
1

Experimental investigation of an unusual induction effect and its
interpretation as a necessary consequence of Weber electrodynamics

Steffen Kühn
August 29, 2021

The magnetic force acts exclusively perpendicular to the di-
rection of motion of a test charge, whereas the electric force does
not depend on the velocity of the charge. This article provides
experimental evidence that, in addition to these two forces, there
is a third electromagnetic force that (i) is proportional to the
velocity of the test charge and (ii) acts parallel to the direction of
motion rather than perpendicular. This force cannot be explained
by the Maxwell equations and the Lorentz force, since it is
mathematically incompatible with this framework. However, this
force is compatible with Weber electrodynamics and Ampère’s
original force law, as this older form of electrodynamics not only
predicts the existence of such a force but also makes it possible
to accurately calculate the strength of this force.
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I. Introduction

As generally accepted, the electromagnetic force F onto a test
charge q with velocity u is fully given by the two fields E and
B and the formula of the Lorentz force

F = q E + q u × B. (1)

As seen in Equation 1, the formula of the Lorentz force cannot
express a force component proportional to q u, because (i) q E
is independent of u and (ii) the term u × B is always oriented
perpendicular to u because the scalar product u · (u×B) equals
zero. Thus, should there be an electromagnetic force that is
proportional to the speed of the test charge and acts parallel to
the direction of motion, it would be intrinsically incompatible
with the Lorentz force (1).

However, the experiment performed in this article provides
evidence that such a force exists. Although the existence of
this force may seem highly implausible after more than a
century of practical experience in electrical engineering, these
forces only occur in very special situations. Moreover, there
has been little reason to study or search for unexpected effects
in century-old theories. Despite the rarity of this force, it is not
the first time that such a force has been reported [7]. André-
Marie Ampère himself explicitly investigated this kind of force
experimentally and included the results in his force formula
[6], [4], [1].

With the present theory of electrodynamics, i.e. Maxwell’s
equations in combination with the Lorentz force, such a
force is incompatible. However, it can be considered in the
context of Weber electrodynamics, which is an earlier theory.
The term electrodynamics is however a bit misleading for
Weber’s theory because Weber electrodynamics consists of
only a single formula that resembles Coulomb’s law. But, in
contrast to Coulomb’s law, Weber’s formula contains not only
the distance between the charges as a parameter but also the
relative speed and acceleration of the charges.

Because Weber electrodynamics is only a force law without
fields, it is not suitable for explaining electromagnetic waves.
This is not a principle-related deficiency, but rather a result of
the fact that Weber electrodynamics was almost completely
forgotten following the success of the Maxwell equations.
It could even be argued that it was simply missed to find
the corresponding field equations. Apart from this obvious
shortcoming, Weber electrodynamics is a remarkably simple
and powerful theory that can presumably explain all quasi-
stationary effects [8], [3].

The simplest way to understand Weber electrodynamics from
a modern point of view is to assume that the potential energy
between two point charges qs and qd at the locations rs and
rd, respectively, is given by the formula

V =
1
γ(ṙ)

VC(r), (2)

where
VC(r) =

qs qd

4 π ε0 r
(3)

is the classical potential energy of two point charges at rest
with respect to each other. In this formula, r := ‖r‖ is the
distance between the two point charges; that is, the Euclidean
norm of the distance vector

r = rd − rs. (4)
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As per convention, the dot on top of a symbol indicates the
derivative with respect to time. Therefore, ṙ = ṙ · r/r is not
the differential velocity ṙ = ṙd − ṙs nor its Euclidean norm.
ṙ is instead the relative speed, i.e., the speed with which the
two charges approach or move away from each other on their
connecting line.

γ is the Lorentz factor known from special relativity. If the
relative speed ṙ between the two point charges is zero, the
Lorentz factor is equal to one, and Equation (2) becomes the
usual formula for the potential energy of a resting point charge
in the field of another resting point charge (3).

For small relative speeds ṙ, which can be verified by calculat-
ing the Taylor series, the approximation

V ≈
(
1 −

ṙ2

2 c2

)
qs qd

4 π ε0 r
(5)

can be obtained. This formula appears for the first time in 1848
in a publication by Wilhelm Weber [3]. The corresponding
force formula for the potential energy described by Equation
(5) is

F =
qs qd

4 π ε0

r
r3

(
1 −

ṙ2

2 c2 +
r r̈
c2

)
. (6)

This force formula dates back to 1846 [3]. The relationship
between the Weber force (6) and potential energy (5) can be
verified in a few steps and is given by

−V̇ = F · ṙ, (7)

which is an alternative representation of the law of energy
conservation, as the term on the right side represents the time
derivative of the kinetic energy.

