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Abstract

The study of the 4-tachyon off-shell string scattering amplitudeA4(s, t, u),
based on Witten’s open string field theory, reveals the existence of a con-
tinuum of poles in the s-channel and corresponding to a continuum of
complex spins J . The latter spins J belong to the Regge trajectories in
the t, u channels which are defined by −J(t) = −1 − 1

2
t = β(t) = 1

2
+ iλ;

−J(u) = −1 − 1
2
u = γ(u) = 1

2
− iλ, with λ = real. These values of

β(t), γ(u) given by 1
2
±iλ, respectively, coincide precisely with the location

of the critical line of nontrivial Riemann zeta zeros ζ(zn = 1
2
± iλn) = 0.

We proceed to prove that if there were nontrivial zeta zeros (violating the
Riemann Hypothesis) outside the critical line Real z = 1/2 (but inside
the critical strip) these putative zeros don′t correspond to any poles of
the 4-tachyon off-shell string scattering amplitude A4(s, t, u). One of the
most salient features of these results is the collinearity of the 4 off-shell
tachyons. We may speculate that this spatial collinearity is actually re-
flected in the collinearity of the poles of the string amplitude, lying in
the critical line : β = γ∗ = 1

2
+ iλ, where the nontrivial zeta zeros are

located. We finalize with some concluding remarks on continuous spins,
non-commutative geometry and other relevant topics.

Keywords : Riemann Hypothesis, Tachyons, Off-Shell String Scattering Am-
plitudes
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1 Tachyonic Off-Shell String Scattering Ampli-
tudes

The Riemann’s hypothesis (RH) [1], [2] states that the nontrivial zeros of the
Riemann zeta-function are of the form zn = 1/2± iλn. Trivial zeta zeros exist
at zn = −2n, for n = integer. The on-shell four-point dual string amplitude
obtained by Veneziano is [8], [9] was

A4 = A(s, t) +A(t, s) +A(u, s) =

∫
R

dx |x|α−1|1− x|β−1 = B(α, β). (1)

where the Regge trajectories in the respective s, t, u channels are :

−α(s) = 1 +
1

2
s. − β(t) = 1 +

1

2
t. − γ(u) = 1 +

1

2
u. (2)

The conservation of the energy-momentum yields :

k1 + k2 = k3 + k4 ⇒ k1 + k2 − k3 − k4 = 0. (3)

In our notation we define the different channels as :

s = (k1+k2)2 = (k3+k4)2. t = (k2−k3)2 = (k4−k1)2. u = (k1−k3)2 = (k4−k2)2

(4)
Our prior work [3] was based on the study of the on-shell scattering am-

plitudes. A closer and more rigorous look reveals that this was not general
enough because we overlooked to include the key study of the off -shell tachyon
scattering amplitudes, which are crucial in arriving correctly at the desired con-
clusions. The incoming tachyons were on-shell but the external tachyons were
off-shell with k3, k4 = k∗3 (a complex-conjugate pair). We will show below that
the analysis of the off -shell tachyon scattering amplitudes leads to the same
conclusions as in [3] due to a numerical “fluke”.

The 4-tachyon off-shell amplitude in Witten’s cubic string field theory [4]
is instrumental in describing the dynamics of the open bosonic string tachyon.
Both the unstable vacuum and the true vacuum where the tachyon has con-
densed have been shown to be well-defined states in Witten’s cubic string field
theory [6]. Since tachyon condensation is an off-shell process, string field theory
is the required setting for its analysis. We recall that the Higgs field in the Stan-
dard Model of particle physics has a tachyonic-like term in the potential and
its shift to the true vacuum of the theory gives masses to most of the particles
in the Standard Model including the part of the Higgs fields which acquires a
positive mass [21].

