No Formal System Containing Sets Arithmetic and Relations between the Rational Numbers is Consistent

By Jim Rock

Abstract: We present two arguments that are contradictory. These arguments can be developed in any formal system containing sets, arithmetic and relations between the rational numbers.

Introduction. For all rational numbers a in the open interval $(0, 1)$ let the collection of all $R_a = \{ y \text{ a rational number } | 0 \leq y < a \}$

Each set in the collection of R_a contains a largest element.
Select a single R_a taken from the collection of all R_a.

Create S_a a group of all proper subsets of our selected R_a taken from the collection of all R_a. Since the sets of S_a are nested within each other, each set of S_a contains all the elements of the sets beneath it in the nested set hierarchy. Yet no set in S_a contains all the elements of our selected R_a. Since the union of all the sets in S_a cannot contain an element that is larger than all the elements of the individual sets in the S_a nested set hierarchy, our selected R_a contains an element that is not in the union of the sets in S_a.

For any two elements of the selected R_a the smaller element will be in a set contained in S_a. Thus, each R_a must contain a single largest element that is not contained in any set of S_a.

No Set in the collection of R_a has a largest element.

Suppose there is a largest element a' in R_a.
$a' < (a + a')/2 < a$. Let $b = (a + a')/2$. Then b is in R_a and $a' < b$.

© 2021 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.