Equation (6) expresses the force between two electric point
charges. However, most macroscopic considerations involve
electric currents. An electric current is a multi-particle phe-
nomenon. For example, a current could be a metal wire with
positively charged ions at rest and negatively charged electrons
moving at a non-zero average velocity.

A unique feature of Weber’s force law is that the original
form of Ampère’s force law can be derived from Weber’s law
without additional assumptions [2]. This means that the Weber
force is a microscopic explanation of the magnetic forces
between arbitrarily shaped conductor loops. This interpretation
is noteworthy given the simplicity of the potential energy
expression (2), it suggests that one could work without a vector
potential, magnetic field, or Lorentz force (1).

It should also be noted that the Weber force satisfies the
conservation laws for momentum, angular momentum, and
energy. The Liénard-Schwarzschild force (equation (8) in
reference [3]), which is the counterpart to Weber’s force that
follows from Maxwell’s equations, violates these conservation
laws and therefore seems implausible.

The next section of this article describes an experiment in
which an unusual aspect of Weber electrodynamics comes into
play. The third section provides a detailed theoretical analysis
of this unusual effect.
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Figure 1. The principle of the experiment is to determine whether, during the
charging and discharging of a capacitor (left), a force is generated on fast-
moving charge carriers in a tube (right), and whether this force is proportional
to the speed of the charge carriers and acts in their direction of motion.

A B

C

D

E

F

Figure 2. Circuit board: (A) Connection for a high DC voltage to operate
the tube; (B) measuring connector; (C) input feed to the transmit antenna;
(D) capacitor as the transmit antenna, (E) receiver tube, (F) shielded receiver
circuit.

II. Experiment

A. Concept

The basic concept of this experiment is to determine whether
fast-moving charge carriers that are moving sideways past
the plate of a capacitor perceive a force in their direction of
motion when the plate capacitor is charged and discharged
by an alternating current. Figure 1 shows the principle of the
experiment.

As the sketch in Figure 1 suggests, the experiment is conducted
by placing a long tube with fast-moving electrons near one of
the plates of a plate capacitor. The capacitor (left side of Figure
1) acts as an antenna and radiates an electromagnetic wave.
The exact shape of the electromagnetic wave is not relevant for
this experiment because neither the magnetic nor the electric
field are able to generate a force or voltage in the tube, which
would be proportional to the speed of the charge carriers in
the tube.

B. Implementation

The experiment was performed using a 6.0 cm x 10.5 cm
double-layer printed circuit board (PCB) that was 1 mm thick
and made of FR4. Figure (2) is a photograph of the exact
circuit board used in this experiment.
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Figure 3. Printed circuit board with receiver and transmit capacitor. The top
side is shown in red, and the bottom side is shown in blue

As shown in Figure 2, there are three BNC connectors on the
board. The first BNC connector (A) is for connecting a 900 V
DC voltage to operate the tube. Socket (B) is the connection
for the oscilloscope, and socket (C) is for connecting a wave-
form generator to capacitor (D). The capacitor is comb-shaped
both on top and bottom of the board and has a capacitance
of 37 pF. The reasons for choosing this shape of capacitor
will be described in the theory section of this article. The
metal case (F) in Figure 2 contains a few components that are
shielded against electromagnetic interference. The ground of
the housing is connected to the ground for sockets (A) and
(B), but not with the ground for socket (C).

The receiver (E) is a type BF2661-24B cold-cathode fluores-
cent lamp (CCFL) from the manufacturer JKL. The tube emits
UV radiation at a wavelength of λ = 253.7 nm [9]. A CCFL
is a type of tube in which the electrons are only drawn from
the cathode by the high intensity of the electric field. Because
the tube contains a gas rather than a vacuum, the speed v of
the electrons is not proportional to the applied voltage and can
therefore only be estimated to be approximately 0.76% of the
speed of light in a vacuum, c, using the following equation:

1
2

me v
2 = h

c
λ

(8)

where me is the mass of the electron and h is Planck’s constant.
This experiment used a CCFL tube because the external
dimensions imposed tight constraints and a sufficiently thin
tube with a Wehnelt cylinder and without gas filling was not
available as a component.

Figure 3 shows the layout of the two-layer PCB, with the
top layer shown in red and the bottom layer in blue. The
corresponding circuit, without the capacitor (D) serving as the
transmit antenna, is shown in Figure 4. The circuit consists
only of a load resistor R1, which limits the current through the
tube to 1.39 mA, and a passive high-pass filter. The high-pass
filter consists of a high-voltage capacitor C1 and a resistor R2
that decouple the measurement connector (B) from the high
voltage and filters out frequencies below ≈ 1MHz.

