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1 Introduction 

 

    Classical theories, such as Newtonian Mechanics, Maxwell's Electrodynamics are theories that 

do not have complete generality. So, Classical Mechanics cannot describe mechanical systems in 

the entire range of speeds with which these systems can move. It describes mechanical systems 

that move at speeds, the magnitude of which is so much less than the speed of light that the 

speed of light can be considered an infinitely large value. As you know, mechanics, which has 

complete generality, since it describes mechanical systems over the entire range of speeds with 

which these systems can move, are called relativistic mechanics, and was created by Einstein. 

Classical Electrodynamics does not have complete generality, since it cannot describe the 

electromagnetic field in the entire four-dimensional space. It becomes an internally inconsistent 

theory in the field surrounding a point elementary charged particle. Indeed, when tending to the 

point at which a point charged particle is located, the electric field according to Coulomb's Law 

will tend to infinity. Consequently, the field energy, and hence the mass corresponding to this 

energy, will also tend to infinity. The physical meaninglessness of this result is the essence of 

this contradiction. This immediately implies the need to create electrodynamics with complete 

commonality. However, before creating such electrodynamics, one should get rid of the 

contradiction, which can be done only by refusing to consider elementary particles as point 

particles. Moreover, we now know that elementary particles are not so elementary; they have a 

very complex internal structure. So, protons, neutrons, and a number of other particles consist of 

quarks, then, if they are considered point particles, not only do we neglect their size, but also 

their complex internal structure. 

    Refusing to consider elementary particles to be point particles, we must consider them 

particles having finite sizes. But if we consider them particles having finite sizes, then we must 

know the law by which the shape of the surface of the particles will change, because we cannot 

consider particles to be absolutely solid bodies, which is prohibited by the basic principles of the 

theory of relativity, working for electrodynamics. And we will know this law if we know the 

nature of the mass of elementary particles. To reveal the nature of the mass of elementary 

particles, we will use a hint. During the interaction of a particle and its antiparticle that is during 

the annihilation reaction, the particle and antiparticle disappear and gamma quanta appear, which 

are electromagnetic waves. Electromagnetic waves, in their turn, are vibrations of electric and 

magnetic fields. Therefore, it is natural to assume that the nature of the mass of an elementary 

particle and its antiparticle also has an electromagnetic character. Having accepted this idea that 

mass is a specially formed electromagnetic field, we can begin to create electrodynamics with 

complete generality, which can describe the electromagnetic field in the entire four-dimensional 

space. 

 

2 Method 

 

    Obviously, such electrodynamics should be created using curvilinear coordinates. But here we 

have a problem of how to connect the electromagnetic field with some curvilinear coordinate 

system. Unlike the gravitational field, which is directly related to the space-time metric, the 

electromagnetic field does not have such a direct connection. To overcome this problem, we will 

use one more hint. We know that electric and magnetic fields can be represented in the form of 

force lines, and if we direct the coordinate axes of a curvilinear coordinate system along the 

force lines of an electromagnetic field, then this problem can be solved. But this is only an idea; 

to make it work, it is necessary to find a mathematical expression of this idea. And here we have 

a clue – we know that if a vector field is specified in three-dimensional space, then the equations 

describing the lines of a given vector field can be found as follows: taking the vector of a given 

vector field at an arbitrary point of this field, and multiplying it vectorially by the radius vector 
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element and equating the result to zero, we obtain a system of equations describing the lines of 

this vector field. Moving on to four-dimensional space, if we consider electromagnetic fields in 

four-dimensional space, and if the magnitude of the electromagnetic field is determined by the 

second-rank antisymmetric tensor and, using the analogy with three-dimensional space, we must 

therefore find another antisymmetric second-rank tensor in four-dimensional space that would 

describe some geometric object defined in this space. And we do have such an antisymmetric 

tensor of the second rank which describes a two-dimensional surface defined in four-dimensional 

space. Based on these two antisymmetric second-order tensors, a number of quantities can be 

compiled, starting from a scalar, that is a zero-rank tensor, and ending with two second-rank 

tensors. Considering these two second-rank tensors in rectangular coordinates (in four-

dimensional non-curved space they are called Galilean Coordinates), we see that each of these 

two tensors can be represented as the sum of a symmetric and antisymmetric tensor. The 

importance of this result is that the symmetric tensor for each of these two tensors of the second 

rank is the metric tensor of the four-dimensional non-curved space. Thus, we have found the 

connection of the electromagnetic field with the space-time metric using two tensors of the 

second rank compiled on the basis of two antisymmetric tensors of the second rank, one of which 

describes the electromagnetic field, while the second describes a two-dimensional surface. 

 

3.1 Harmonized electromagnetic field 

 

    The trace of the stress-energy tensor of the electromagnetic field is zero: 𝑇𝑖
𝑖 = 0, therefore, the 

scalar curvature of space-time R in the presence of a single electromagnetic field is also zero [1]. 