The 4-tachyon off-shell s− t amplitude found by [6] is
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A4(s, t) =
1

4

∫ 1

0

dx |x|−s−2 |1− x|−t−2
C( 1

2 + |x− 1
2 |)

2
√

1
2 + |x− 1

2 |

M2−4

(5)

and it was obtained following the conformal mapping techniques that [5] used to
derive the on-shell Veneziano amplitude from Witten’s cubic string field theory
vertex. C(x) is a very complicated expression defined by elliptic integrals, M2 =∑4
i=1 P

2
i , and x is the Koba-Nielsen cross-ratio. The full 4-tachyon off-shell

amplitude can be obtained from eq-(5) after performing the cyclic permutations
P1 → P2 → P3 → P4 → P1.

The notation and signature used by [6] is

s = − (P1 + P2)2, t = − (P2 + P3)2, u = − (P2 + P4)2 (6)

P 2 ≡ PµP
µ ≡ − E2 + ~P · ~P (7)

with P1 + P2 + P3 + P4 = 0. And because it is different than ours, one must
establish the following dictionary between their variables and ours

P1 =
i√
2
k1, P2 =

i√
2
k2, P3 = − i√

2
k3, P4 = − i√

2
k4, (8)

P 2 = − 1

2
k2, k2 ≡ kµk

µ ≡ E2 − ~k · ~k, (9)

1

2
(k1 + k2)2 = − (P1 + P2)2,

1

2
(k2 − k3)2 = − (P2 + P3)2, . . . (10)

and such that

M2 =

4∑
i=1

P 2
i = − 1

2
(k21 + k22 + k23 + k24) (11)

we shall work in the natural units h̄ = c = G = 1 ⇒ LPlanck = 1 so the string
slope parameter in those units is given by α′ = (1/2)L2

Planck = 1/2 and the
string mass spectrum is quantized in multiples of the Planck mass mPlanck = 1.

Despite that in this work we will be working with 4 off-shell tachyons

k21 6= −2, k22 6= −2, k23 6= −2, k24 6= −2 (12)

we will show that when the special condition holds

k21+k22+k23+k24 = −8 ⇒ M2 =

4∑
i=1

P 2
i = − 1

2
(k21+k22+k23+k24) = 4 (13)
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then the correction factor in the scattering amplitude (. . .)M
2−4 of the 4 off -

shell tachyons becomes precisely 1 (due to M2 − 4 = 0) and one is still able
to recover the same functional expression as the on-shell Veneziano string am-
plitude for those very special values of k1, k2, k3, k4. And these latter values
are precisely those which allows us to establish a one-to-one correspondence be-
tween the poles of the string scattering amplitude and the critical line where the
nontrivial zeta zeros are located. Therefore, one could assert that this numeri-
cal “fluke” when the functional expressions for the on-shell and off-shell tachyon
scattering amplitudes coincide is a reflection of a “coexistence” of the classical
and quantum world.

The special condition k21+k22+k23+k24 = −8, combined with the conservation
of energy-momentum k1 + k2 = k3 + k4, and a judicious use of the definitions
in eq-(4) allows to prove that the sum

s+ t+ u = (k21 + k22 + k23 + k24) + 2k22 + 2k1 · k2 − 2k2 · k3 − 2k2 · k4 =

−8 + 2k2·(k1+k2) − 2k2·(k3+k4) = −8 + 2k2·(k1+k2) − 2k2·(k1+k2) = −8.
(14)

This relationship s+ t+ u = −8 will be crucial in order to show below that the
string amplitude can be rewritten in terms of products of zeta functions.

Hence, from the defining Regge trajectories (2) and eq-(14) we obtain the
following constraint

α(s) + β(t) + γ(u) = 1 (15)

The last relationship can also be understood geometrically as the sums of the
angles, in units of π, of an Euclidean triangle found in [7] where new rela-
tions among analyticity, Regge trajectories, the Veneziano string amplitudes
and Moebius transformations were studied. Note that the author [7] uses a
different convention for α, β, γ than ours .