Components R1, R2, and C1 are located under a shielded metal
housing and above a ground plane on the bottom side of the

C1

1nF
R2

100Ω

R1

470kΩ

900V

Oscilloscope

CCFL

Figure 4. Circuit of the receiver, shown without the transmit capacitor

PCB. The traces outside the housing were designed to be as
short as possible. The area of the receiving antenna’s conductor
loop was minimized; however, some compromises had to be
made with this design, as the high voltage imposed minimum
distances.

C. Results

The first measurement of the experiment was performed
without the tube soldered in. This was done to determine
how strongly the feed line of the tube would act as an
electrical antenna for parasitic longitudinal electric fields. For
this purpose, a sinusoidal voltage with an amplitude of 2.5 V
and a frequency of 20-60 MHz was applied to the BNC socket
(C). The result is shown in Figure 5 as a black solid line (A).
In this experiment, it turned out that it made no difference
whether the high voltage was on or off, as the measured
curve was almost identical in both cases. The amplitude of
the measured signal frequency was also two to three orders of
magnitude higher than that of interfering frequencies and was
therefore clearly distinguishable.

After the tube was installed, the experiment was repeated
twice, once with the high voltage source off and once with it
on. The results are shown as curves (B) and (C) in Figure 5,
where curve (B) was measured with the high voltage switched
off. Even with the tube turned off, the amplitude generally
increased by about 1.5 mV compared to curve (A) measured
without the tube present. This would be expected, as the gas
in the tube can be polarized and therefore reacts to parasitic
electric fields in the longitudinal direction of the tube.

The amplitude was further increased when the high voltage
was switched on (i.e., when the electrons in the tube were
moving with a speed of approximately 0.0076 c). This is re-
markable and cannot be explained by the longitudinal electric
field component, as the electric force does not depend on



4

f in MHz

U
in

m
V

20 30 40 50 60

14

12

10

8

6

4

(A)

(B)

(C)

Figure 5. Measured amplitudes as a function of the transmission frequency:
(A) without tube; (B) with tube but without high voltage; (C) with tube and
high voltage.
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Figure 6. The measured voltage difference between the experiments run
with high voltage switched off and on. The dashed curves indicate the 3σ
confidence interval. The thin line is a linear fit of the measured curve. The
slope of the line is 11.1 pV/Hz.

the speed of the charge carriers and a magnetic field cannot
accelerate charge carriers in the direction of motion.

If we calculate the difference between the curves (C) and
(B), we obtain the curve shown in Figure 6, which shows
a linear frequency dependence. This is consistent with Weber
electrodynamics, as will become evident in the theory section.

III. Theory

A. Current in the transmitter

To analyze the experimental results, we first need to find the
current i(x, t) in the transmit capacitor (D) in Figure 2. As
shown in Figure 1, a single tooth of the comb-shaped capacitor
can be schematically interpreted as a biplanar microstrip with
a sinusoidal AC voltage u(t) = u(x = 0, t) = U0 eiω t, amplitude
U0, and angular frequency ω applied to its input at x = 0.

To calculate the current, we consider the microstrip to be an
unterminated transmission line. The telegrapher’s equations
can be applied in this context, and it is therefore possible to
use Equation (15) from reference [10] to calculate the transfer
function. Because the transmission line is unterminated in this

example, the termination impedance is ZT → ∞. Equation (15)
from reference [10] therefore simplifies to

H =

cosh
(
(l − x)

√
Z′L
Z′Q

)
cosh

(
l
√

Z′L
Z′Q

) . (9)

In this equation,
Z′L = iω L′ (10)

is the series impedance, with L′ being the inductance per
meter, and

Z′Q =
1

iωC′
, (11)

where C′ is the capacitance per meter. The series resistance is
neglected as irrelevant.