Thus, it may be concluded that the electromagnetic field has no connection with the space-time 

metric, in contrast to the gravitational field, where the metric tensor 𝑔𝑖𝑘 plays the role of 

‘potentials’. Therefore, to describe the electromagnetic field in curvilinear coordinates, we must 

first match the electromagnetic field with a system of curvilinear coordinates. Coordination is an 

operation that resembles the introduction operation for a vector field F, defined in three-

dimensional space, of vector lines using differential equations describing these same vector lines: 

𝐅 × 𝑑𝐫 = 0, where r is a radius vector. Moving to a four-dimensional space and having an 

antisymmetric tensor of the second rank 𝐹𝑖𝑘, describing an electromagnetic field, we take an 

antisymmetric tensor of the second rank 

 

𝑑𝑓𝑖𝑘 = 𝑑𝑥𝑖𝑑𝑥 ′𝑘 − 𝑑𝑥𝑘𝑑𝑥 ′𝑖, (1.1) 

 

describing an infinitesimal element of a two-dimensional surface 𝑥𝑖 = 𝑥𝑖(𝑢, 𝑣), where u and v 

will be considered as curvilinear coordinates on the specified surface. We choose these 

coordinates so that the four-dimensional vectors 𝑑𝑥𝑖 and 𝑑𝑥 ′𝑖 are tangent vectors to the 

coordinate lines u and v, respectively. This allows writing expression (1.1) as follows: 𝑑𝑓𝑖𝑘 =
𝑓𝑖𝑘𝑑𝑢𝑑𝑣, where 

𝑓𝑖𝑘 =
𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑘

𝜕𝑣
−
𝜕𝑥𝑘

𝜕𝑢

𝜕𝑥𝑖

𝜕𝑣
. 

 

    Using the tensors 𝐹𝑖𝑘 and  𝑓𝑖𝑘 , we construct two tensors of the second rank  𝐴𝑖𝑘 and  𝐵𝑖𝑘 : 
 

𝐴𝑖𝑘 = 𝐹𝑙
𝑖𝑓𝑘𝑙 − 𝐹𝑙

∗𝑖𝑓∗𝑘𝑙, (1.2) 

 

𝐵𝑖𝑘 = 𝐹𝑙
𝑖𝑓∗𝑘𝑙 + 𝐹𝑙

∗𝑖𝑓𝑘𝑙, (1.3) 

 

where the pseudo-tensors  𝐹∗𝑖𝑘, 𝑓∗𝑖𝑘 and accordingly the tensors 𝐹𝑖𝑘 and 𝑓𝑖𝑘 are dual to each 

other. We show that tensors (1.2) and (1.3) can be written as the sum of a symmetric tensor and 

an antisymmetric tensor. To do so, we write them in Galilean coordinates. The quantities 
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considered in Galilean coordinates will be distinguished by the index  Γ. Thus, in the Galilean 

coordinates we have: 

𝐴Γ
𝑖𝑘 =

1

4
𝐴Γ𝑔Γ

𝑖𝑘 + 𝑎Γ
𝑖𝑘, (1.4) 

 

𝐵Γ
𝑖𝑘 =

1

4
𝐵Γ𝑔Γ

𝑖𝑘 + 𝑎Γ
∗𝑖𝑘, (1.5) 

 

where  𝐴Γ = 𝐴Γ𝑖
𝑖 ,  𝐵Γ = 𝐵Γ𝑖

𝑖 . The tensor 𝑎Γ
𝑖𝑘 and pseudo-tensor 𝑎Γ

∗𝑖𝑘 are dual to each other. The 

correctness of the equalities (1.4) and (1.5) can be verified by direct calculation, which gives the 

values to which are included in these equalities: 

 

𝐴Γ = 4(𝐄Γ𝐟Γ −𝐇Γ𝐬Γ), (1.6) 

 

𝐵Γ = 4(𝐄Γ𝐬Γ + 𝐇Γ𝐟Γ), (1.7) 

 

where 𝐄Γ and 𝐇Γ are electric and magnetic field tension vectors, 

 

𝐟Γ = (f
01, f02, f03), (1.8) 

 

𝐬Γ = (f
23, f31, f12), (1.9) 

where, for instance,  

f01 =
𝜕𝑐𝑡

𝜕𝑢

𝜕𝑥

𝜕𝑣
−
𝜕𝑥

𝜕𝑢

𝜕𝑐𝑡

𝜕𝑣
 , 

(1.10) 

 

and so on; 𝑐𝑡, 𝑥 Cartesian coordinates. 