There exists a well known relation [8], [10] among the Γ functions in terms
of ζ functions appearing in the expression for A(s, t, u) when α, β fall inside the
critical strip. In this case the integration region in the real line that defines the
on-shell amplitude A(s, t, u) in eq-(1) can be divided into three parts and leads
to the very important identity

A(s, t, u) = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
+

Γ(α)Γ(γ)

Γ(α+ γ)
+

Γ(γ)Γ(β)

Γ(γ + β)
=

ζ(1− α)

ζ(α)

ζ(1− β)

ζ(β)

ζ(1− γ)

ζ(γ)
. (16)

where α + β + γ = 1 and α, β are confined to the interior of the critical strip.
Because the functional form of the on-shell amplitude coincides with the off-shell
amplitude for very special values of k1, k2, k3, k4, as we shall prove, we may also
use the expression of eq-(16) for the off-shell amplitude.

The derivation behind eq-(16) relies on the above constraint (15) α+β+γ = 1
and the identities
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sin π(α+ β) + sin π(α+ γ) + sin π(β + γ) = 4 cos
πα

2
cos

πβ

2
cos

πγ

2
. (17a)

Γ(γ) = Γ(1− α− β) =
1

Γ(α+ β)

π

sin π(α+ β)
. (17b)

plus the remaining cyclic permutations from which one can infer

Γ(α)Γ(β)

Γ(α+ β)
= Γ(α)Γ(β)Γ(γ)

sin π(α+ β)

π
. (17c)

Γ(α)Γ(γ)

Γ(α+ γ)
= Γ(α)Γ(β)Γ(γ)

sin π(α+ γ)

π
. (17d)

Γ(β)Γ(γ)

Γ(β + γ)
= Γ(α)Γ(β)Γ(γ)

sin π(β + γ)

π
. (17e)

Therefore, eqs-(17) allow us to recast the l.h.s of (16) as

A(s, t, u) = B(α, β) =
4

π
cos

πα

2
cos

πβ

2
cos

πγ

2
Γ(α)Γ(β)Γ(γ) (18aa)

And, finally, the known functional relation

(2π)zζ(1− z) = 2 cos
πz

2
Γ(z) ζ(z). (18b)

in conjunction with the condition α + β + γ = 1 such that (2π)α+β+γ = 2π
is what establishes the important identity (16) expressing explicitly the string
amplitude A(s, t, u) either in terms of zeta functions or in terms of Γ functions.

Having found the expression for A(s, t, u) (16) in terms of products of zeta
functions it follows from the relation α + β + γ = 1 that the location of the
Riemann critical line of zeta zeros given by the complex numbers β = 1/2 +
iλ, γ = β∗ = 1

2 − iλ⇒ α = 0, β+ γ = 1, corresponds to real-valued poles of the

scattering amplitude A(s, t, u) = ζ(1−α)
ζ(α) = ζ(1)

ζ(0) = −∞. Due to 1− β = β∗ = γ

and 1− γ = γ∗ = β there is a pairwise exact cancellation of the numerator and
the denominator in

ζ(1− β)

ζ(β)

ζ(1− γ)

ζ(γ)
= 1 (19)

and A(s, t, u) reduces to ζ(1)
ζ(0) = −∞. The case α = 0 corresponds to a tachy-

onic pole in the s-channel : s = −2. Complex-valued energy-momenta and
angular-momenta have physical significance. It is well known that the imagi-
nary parts of the energies in scattering theory corresponds to the inverse lifetime
of particle-resonances. The resonance-width is the inverse of the lifetime. By
cyclic symmetry one may have poles in the t or the u channel as well given
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by t = −2, u = −2, respectively. This follows from α + β + γ = 1 by set-
ting {β = 0;α = γ∗ = 1/2 + iλ} (leading to a pole in the t-channel) or
{γ = 0;α = β∗ = 1/2 + iλ} (leading to a pole in the u-channel).

The functional relation of the completed zeta function

Z(z) = π−
z
2 Γ(

z

2
) ζ(z) = Z(1− z) = π−

(1−z)
2 Γ(

1− z
2

) ζ(1− z) (20)

is instrumental in showing why if there are nontrivial zeta zeros outside the
critical Riemann line these zeros don′t correspond to poles of A(s, t, u).