Equation (16) from reference [10] defines the voltage

u(x, t) = H U0 eiω t (12)

along the microstrip, and Equation (20) gives the current

i(x, t) = −
1

Z′L

∂H
∂ x

U0 eiω t. (13)

Substituting these expressions into Equation (9) gives

u(x, t) =
cos

(√
L′C′ ω (l − x)

)
cos

(√
L′C′ ω l

) U0 eiω t (14)

and

i(x, t) =

√
C′

L′
sin

(√
L′C′ ω (l − x)

)
cos

(√
L′C′ ω l

) U0 ei (ω t+ π
2 ). (15)

The maximum frequency in the experiment was 60 MHz,
which corresponds to a wavelength of 5 m. Because this is a
long wavelength relative to the length l = 3 cm of the capacitor,
the voltage (14) and current (15) can be approximated using
the first order Taylor series with respect to ω. This simplifies
Eqs. (14) and (15) to

u(x, t) ≈ u(t) = U0 eiω t (16)

and
i(x, t) ≈ C′ ω (l − x) U0 ei (ω t+ π

2 ). (17)

As these equations show, the voltage everywhere in the capac-
itor is equal to the input voltage. However, as expected, the
current precedes the voltage by 90◦, decreases linearly and
disappears completely by the end of the line. The inductance
per meter L′ has no effect. Because the experiment uses a
simple plate capacitor, the capacitance per meter C′ can be
defined as

C′ =
εr ε0 w

g
, (18)

where εr is the relative permittivity of the medium between the
plates. Using the parameters of the capacitor in our experiment
(εr = 4, w = 1 mm [width of one of the 35 teeth] and g =

1 mm), we obtain C′ = 35.4 pF/m.
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B. Force caused by a current element

The current in a metallic wire consists of electrons moving
with a drift velocity u while metal ions, which compensate
the negative charge of the electrons towards the outside of
the wire, are at rest. The force exerted by a short segment of
a wire of length ζ onto a test charge q at the origin of the
coordinate system is therefore equal to the sum of the Weber
forces of all resting metal ions and all moving electrons in the
wire.

We will now calculate this force using the equations derived
above. First, the formula of the Weber force (6) must be
converted into a more practicable form. Let u := ṙ be the
first time derivative of the distance vector (4) and r̈ := a = u̇
be the second derivative. This allows us to set up the equations

ṙ =
d
dt
√

r · r =
r · u

r
(19)

and

r̈ =
d
dt

ṙ =
v2

r
+

r · a
r
−

(r · u)2

r3 . (20)

Substituting these two equations into the Weber force equation
(6) for a ≈ 0, we obtain the following force formula in vector
notation:

F(qs, qd, r, u) =

(
1 +

v2

c2 −
3
2

( r
r
u

c

)2
)

qs qd

4 π ε0

r
r3 . (21)

Assume that there are n electrons moving in the piece of wire.
The total force FT of the wire segment onto a test charge q
moving with a velocity u at location r is therefore equal to

FT = F(−n e, q, r, u − u) + F(n e, q, r, u)

=
e n q

8 c2 ε0 π

r
r3

(
3

(u r)2

r2 − 2 u2 + 4 u u − 6
(ur) (ur)

r2

)
.

(22)

Because the drift velocities u in metallic conductors are very
small, all terms of order O(u2) can be neglected and, based
on the relation µ0 = 1/(c2 ε0) and i := −n e u/ζ, we can obtain
the approximation

FT (r, i) ≈
q µ0 ζ

4 π
r
r3

(
3

(ir) (ur)
r2 − 2 i u

)
. (23)

This approximation corresponds to Ampère’s original force
law from 1822 [4], but not to the Biot-Savart law in combi-
nation with the Lorentz force [7].

C. Induced voltage in the tube

The formula (23) derived above can now be used to calculate
the force that the total current (17) in the two strip lines of
Figure 1 produces on the test charge q in the tube next to the
capacitor.

For simplicity, we assume that the strip lines are sufficiently
thin that the current can be considered to be a line current. In
this case, the force Fu of the upper microstrip on a charge q
at location r is

Fu =
1
ζ

l∫
0

FT (r − x ex, i(x) ex) dx. (24)

Because the test charges are only located inside the tube, r =

l ex + y ey, with y being the only variable parameter. The force
Fl of the lower microstrip can be calculated analogously to
the force of the upper microstrip, giving

Fl =
1
ζ

l∫
0

FT (r − (x ex − g ez),−i(x) ex) dx. (25)

It should be noted that the lower microstrip is not only shifted
downward by g, but that the current also flows in the opposite
direction.

The total force F = Fu + Fl onto the test charge is the sum
of the forces of the upper and lower strip lines. Inserting the
current (17) and solving the resulting integrals gives the y-
component of the total force:

F ey =
1

4 π
C′ l3 µ0 q U0 v ωα(y) ei (ω t+ π

2 ). (26)

The auxiliary function α(y) was introduced for readability and
is defined as

α(y) :=
1

(l2 + y2)3/2 −
y2

(g2 + y2)(g2 + l2 + y2)3/2 . (27)

If a charge q is guided along the tube with speed v, work
is performed on this charge. Electric voltage U is defined as
work per charge and can therefore be calculated by solving
the integral

U =
1
q

+∞∫
−∞

F ey dy. (28)

The choice of the integration limits can be justified by the
fact that work is performed only in the vicinity of the mi-
crostrip, and integration at greater distances makes essentially
no contribution.