    The components of the antisymmetric tensor of the second rank 𝑎Γ
𝑖𝑘 are components of the two 

vectors: 

𝐚 = 𝐄Γ × 𝐬Γ + 𝐇Γ × 𝐟Γ, (1.11) 

 

𝐛 = 𝐄Γ × 𝐟Γ − 𝐇Γ × 𝐬Γ, (1.12) 

where  

𝑎Γ
𝑖𝑘 =

(

 
 

0 𝑎𝑥 𝑎𝑦 𝑎𝑧
−𝑎𝑥 0 −𝑏𝑧 𝑏𝑦
−𝑎𝑦 𝑏𝑧 0 −𝑏𝑥
−𝑎𝑧 −𝑏𝑦 𝑏𝑥 0

)

 
 
. 

 

    The connection of the tensor component 𝐴𝑖𝑘  written in curvilinear coordinates 𝑥𝑖 with the 

tensor component 𝐴Γ
𝑖𝑘 written in Galilean coordinates is given by the law of transformation: 

 

 𝐴𝑖𝑘 =
𝜕𝑥𝑖

𝜕𝑥Γ
𝑙

𝜕𝑥𝑘

𝜕𝑥Γ
𝑚 𝐴Γ

𝑙𝑚. 
(1.13) 

  

Substituting the right side of the equation (1.4) instead of the tensor𝐴Γ
𝑙𝑚, we take into account 

that the components of the tensors 𝑔𝑖𝑘 and 𝑔Γ
𝑖𝑘, 𝑎𝑖𝑘 and 𝑎Γ

𝑖𝑘 are also connected by the same 

transformation law (1.13) as the components of the tensors 𝐴𝑖𝑘and 𝐴Γ
𝑖𝑘. Thus, after the 
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substitution, we obtain that the tensor 𝐴𝑖𝑘 can be represented as a sum of symmetric and 

antisymmetric tensors: 

𝐴𝑖𝑘 =
1

4
𝐴Γ𝑔

𝑖𝑘 + 𝑎𝑖𝑘. 

 

Simplifying this equation and taking into account the antisymmetric nature of the tensor 𝑎𝑖𝑘, we 

find: 𝐴𝑖
𝑖 = 𝐴Γ. Denoting 𝐴 = 𝐴𝑖

𝑖, we have a relation stating that the value of A remains 

unchanged in any coordinate system: 𝐴 = 𝐴Γ. From here we finally obtain the following for the 

equation considered: 

                                                             𝐴𝑖𝑘 =
1

4
𝐴𝑔𝑖𝑘 + 𝑎𝑖𝑘 .                                                     (1.14)         

Similarly, we find: 

                                                             𝐵𝑖𝑘 =
1

4
𝐵𝑔𝑖𝑘 + 𝑎∗𝑖𝑘,                                                   (1.15) 

where 

𝐵 = 𝐵𝑖
𝑖 = 𝐵Γ. 

 

3.2 Equations of motion 

 

    Starting to find the equations to which the values under consideration are subjected, we pay 

attention to the antisymmetric character of the tensors 𝑎𝑖𝑘 and 𝑎∗𝑖𝑘. It implies the equation to 

zero of the double covariant derivatives of the indicated tensors: 

 

𝑎;𝑖;𝑘
𝑖𝑘 = 0, (1.16) 

 

𝑎;𝑖;𝑘
∗𝑖𝑘 = 0. (1.17) 

 

    In this article, we consider only the electromagnetic field, which, as mentioned above, is not 

related to the space-time metric, therefore, any coordinate transformations considered in the 

article should not change the space-time metric. Such infinitesimal coordinate transformations 

are determined by the so-called Killing equations [1] 𝜉𝑖;𝑘 + 𝜉𝑘;𝑖 = 0, where 𝜉𝑖 are small values 

that describe the transformation from the coordinates 𝑥𝑖   to coordinates 𝑥′𝑖 = 𝑥𝑖 +  𝜉𝑖. Killing 

equations mean that with the specified coordinate transformations the variation of the metric 

tensor is zero:  𝛿𝑔𝑖𝑘 = 0. From here it is easy to get that the Jacobians of such coordinate 

transformations are equal to one. To do so, we consider the indicated transformation from the 

Galilean coordinates 𝑥Γ
𝑖   to the curvilinear coordinates  𝑥𝑖 = 𝑥Γ

𝑖 +  𝜉𝑖. With this coordinate 

transformation, the components of the metric tensor are transformed according to the law: 

𝑔𝑖𝑘 =
𝜕𝑥𝑖

𝜕𝑥Γ
𝑙

𝜕𝑥𝑘

𝜕𝑥Γ
𝑚 𝑔Γ

𝑙𝑚. 