Let us identify the sets of quartets of hypothetical nontrivial zeta zeros lying
inside the critical strip1 ( 0 < Re z < 1 ) at the locations described by

αn, βn = α∗n. 1− αn, 1− βn = 1− α∗n, n = 1, 2, 3, . . . (21)

respectively, such that

ζ(αn) = ζ(βn) = ζ(1− αn) = ζ(1− βn) = 0 (22)

and
0 < αn + βn < 1; 0 < γn < 1. (23)

so that αn, βn, γn are all confined inside the critical strip and whose values are
consistent with the condition αn + βn + γn = 1. Note that γn is real. The
amplitude (16) in this case is

A(s, t, u) =
ζ(1− αn)

ζ(αn)

ζ(1− βn)

ζ(βn)

ζ(1− γn)

ζ(γn)
=
ζ(1− αn)

ζ(αn)

ζ(1− α∗n)

ζ(α∗n)

ζ(1− γn)

ζ(γn)
=

||ζ(1− αn)

ζ(αn)
||2 ζ(1− γn)

ζ(γn)
= Cn

ζ(1− γn)

ζ(γn)
= real and finite. (24)

This result (24) is a consequence of the above functional equation (20) since

the ratio ζ(1−αn)
ζ(αn)

can be rewritten in terms of the Gamma functions as

ζ(1− αn)

ζ(αn)
=

Γ(αn2 )

Γ( 1−αn
2 )

π
1−αn

2

π
αn
2

, 0 < Re(αn) < 1 (25)

Hence, from eq-(25) one infers that the real constants Cn = ||ζ(1−αn)/ζ(αn)||2 =
0/0 are finite and non-zero. Consequently, the amplitude A(s, t, u) (24) is finite

and devoid of poles because ζ(1−γn)
ζ(γn)

is finite when γn is real and constrained to

obey 0 < γn < 1. The zeta function ζ(z) has a simple pole at z = 1. Similar
findings occur when αn, βn lie to the right of the critical line such that

2 > αn + βn > 1; − 1 < γn < 0. (26)

1According to the Valle-de la Poussin theorem there are no zeros on the boundary of the
critical strip
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Therefore, there are no poles in the r.h.s of eq-(24) when the parameters αn, βn, γn
are restricted to obey the conditions described above. The case when the quartet
of zeros {αn, α∗n, 1−αn, 1−α∗n} are not related to βn via the relations displayed
in eq-(21), but still obeying αn+βn+γn = 1 lead to the same conclusions. And
one finally concludes that if there were nontrivial zeta zeros outside the critical
Riemann line these putative zeros don′t correspond to poles of A(s, t, u). How-
ever, this fact alone does not necessarily mean that these zeros do not exist but
only that if they existed they do not have a physical interpretation in terms of
the poles of A(s, t, u).

We are going to prove next that one can actually satisfy our goals even if the
incoming tachyons are off-shell; i.e. if k21 6= −2 and k22 6= −2, with the provision
that the s-channel still obeys the on-shell condition (k1 +k2)2 = −2 and the key
algebraic condition s+ t+u = −8 is still satisfied. In this case, all of the results
in [3] still hold and one can find exact solutions to all of the relevant equations.
As stated earlier, the external tachyons were already off-shell with k3, k4 being
a complex-conjugate pair.

Let us not impose now the on-shell conditions for the incoming tachyons (so
that k21 6= −2 and k22 6= −2) and search for solutions to the following system of
8 nonlinear equations

s = (k1 + k2)2 = (k3 + k4)2 = − 2 ⇒ α(s) = −(1 +
1

2
s) = 0 (27)

t = (k2−k3)2 = (k4−k1)2 = −3 −2iλ ⇒ β(t) = −(1+
1

2
t) =

1

2
+iλ (28)

u = (k2−k4)2 = (k3−k1)2 = −3 + 2iλ ⇒ γ(u) = −(1+
1

2
u) =

1

2
−iλ (29)

k23 = − 2 + 2iξ ⇒ J(k23) = 1 +
1

2
k23 = iξ (30)

k24 = − 2 − 2iξ ⇒ J(k24) = 1 +
1

2
k24 = − iξ (31)

There is a scalar (spin-0) tachyon exchanged in the s-channel . β and γ are
complex conjugates and lie in the critical line and the conditions α + β + γ =
1↔ s+ t+ u = −8 are satisfied. Conservation of angular momentum demands
the sum of the spins in eqs-(30,31) equals the zero-spin value in eq-(27).