Substituting Equation (26) follows

U =
1

4 π
C′ l3 µ0 U0 v ω ei (ω t+ π

2 )
+∞∫
−∞

α(y) dy. (29)

The calculation of the resulting integral is straightforward and
gives

+∞∫
−∞

α(y) dy =
2 g
l3

arccos

 g√
g2 + l2

 ≈ g π

l3
, (30)

with the approximation being valid when g is significantly
smaller than l, as was the case in our experiment.

If we now substitute this into Equation (29) and compute the
absolute value, we obtain the amplitude of the induced voltage:

Û =
1
4

C′ g µ0 U0 v ω. (31)

This equation suggests that, if Ampère’s force law is valid
in its original form, there must also be a small AC voltage
of amplitude Û that is induced by the capacitor and depends
linearly on both the speed v of the electrons and the angular
frequency ω = 2 π f of the transmitter. This AC voltage
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operates in addition to the high DC voltage that accelerates
the electrons in the tube. However, if the Lorentz force (1) is
valid, this AC voltage must not exist.

In total, the capacitor had 35 teeth. Taking this into account
and substituting the other experimental parameters

• C′ = 35.4 pF/m
• g = 1 mm
• U0 = 2.5 V
• v ≈ 0.0076 c ≈ 2280000 m/s

into Equation (31), we find that the tube acts like an ad-
ditional voltage source with an amplitude of approximately
13.9 pV/Hz. This corresponds to a voltage of 0.28 mV at a
frequency of 20 MHz and 0.83 mV at 60 MHz.

Given the uncertainties and resulting approximations for the
properties of the CCFL tube used in this experiment, these
calculated voltages agree surprisingly well with the measured
results from the experiment. The function estimated from the
measured data was Û( f ) ≈ 11.1 pV/Hz · f , which is close to
the theoretically estimated value and represents a relative error
of only 0.2. This error is even further reduced if the length
of the tube and the lateral displacements of the microstrips
relative to the tube are also considered.

D. Objections

This section evaluates whether the measured voltage can be
explained without Weber electrodynamics.

A potential objection to the results of this experiment is that
the electric or magnetic field would force the charge carriers in
the tube to follow a slightly curved path. This would increase
the distance that the charge carriers travel in the tube and,
thus, the resistance. However, this objection can be ruled out
as an explanation because path lengthening occurs both when
charging and discharging the transmit capacitor. Consequently,
this effect would create a signal with a frequency twice as high.

Another valid objection is that the gas is partially ionized when
current is flowing in the tube but is not ionized when the
current is turned off. The permittivity of the medium in the
tube would be expected to be different in both cases, which
would affect the sensitivity of the antenna to parasitic electric
fields longitudinal to the tube. However, a good conducting
medium (e.g., plasma) usually has a lower permittivity than
a gas. For this reason, antenna sensitivity would be expected
to be lower when current flows, but in this experiment, the
measured voltages are increased.

IV. Summary and conclusion

There are two key conclusions from this article.

The first conclusion, which is independent of the experiment
described here, is that the original form of Ampère’s force
law is not fully compatible with the Biot-Savart law and
modern electrodynamics because modern electrodynamics, for
structural reasons, cannot describe a force component that
is both proportional to the speed of the test charge and

parallel to the direction of motion [7]. However, it has been
mathematically shown that Ampère’s original force law does
contain such force components. This means that any claim
that the Biot-Savart law would be equivalent with the Lorentz
force must be clearly rejected for purely formal reasons.

The second conclusion from this article derives from the
measured results of the experiment described here, because the
results agree remarkably well with the predictions of Weber
electrodynamics and Ampère’s original force law. However,
alternative explanations for these results cannot be completely
ruled out. To validate the conclusions presented here, this
experiment should be repeated with a type of tube that allows
the speed of the electrons to be adjusted. Another option would
be to use a superconductor instead of a tube, as the speed of
the charge carriers can be varied in superconductors as well.

Because the Maxwell equations currently represent the foun-
dation of modern physics, it would be enormously important to
test in future experiments if Weber electrodynamics is superior
in the near field – and there was recently another indication
that this is the case [5]. It would then be a point of intensive
research to determine the extent to which statements that are
directly or indirectly derived from the Maxwell equations
remain valid. It would also be important to find new field
equations that are valid for both the near and far fields. For
these reasons, it is important to further investigate this subject
experimentally.
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