We first find the determinant from the left and right side of this transformation law, which leads 

to the following relation: 

1

√−𝑔
= |
𝜕𝑥𝑖

𝜕𝑥Γ
𝑙 | ≈ 1 + 𝜉,𝑖

𝑖  , 

 

where 𝑔 = |𝑔𝑖𝑘|  is a determinant of the metric tensor 𝑔𝑖𝑘. Killing's equations in Galilean 

coordinates are as follows: 𝜉𝑖,𝑘 + 𝜉𝑘,𝑖 = 0. Simplifying them, we get the following: 𝜉,𝑖
𝑖 = 0. 
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Thus, in Galilean coordinates we have √−𝑔 = 1, as it should be. It will be proved below that 

this equality holds not only in Galilean coordinates, but also in curvilinear coordinates describing 

spherically symmetric systems (1.62). 

    Taking into account this condition, twice covariantly differentiating between the left and right 

parts of equations (1.14) and (1.15) and considering equations (1.16) and (1.17), we obtain 

equations resulting from the matching of the electromagnetic field and the curvilinear coordinate 

system (𝑥0, 𝑥1, 𝑥2, 𝑥3): 
𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑘

𝜕𝐴

𝜕𝑥𝑘
) = 4𝐴;𝑖;𝑘 

𝑖𝑘 , 
(1.18) 

 

𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑘

𝜕𝐵

𝜕𝑥𝑘
) = 4𝐵;𝑖;𝑘 

𝑖𝑘 . 
(1.19) 

 

In electrodynamics, considered in curvilinear coordinates, the equations (1.18) and (1.19) play 

the role of equations of motion. 

 

3.3 Variational problem 

 

    Considering an electromagnetic field in a four-dimensional space-time, limited neither in 

space nor in time. 

    We write the law of transformation connecting the components of the tensor 𝐹𝑙
𝑖𝑓𝑘𝑙, given in 

the curvilinear coordinates 𝑥𝑖, and the components of the tensor  𝐹Γ𝑙
𝑖 𝑓Γ

𝑘𝑙, given in the Galilean 

coordinates  𝑥Γ
𝑖 . We write the law of transformation connecting the components of the 

tensor 𝐹(1)𝑙
𝑖 𝑓(1)

𝑘𝑙 , given in the curvilinear coordinates 𝑥(1)
𝑖 , and the components of the same tensor 

 𝐹Γ𝑙
𝑖 𝑓Γ

𝑘𝑙, given in the Galilean coordinates  𝑥Γ
𝑖 . Since the left sides of the relations obtained are 

equal, we equate the right sides of these relations and then, simplifying them, we get [2]: 

 

𝐹(1)𝑖𝑘𝑓(1)
𝑖𝑘 = 𝐹𝑖𝑘𝑓

𝑖𝑘. (1.20) 

 

We multiply the left side and the right side of equation (1.20) by the value dudv. Then, 

integrating over an arbitrary domain S lying on a two-dimensional surface 𝑥𝑖(𝑢. 𝑣), we get the 

following equation: 

∬𝐹(1)𝑖𝑘𝑓(1)
𝑖𝑘𝑑𝑢𝑑𝑣 = ∬𝐹𝑖𝑘𝑓

𝑖𝑘𝑑𝑢𝑑𝑣.

𝑆𝑆

 (1.21) 

 

We transform from the curvilinear coordinates 𝑥𝑖 to the curvilinear coordinates 𝑥(1)
𝑖 = 𝑥𝑖 + 𝜉𝑖, 

where 𝜉𝑖 means small values. Substituting 𝑥(1)
𝑖 = 𝑥𝑖 + 𝜉𝑖 in left part of the equation (1.21) and 

decomposing the integrand in a series of powers 𝜉𝑖, we get after reduction:  

𝛿∬𝐹𝑖𝑘𝑓
𝑖𝑘

𝑆

𝑑𝑢𝑑𝑣 = 0. (1.22) 
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When matching the electromagnetic field with a curvilinear coordinate system, the components 

of the tensor 𝐹𝑖𝑘 should be considered as functions of the coordinates 𝑥𝑖: 𝐹𝑖𝑘 = 𝐹𝑖𝑘(𝑥
𝑖). Thus, 

from the equation (1.22) we get the following variational problem: 

𝛿∬Λ(𝑥𝑖 , 𝑥,𝑢
𝑖 , 𝑥,𝑣

𝑖 )

𝑆

𝑑𝑢𝑑𝑣 = 0, (1.23) 

where  

Λ =
1

2
𝐹𝑖𝑘𝑓

𝑖𝑘 = 𝐹𝑖𝑘𝑥,𝑢
𝑖 𝑥,𝑣

𝑘  , 𝑥,𝑢
𝑖 ≡

𝜕𝑥𝑖

𝜕𝑢
, 𝑥,𝑣

𝑖 ≡
𝜕𝑥𝑖

𝜕𝑣
. 