From eqs-(30,31) one infers that k3, k4 are complex-valued and complex-
conjugates k3 = k∗4 . And, in turn, from eqs-(28,29) one can then infer that
k1, k2 must be real-valued. Let us choose an ansatz where the non-vanishing
components in 26-dim for k1, k2, k3, k4 are of the form

k1 ≡ (E1, p1), k2 ≡ (E2, p2), k3 ≡ (E3+iE3, p3+iπ3), k4 = k∗3 ≡ (E3−iE3, p3−iπ3)
(32)

and where we set to zero the remaining 24 transverse components to the bosonic
string world-sheet. In this case, the total number of variables comprising k1, k2, k3, k4

7



is then given by 2 + 2 + 4 = 8 and which matches the number of 8 equations in
(27-31)2.

Since one has a system of 8 nonlinear equations with 8 unknowns, there might
not be solutions; or there might be one or many solutions. A closer inspection
of the 8 nonlinear equations reveals that they are not independent. From the
conservation of the energy-momentum k1 + k2 = k3 + k4 one can see that the
second set of equations in the doublets of eqs-(27-29) are not independent from
the first set of equations. Thus there is a redundancy and in actuality there
are 5 nonlinear equations plus one linear equation k1 + k2 = k3 + k4. Setting
aside this subtlelty, after some straightforward algebra one finds the following
solutions

k1 = ( 0, p1 =
1−
√

3√
2

), k2 = ( 0, p2 =
1 +
√

3√
2

), (33)

k3 = ( 0 + iE3 = i

√
2ξ2 +

3

2
, p3 + iπ3 =

1√
2
− i
√

2 ξ ) (34)

k4 = k∗3 = ( 0− iE3 = −i
√

2ξ2 +
3

2
, p3 − iπ3 =

1√
2

+ i
√

2 ξ ) (35)

and where the key relationship (obtained from the solutions) between ξ and λ
turns out to be √

3 ξ = λ (36)

From eqs-(33) one learns that k21 and k22 are Galois conjugates

k21 = − (
1−
√

3√
2

)2 = − 2 +
√

3 < 0, ⇒ k21 6= −2 (37)

k21 = − (
1 +
√

3√
2

)2 = − 2 −
√

3 < 0, ⇒ k22 6= −2 (38)

From eqs-(34,35) one verifies also that k3 and k4 are complex conjugates.
Eqs-(33-36) represent a considerable improvement of our previous findings in
the appendix of [3]. In particular, eq-(36) is far simpler than eq-(A.18) in [3].
This is due to the fact that we are no longer imposing the on-shell conditions
for the incoming tachyons k21 = k22 = −2. All the 4 tachyons are now off-shell.

To sum up, one can explicitly verify that

(k1 + k2)2 = (k3 + k4)2 = − (
2√
2

)2 = − 2 (39)

k23 = − (2ξ2 +
3

2
) − (

1√
2
− i
√

2 ξ )2 = − 2 + 2iξ (40)

k24 = − (2ξ2 +
3

2
) − (

1√
2

+ i
√

2 ξ )2 = − 2 − 2iξ (41)

2By writing (k1 + k2)2 = (k3 + k4)2 = −2 it is understood that it means (k1 + k2)2 = −2
and (k3 + k4)2 = −2, etc.
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(k2 − k3)2 = (k4 − k1)2 = − (2ξ2 +
3

