1, y_{i, i+1}\right) \rightarrow\left(0, y_{i, i+1}\right) \rightarrow(0$, $\left.y_{i-1, i}\right) \rightarrow\left(1, y_{i-1, i}\right)$. As shown by [2], angles along $C_{i, i+1}$ from $\left(1, y_{i-1, i}\right)$ to ($1, y_{i, i+1}$) and along $C_{i, i+1}$ from ($0, y_{i, i+1}$) to ($0, y_{i-1, i}$) rotate in the clockwise direction. With clockwise direction of these angles and condition from Eq. (3), the index of $C_{i, i+1}$ must be -1 .

For purposes of illustration, the region $R_{2,3}$ is considered. Let $y_{1,2}=16$ and $y_{2,3}=22$, A $C_{2,3}$ is a closed path , $\left(1, y_{1,2}\right) \rightarrow$ $\left(1, y_{2,3}\right) \rightarrow\left(0, y_{2,3}\right) \rightarrow\left(0, y_{1,2}\right) \rightarrow\left(1, y_{1,2}\right)$.

Define $\quad \emptyset_{1}, \emptyset_{2}$ as angles at ($1, y_{1,2}$) and ($1, y_{2,3}$), respectively, one can find that $\emptyset_{1}, \emptyset_{2}$ are 3.041 radians and 0.018 radians, respectively.

A net angle changed from $\left(1, y_{1,2}\right) \rightarrow\left(1, y_{2,3}\right)=-\left(\emptyset_{1}-\emptyset_{2}\right)$,
A net angle changed from $\left(1, y_{2,3}\right) \rightarrow\left(0, y_{2,3}\right)=-2 \emptyset_{2}$,
A net angle changed from $\left(0, y_{2,3}\right) \rightarrow\left(0, y_{1,2}\right)=-\left(\emptyset_{1}-\emptyset_{2}\right)$,
A net angle changed from $\left(0, y_{1,2}\right) \rightarrow\left(1, y_{1,2}\right)=-2\left(\pi-\emptyset_{1}\right)$.
Thus, the angle changed $=-\left(\emptyset_{1}-\emptyset_{2}\right)-2 \emptyset_{2}-\left(\emptyset_{1}-\emptyset_{2}\right)-2\left(\pi-\emptyset_{1}\right)=-2 \pi$.
Clearly, a net change of angle is -2π. Thus, the index of $C_{2,3}$ is -1 .

Conclusions

The Hamiltonian flow of $\dot{x}=u(x, y), \dot{y}=-v(x, y)$ near its critical points is analyzed. Phase portraits are considered and proved that all zeros of the Riemann ξ-Function on the critical line are saddle points. Also by sub-divide the critical strip, index theory can be applied to each subdivision separately. Results indicate that the index of a closed curve around each subdivision is -1 .

References

[1] J. M. Hill and R. K. Wilson, X-Ray of the Riemann Zeta and Xi Function. School of Mathematics and Applied Statistics, Univ. of Wollongong, NSW 2522, Australia. www.numbertheory.org/pdfs/xrays.pdf.
[2] A. LeClair, An electrostatic depiction of the vality of the Riemann Hypothesis and a formula for the N-th zero at Large N. Int. J. Mod. Phys., A28:1350151, 2013
[3] K. A. Broughan. The holomorphic flow of Riemann function $\xi(z)$. Nonlinearity, 18(3):1269-1294, 2005.
[4]http://www.cds.caltech.edu/archive/help/uploads/wiki/files/179/ lecture4Bs.pdf