 

Performing the variation in the left-hand side of the equation (1.23), we arrive at the Euler 

equation and the natural boundary conditions 

 

𝜕Λ

𝜕𝑥𝑖
−

𝜕2Λ

𝜕𝑢𝜕𝑥,𝑢
𝑖
−

𝜕2Λ

𝜕𝑣𝜕𝑥,𝑣
𝑖
= 0, (1.24) 

 

∬[
𝜕

𝜕𝑢
(
𝜕Λ

𝜕𝑥,𝑢
𝑖
𝛿𝑥𝑖) +

𝜕

𝜕𝑣
(
𝜕Λ

𝜕𝑥,𝑣
𝑖
𝛿𝑥𝑖)] 𝑑𝑢𝑑𝑣

𝑆

= 0. (1.25) 

 

Substituting the value Λ in the Euler equation and performing differentiation, we find: 

 

𝐹𝑖𝑘;𝑙 + 𝐹𝑘𝑙;𝑖 + 𝐹𝑙𝑖;𝑘 = 0. 

 

This is the first pair of Maxwell’s equations. It follows that the Euler equation is carried out 

automatically. 

    We consider the natural boundary conditions for an infinitely small section Δ𝑆 of a two-

dimensional surface. Its area will tend to zero, therefore, in the first approximation, this area can 

be considered flat and we can apply the Green formula to the integral (1.25), written for the 

section Δ𝑆, we get: 

                                                    ∮ (
𝜕Λ

𝜕𝑥,𝑢
𝑖 𝛿𝑥

𝑖𝑑𝑣 −
𝜕Λ

𝜕𝑥,𝑣
𝑖 𝛿𝑥

𝑖𝑑𝑢) = 0
∆𝐶

                                      (1.26) 

 

where ΔC is a closed loop covering ΔS. We introduce another system of curvilinear 

coordinates 𝑥′0, 𝑥 ′1, 𝑥 ′2, 𝑥 ′3, the first two coordinates of which are coordinates on the two-

dimensional surface under consideration 𝑥′0 = 𝑢,  𝑥′1 = 𝑣. The two remaining coordinates will 

be denoted as  𝑥′2 = 𝑤,  𝑥′3 = 𝑛 . The (') sign was used only once in the formula (1.1), so its new 

use should not cause any confusion. The tangent vectors to the coordinate lines w and n are 

denoted by: 

𝑥,𝑤
𝑖 ≡

𝜕𝑥𝑖

𝜕𝑤
,  𝑥,𝑛

𝑖 ≡
𝜕𝑥𝑖

𝜕𝑛
. 

    We imagine the variation 𝛿𝑥𝑖 as a sum: 

𝛿𝑥𝑖 = 𝛼𝑥,𝑢
𝑖 + 𝛽𝜕𝑥,𝑣

𝑖 + 𝛾𝜕𝑥,𝑤
𝑖 + 𝜃𝜕𝑥,𝑛

𝑖 , 
(1.27) 

 

 

where: 𝛼 =
𝜕𝑢

𝜕𝑥𝑘
𝛿𝑥𝑘; 𝛽 =

𝜕𝑣

𝜕𝑥𝑘
𝛿𝑥𝑘; 𝛾 =

𝜕𝑤

𝜕𝑥𝑘
𝛿𝑥𝑘; 𝜃 =

𝜕𝑛

𝜕𝑥𝑘
𝛿𝑥𝑘 . 
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Substituting these values into (1.27), we obtain: 

 

𝛿𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝑥′𝑙
𝜕𝑥′𝑙

𝜕𝑥𝑘
𝛿𝑥𝑘 = 𝛿𝑘

𝑖𝛿𝑥𝑘 = 𝛿𝑥𝑖. 

 

     Substituting the value  Λ in the integral over the closed contour ΔC (1.26) and the right-hand 

side of the equation (1.27) for the variation 𝛿𝑥𝑖, we get: 

∮[Λ(𝛼𝑑𝑣 − 𝛽𝑑𝑢) + 𝐹𝑖𝑘(𝛾𝑥,𝑤
𝑖 𝑥,𝑣

𝑘𝑑𝑣 + 𝜃𝑥,𝑛
𝑖 𝑥,𝑣

𝑘𝑑𝑣 − 𝛾𝑥,𝑤
𝑘 𝑥,𝑢

𝑖 𝑑𝑢 − 𝜃𝑥,𝑛
𝑘 𝑥,𝑢

𝑖 𝑑𝑢)]

ΔC

= 0. 
(1.28) 

 

 

Since 𝛼, 𝛽, 𝛾, 𝜃 are arbitrary values, the integral (1.28) can be divided into four integrals and be 

considered independently of each other [2]. From here we get: 

 

𝛼 = 𝛽 = 0 (1.29) 

and 

                 𝐹𝑖𝑘𝑥,𝑤
𝑖 𝑥,𝑢

𝑘 = 𝐹𝑖𝑘𝑥,𝑤
𝑖 𝑥,𝑣

𝑘 = 𝐹𝑖𝑘𝑥,𝑛
𝑖 𝑥,𝑢

𝑘 = 𝐹𝑖𝑘𝑥,𝑛
𝑖 𝑥,𝑣

𝑘 = 0.                                     (1.30)   