2
) − (

√
3

2
+ i
√

2 ξ)2 =

− 3 − 2i
√

3 ξ = − 3 − 2iλ (42)

the complex conjugate of eq-(42) gives

(k2 − k4)2 = (k3 − k1)2 = − 3 + 2i
√

3 ξ = − 3 + 2iλ (43)

And, finally, one can check the conservation of energy-momentum k1 + k2 =
k3 +k4 = (0,

√
2) and that the key condition s+ t+u = −2−3−2iλ−3+2iλ =

−8⇒ α(s) + β(t) + γ(u) = 1 is obeyed.
To conclude, due to the fact that k21 and k22 are Galois conjugates, and k23

and k24 are complex conjugates, from the results in eqs-(37,38,40,41) one finally
arrives at the sought-after condition displayed by eq-(13)

M2 =

4∑
i=1

P 2
i = − 1

2
(k21 + k22 + k23 + k24) = 4 (44)

such that the correction factor in the 4-tachyon off-shell scattering amplitude
(5) becomes unity and the functional expressions for the on-shell and off-shell
amplitudes coincide in this very special case. And as a result, we were able to
show that if there were nontrivial zeros violating the Riemann hypothesis, these
zeros do not correspond to poles of the off-shell string scattering amplitude.

One the most salient features that one can glean from the solutions in eqs-
(33-35) is the collinearity of those 4 off-shell tachyons since their spatial motion
is confined to one dimension (a line); i.e. all of the 24 transverse components
(to the two-dim string world-sheet) of the energy-momentum variables kµ are
zero. One may speculate that this spatial collinearity is actually reflected in
the collinearity of the poles of the string amplitude lying in the critical line
β = γ∗ = 1

2 + iλ where the nontrivial zeta zeros are located.
If one does not have collinearity then there is more wiggle room for the off-

shell tachyons to maneuver and no longer all of the 24 transverse components
of the energy-momentum variables kµ are constrained to zero. And, in turn,
the condition (44) is not necessarily satisfied any longer. Consequently, the
correction factor of the 4-tachyon off-shell scattering amplitude (5) is no longer
unity and the functional expressions for the on-shell and off-shell amplitudes no
longer coincide.

Namely, the off-shell amplitude will differ now from the expression in eq-
(16) and one cannot rule out the possibility that the sets of quartets of putative
zeta zeros off-the-critical line may now have an actual correspondence with more
and new poles of the far more complicated off-shell amplitude. The study of this
possibility is well beyond the scope of this work and requires extensive computer
analysis beyond our capabilities. In a nutshell, if there is no collinearity in the
motion of the 4 off-shell tachyons there might not be collinearity in all of the
zeta zeros and the Riemann hypothesis could be false.
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The 4-tachyon on-shell amplitude with a pole in the s-channel would have
s = −2; t = u = −3 such that s+ t+ u = −8, and α = 0, β = γ = 1

2 . Contrast
these values with the ones in the 4-tachyon off-shell amplitude with a pole in the
s-channel s = −2; t = −3−2iλ;u = −3+2iλ, and α = 0, β = 1

2 + iλ; γ = 1
2 − iλ.

In other words, the off-shell results can be interpreted as analytical extensions in
the complex plane of the on-shell ones along the imaginary directions associated
with the critical line : 1

2 →
1
2 ± iλ.

Having found solutions for k1, k2, k3, k4 one can obtain the values of the
angular momentum (spin) J carried by the tachyonic particles directly from
their defining Regge trajectory

J(k1) = 1 +
1

2
k21 =

√
3

2
, J(k2) = 1 +

1

2
k22 = −

√
3

2
⇒ J(k1)+J(k2) = 0

(45)

J(k3) = 1 +
1

2
k23 = iξ = i

λ√
3
, J(k4) = 1 +

1

2
k24 = −iξ = −i λ√

3
⇒

J(k3) + J(k4) = 0 (46)

Eqs-(45-46) are consistent with the fact that the spin of the tachyon ex-
changed in the s-channel (k1 + k2)2 = −2 is given by

J(s = (k1 + k2)2 = −2) = 1 +
1

2
s = 1 +

1

2
(−2) = 0 (47)

so that the net zero-spin value is conserved. Likewise, the net value of the
energy-momentum is also conserved k1 + k2 = k3 + k4 = (0,

√
2).

To finalize this section we should add that in [3] we explained that the
solutions β = γ∗ = 1/2+ iλ have also a clear definite geometrical interpretation
when the Euclidean triangle with 3 vertices degenerates into a vertical strip in
the upper complex plane comprised of one vertex located at infinity ( with zero
angle ) and the other two vertices ( with angle π/2 ) located on the real axis
and separated by a distance [7]

d =
Γ(β)Γ(1− β)

Γ(1)
=

π

sin (πβ)
=

π

sin (π/2 + iπλ)
=

π

cos (iπλ)
=

π

cosh πλ
.

(48)
Once again we must remind the reader that our notation for α, β, γ differs from
[7].

Despite the fact that β = γ∗ are complex-valued their sum β+γ = 1 = real,
thus the sum of the three angles of the triangle is still π(α + β + γ) = π .
Therefore, the discrete number of the imaginary parts of the nontrivial zeta
zeros λn are associated with a discrete number of possible distances between
the two variable vertices of the triangles situated in the real axis of the complex
plane and given by dn = π/cosh (πλn).
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Physical systems with this type of hyperbolic spectrum of scales dn have been
recently been investigated by [11] in connection to the Riemann hypothesis. In
particular, these authors applied the infinite-component Majorana equation in a
Rindler spacetime and focused on the S-matrix approach describing the bosonic
open string for tachyonic states.

The author [12] studied the Riemann zeros as energy levels of a Dirac fermion
in a potential built from the prime numbers in Rindler spacetime. The Hamilto-
nian was derived from the action of a massless Dirac fermion living in a domain
of Rindler spacetime, in 1 + 1 dimensions, that has a boundary given by the
world line of a uniformly accelerated observer. The Riemann zeros appear as
discrete eigenvalues immersed in the continuum.

2 Concluding Remarks: Continuous spins, Non-
Commutative Geometry, Chaos, Fractal Strings
and All That

The study of the 4-tachyon off-shell string scattering amplitude A4(s, t, u), based
on Witten’s open string field theory, reveals the existence of a continuum of poles
in the s-channel and corresponding to a continuum of complex spins J . The
latter spins J belong to the Regge trajectories in the t, u channels which are
defined by −J(t) = −1− 1

2 t = β(t) = 1
2 + iλ; −J(u) = −1− 1

2u = γ(u) = 1
2− iλ,

with λ = real. These values of β(t), γ(u) given by 1
2 ± iλ, respectively, coincide

precisely with the location of the critical line of nontrivial Riemann zeta zeros
ζ(zn = 1

2 ± iλn) = 0.
Particles with continuous spin have a long history since Wigner’s construc-

tion of continuous spin representations of the Poincare group for massless parti-
cles [15]. Photons and tachyons with continuous spin were studied a while back
by [18]. There are two classes of unitary infinite dimensional representations,
one being massless and named continuous (or infinite) spin particles and the
other constituted by tachyonic particles. For a long time no field theory was
known for these infinite dimensional representations preventing the study of its
properties even at the free level [21]. Only recently a field theory for continu-
ous spins particles was proposed [16] triggering a new wave of interest on the
subject. For a recent review and earlier references see[17], [19].

The irreducible unitary representations of the Poincare group in D = 4 can
be labelled by the quadratic Casimir operator C2 = P 2 = PµP

µ associated to
the mass-shell condition, and the quartic Casimir operator C4 = − 1

2P
2JµνJµν+

JµνPνJµρP
ρ, the square of the Pauli-Lubanski vector Wµ = εµνρτJνρPτ . The

irreducible unitary representations of the Poincare group in other dimensions
than D = 4 can be found in [20].