 

The closed contour ΔC, like C, has an arbitrary shape, so when considering the four integrals 

(1.28), one should consider options for which the main contribution to the integral can be 

summed either by the coordinate u, or by the coordinate v. Condition (1.30) can be rewritten as 

follows: 

𝐹02
′ = 𝐹03

′ = 𝐹12
′ = 𝐹13

′ = 0, 
(1.31) 

 

 

if we consider that the components of the electromagnetic field tensors 𝐹𝑖𝑘 and 𝐹𝑖𝑘
′ , considered in 

the curvilinear coordinates 𝑥𝑖 and 𝑥′𝑖, are related by the following transformation law: 

 

𝐹𝑖𝑘
𝜕𝑥𝑖

𝜕𝑥′𝑙
𝜕𝑥𝑘

𝜕𝑥′𝑚
= 𝐹𝑙𝑚

′ . (1.32) 

  

     But 𝛼 and 𝛽 describe that ‘part’ of the variation that lies in the tangent plane to the two-

dimensional surface 𝑥𝑖(𝑢, 𝑣). Therefore, the condition (1.29) implies that the variation along the 

two-dimensional surface is zero. This means that the variation does not change the distance 

between any two points on the surface 𝑥𝑖(𝑢, 𝑣), i.e., the surface behaves like an incompressible 

and inextensible film. Such changes that occur with the surface are called deformations in 

mathematics. 

    Thus (1.31), in the curvilinear coordinates 𝑥′𝑖, the electromagnetic field tensor only two 

components 𝐹01
′   and 𝐹23

′  are nonzero. For the component 𝐹01
′ , the transformation law (1.32) can 

be written as follows: 

                                        
1

2
𝐹𝑖𝑘𝑓

𝑖𝑘 =  𝐹01
′   or   

1

2
𝐹Γ𝑖𝑘𝑓Γ

𝑖𝑘 =  𝐹01
′ ,                                   (1.33)   

 

if we write the transformation law (1.32) connecting the components of the tensors 𝐹Γ𝑖𝑘 and 𝐹𝑖𝑘
′ , 

considered in the Galilean coordinates  𝑥Γ
𝑖  and the curvilinear coordinates 𝑥′𝑖, respectively. From 

the obtained equations we find: 
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                                                                    𝐹01
′ =

1

4
𝐴.                                                              (1.34)         

    

Now we consider the value  
1

4
𝐵Γ. Since 𝐵 = 𝐵𝑖

𝑖 = 𝐵Γ, we will do all calculations in Galilean 

coordinates. It is easy to verify that 

                                                𝐹Γ𝑖𝑘𝑓Γ
∗𝑖𝑘 = 𝐹Γ𝑖𝑘

∗ 𝑓Γ
𝑖𝑘,                                                      (1.35) 

but 

                                   
1

2
𝐹Γ𝑖𝑘
∗ 𝑓Γ

𝑖𝑘 = 𝐹Γ𝑖𝑘
∗ 𝜕𝑥Γ

𝑖

𝜕𝑥′0
𝜕𝑥Γ

𝑘

𝜕𝑥′1
= 𝐹01

′∗ .                                               (1.36) 

Thus, we get: 

 𝐹01
′∗ =

1

4
𝐵. (1.37) 

 

 

3.4 Two-dimensional spaces 

 

    We return to the condition (1.29) and its corollary: the surface 𝑥𝑖(𝑢, 𝑣) is an incompressible 

and inextensible film, and the changes that occur with the surface when it is varied are 

deformations. All this suggests that the surface  𝑥𝑖(𝑢, 𝑣) can be considered a two-dimensional 

space, which has certain properties and preserves them with variation. Indeed, with variation, the 

distances between any two points of the surface, and hence the two-dimensional space, remain 

constant. When bending, the Gaussian curvature at each point of the surface 𝑥𝑖(𝑢, 𝑣), and 

therefore at every point of two-dimensional space, remains unchanged. Additional confirmation 

of the above can be obtained by considering the following calculations. We write the first pair of 

Maxwell’s equations in curvilinear coordinates  𝑥′𝑖 taking into account the condition (1.31): 

 

𝐹01,2
′ = 𝐹01,3

′ = 𝐹23,0
′ = 𝐹23,1

′ = 0. 