A nice description of the continuous spin representations can be found in
[21]. In D = 4, the scalar spin-0 tachyon belongs to a one-dim representation.
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The spin-s tachyon (s 6= 0), with s integer or half-integer, has for quadratic
Casimir C2 = −m2 < 0, a quartic Casimir C4 = −m2(s + 1)s, and belongs to
an infinite-dim representation of the Poincare group with an infinite tower of
states labeled by l = ±(s+ 1),±(s+ 2),±(s+ 3), .....,∞.

The “continuous” spin tachyon, has for quadratic Casimir C2 = −m2 < 0,
a quartic Casimir C4 = −ρ2, where ρ is a real number (the value of the “con-
tinuous spin”). The “bosonic” continuous spin tachyon belongs to an infinite-
dim representation of the Poincare group with an infinite tower of states la-
beled by l = 0,±1,±2, .....,±∞. Whereas, the “fermionic” continuous spin
tachyon belongs to an infinite-dim representation of the Poincare group with
an infinite tower of states labeled by l = ± 1

2 ,±
3
2 ,±

5
2 , .....,±∞. The mass-

less “bosonic/fermionic” continuous spin representations have zero for their
quadratic Casimir C2 = m2 = 0, a value of C4 = −ρ2 for ρ real (the value
of the “continuous spin), and a similar tower of states as above.

Continuous and complex spins are also present in Celestial Conformal Field
Theories (CCFTs) [22] which are based in introducing conformal correlation
functions living on the celestial sphere. These correlation functions are obtained
from the S-matrix of a particular set of wave functions in the bulk. The celestial
operators associated to these wavefunctions transform as primaries under the
action of the conformal group on the sphere, but have continuous boost weight
∆ = 1 + iσ, with σ real, in contrast with the discrete spectrum expected for
standard Conformal Field Theories (CFT).

The four-point function contains non-trivial information of the spectrum,
and in some cases can be related to the three-point structure constants [23]. In
particular, the decomposition of [24] has found that not only conformal primaries
(fields) with continuous boost weight are exchanged in the four-point function,
but also their so-called light-ray transforms [25] with continuous and complex
spin [26],[27],[23].

Witten [9] was motivated by ideas from non-commutative geometry and
introduced the non-commutative star product of three string fields Ψ1?Ψ2?Ψ3 to
construct the cubic vertex. Connes’ approach to the Riemann Hypothesis relied
on non-commutative geometry and Adelic products [13]. Since our results are
based on the study of 4-tachyon off-shell scattering amplitudes which required
Witten’s open string field theory, it is warranted to investigate the role of non-
commutative geometry even further.

Tachyons were essential in the recent study of Chaotic scattering of highly
excited strings [28]. Motivated by the desire to understand chaos in the S-matrix
of string theory, the authors studied tree level scattering amplitudes involving
highly excited strings. The excited string is formed by repeatedly scattering
photons off of an initial tachyon (the DDF formalism) and they computed the
scattering amplitude of one arbitrary excited string and any number of tachyons
in bosonic string theory.

We found a continuum of poles in the 4-tachyon off-shell string scattering
amplitude and associated with the values of β(t), γ(u) given by 1

2 ± iλ, respec-
tively, which coincide precisely with the location of the critical line of nontrivial
Riemann zeta zeros. This “pole-continuum” resembles the location of black hole
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singularities. The Schwarzschild black hole singularity at r = 0 is a spatial sin-
gularity and is represented by a line in the Penrose diagram. All matter that
crosses the horizon falls towards the singularity.

The discrete number of zeta zeros are embedded in a continuum of values of
1
2 ± iλ. Roughly speaking, this pole-continuum (the critical line) behaves like
an attractor where the quartets of putative zeros outside the critical line flow
into. This picture of zeta zeros flowing towards the critical line was advocated
by Lapidus [29] in his study of fractal strings. His main conjecture is that under
the action of the modular flow, the spacetime geometries become increasingly
symmetric and crystal-like, hence, arithmetic. Correspondingly, the zeros of
the associated zeta functions eventually condense onto the critical line, towards
which they are attracted, thereby explaining why the Riemann Hypothesis must
be true. This picture deserves further investigation.
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