 

It follows there from that 𝐹01
′ = 𝐹01

′ ( 𝑥′0,  𝑥′1), i.e. this component is a function of the 

coordinates  𝑥′0 = 𝑢 and  𝑥′1 = 𝑣, and 𝐹23
′ = 𝐹23

′ ( 𝑥′2,  𝑥′3), i.e. this component is a function of 

the coordinates  𝑥′2 = 𝑤 and  𝑥′3 = 𝑛. Thus, we find that in the curvilinear coordinates  𝑥′𝑖 each 

of the two nonzero components of the electromagnetic field tensor depends on a strictly 

individual set of coordinates consisting of only two curvilinear coordinates. This fact is another 

confirmation of the fact that we are dealing with two two-dimensional spaces. One of them is 

formed by a two-dimensional surface 𝑥𝑖(𝑢, 𝑣); the second two-dimensional space is formed by a 

two-dimensional surface 𝑥𝑖(𝑤, 𝑛). Since these surfaces are coordinate surfaces of four-

dimensional curvilinear coordinate system (u, v, w, n), therefore, their geometry, and hence, the 

geometry of two-dimensional spaces, is determined by metric tensors [3]: 

 

𝑔𝑎𝑏
′ =

𝜕𝑥Γ
𝑖

𝜕𝑥′𝑎
𝜕𝑥Γ

𝑘

𝜕𝑥′𝑏
𝑔Γ𝑖𝑘, (1.38) 

 

𝑔�̂��̂�
′ =

𝜕𝑥Γ
𝑖

𝜕𝑥′�̂�
𝜕𝑥Γ

𝑘

𝜕𝑥′�̂�
𝑔Γ𝑖𝑘, (1.39) 

 

where a, b,…= 0,1; 𝑎,̂ �̂�, … = 2,3. 
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Each of these tensors is obviously connected with the metric tensor of a curvilinear coordinate 

system (u, v, w, n): 

𝑔𝑖𝑘
′ =

𝜕𝑥Γ
𝑙

𝜕𝑥′𝑖
𝜕𝑥Γ

𝑚

𝜕𝑥′𝑘
𝑔Γ𝑙𝑚. 

 

Using the calculation of Riemannian spaces [3], it is arguable that the surface  𝑥𝑖(𝑢, 𝑣) is a two-

dimensional space with a metric tensor (1.38). It is clear that all this can be repeated for a two-

dimensional space with the metric tensor 𝑔�̂��̂�
′ . In each of these two-dimensional spaces, 

respectively, one can enter the tensor of the electromagnetic field: 

 

𝐹𝑎𝑏
′ = (

0 𝐹01
′

−𝐹01
′ 0

),  𝐹�̂��̂�
′ = (

0 𝐹23
′

−𝐹23
′ 0

)  

 

and write accordingly the following tensor equation: 

 

𝐹𝑎𝑏
′ = 𝑔𝑎𝑐

′ 𝑔𝑏𝑑
′ 𝐹′𝑐𝑑 =

1

2
(𝑔𝑎𝑐
′ 𝑔𝑏𝑑

′ − 𝑔𝑎𝑑
′ 𝑔𝑏𝑐

′ )𝐹′𝑐𝑑, 

 

𝐹�̂��̂�
′ = 𝑔�̂�𝑐̂

′ 𝑔�̂��̂�
′ 𝐹′𝑐̂�̂� =

1

2
(𝑔�̂�𝑐̂
′ 𝑔�̂��̂�

′ − 𝑔�̂��̂�
′ 𝑔�̂�𝑐̂

′ )𝐹′𝑐̂�̂�. 

From here we get: 

𝐹01
′ = 𝑞𝐹′01, (1.40) 

 

𝐹23
′ = �̂�𝐹′23, (1.41) 

where 

𝑞 = 𝑔00
′ 𝑔11

′ − 𝑔01
′2 = det[𝑔𝑎𝑏

′ ], (1.42) 

 

�̂� = 𝑔22
′ 𝑔33

′ − 𝑔23
′2 = det[𝑔�̂��̂�

′ ]. (1.43) 

    

 The formulas (1.40) and (1.41) establish a connection between the covariant and contravariant 

components of the electromagnetic field in the corresponding two-dimensional space. We note 

that if two-dimensional surfaces are represented as planes and viewed in Galilean coordinates, 

then for the values (1.42) and (1.43) we will have the following values: 𝑞 = −1 and �̂� = 1. 

Substituting these values in (1.40) and (1.41) we arrive at a well-known connection between the 

various types of components of the tensor of the electromagnetic field, given in Galilean 

coordinates.  

 

3.5 The law of stress-energy tensors equality 

 

    For further calculations, we consider the stress-energy tensor of the electromagnetic field, and 

then we write it in Galilean coordinates as follows: 

4𝜋𝑇Γ𝑖𝑘 = −𝐹Γ𝑖𝑙𝐹Γ𝑘
   𝑙 +

1

4
𝑔Γ𝑖𝑘𝐹Γ𝑙𝑚𝐹Γ

𝑙𝑚. (1.44) 

 

We prove that for a given tensor the equation is true: 

𝑇Γ𝑖𝑘 = 𝑇Γ𝑖𝑘
(∗)

 , (1.45) 
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where 

4𝜋𝑇Γ𝑖𝑘
(∗)
= −𝐹Γ𝑖𝑙

∗ 𝐹Γ𝑘
∗𝑙 +

1

4
𝑔Γ𝑖𝑘𝐹Γ𝑙𝑚

∗ 𝐹Γ
∗𝑙𝑚. (1.46) 

 

To do this, we substitute the right-hand sides of the calculations (1.44) and (1.46) in the equation 

(1.45), after multiplying the left and right sides of equation (1.45) by 4𝜋. Considering that  

 

−
1

2
𝐹Γ𝑙𝑚
∗ 𝐹Γ

∗𝑙𝑚 =
1

2
𝐹Γ𝑙𝑚𝐹Γ

𝑙𝑚 = 𝐇Γ
𝟐 − 𝐄Γ

𝟐 , 

we get: 

𝐹Γ𝑖𝑙𝐹Γ𝑘
   𝑙 − 𝐹Γ𝑖𝑙

∗ 𝐹Γk
∗𝑙 = (𝐇Γ

𝟐 − 𝐄Γ
𝟐)𝑔Γ𝑖𝑘. (1.47) 

 

The validity of tensor equation (1.47) can be checked directly for each of its components. That 

proves the validity of the equation (1.45). Next, applying the transformation law connecting the 

components of the tensor 𝑇Γ𝑙𝑚, given in the Galilean coordinates 𝑥Γ
𝑖 , with the components of the 

tensor 𝑇𝑖𝑘, given in curvilinear coordinates  𝑥𝑖, and applying the same law respectively for the 

tensors 𝑇Γ𝑙𝑚
(∗)  and 𝑇𝑖𝑘

(∗)
, to the left and right sides of equation (1.45), we obtain:  

𝑇𝑖𝑘 = 𝑇𝑖𝑘
(∗). (1.48) 

 

The validity of this equation follows from the validity of equation (1.45). The form of the stress-

energy tensors of the electromagnetic field, which are in the equation (1.48), can be established 

by using the laws of transformation given above. Substituting in their right-hand side, 

respectively, the values of 𝑇Γ𝑖𝑘 or 𝑇Γ𝑖𝑘
(∗)

, found from the calculations (1.44) and (1.46), and taking 

into account that their values are related by the same transformation laws, we get:  

 

4𝜋𝑇𝑖𝑘 = −𝐹𝑖𝑙𝐹𝑘
𝑙 +

1

4
𝑔𝑖𝑘𝐹Γ𝑙𝑚𝐹Γ

𝑙𝑚,  4𝜋𝑇𝑖𝑘
(∗)
= −𝐹𝑖𝑙

∗𝐹𝑘
∗𝑙 +

1

4
𝑔𝑖𝑘𝐹Γ𝑙𝑚

∗ 𝐹Γ
∗𝑙𝑚. 

 

Simplifying these calculations and taking into account that the trace of the stress-energy tensor 

of the electromagnetic field is zero, and from (1.48) it follows that 𝑇𝑖
(∗)𝑖

= 0, we find:  

 

𝐹𝑖𝑘𝐹
𝑖𝑘 = 𝐹Γ𝑙𝑚𝐹Γ

𝑙𝑚,  𝐹𝑖𝑘
∗ 𝐹∗𝑖𝑘 = 𝐹Γ𝑙𝑚

∗ 𝐹Γ
∗𝑙𝑚. 

 

Considering these equalities, we can write down the calculations of the stress-energy tensors of 

the electromagnetic field in the system of curvilinear coordinates  𝑥𝑖  in the following form:  

 

4𝜋𝑇𝑖𝑘 = −𝐹𝑖𝑙𝐹𝑘
𝑙 +

1

4
𝑔𝑖𝑘𝐹𝑙𝑚𝐹

𝑙𝑚,  4𝜋𝑇𝑖𝑘
(∗) = −𝐹𝑖𝑙

∗𝐹𝑘
∗𝑙 +

1

4
𝑔𝑖𝑘𝐹𝑙𝑚

∗ 𝐹∗𝑙𝑚, 

 

where all members of these calculations are expressed in the same coordinate system  𝑥𝑖. Once 

again applying the transformation law now to the left and right side of the tensor equation (1.47), 

we get: 

𝐹𝑖𝑙𝐹𝑘
𝑙 − 𝐹𝑖𝑙

∗𝐹𝑘
∗𝑙 = (𝐇Γ

𝟐 − 𝐄Γ
𝟐)𝑔𝑖𝑘. (1.49) 

 

The validity of this formula follows from the validity of formulas (1.47) and (1.48). Note that 

formula (1.49) can also be obtained by substituting the calculations of the stress-energy tensors 
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of the electromagnetic field in the equation (1.48), considered in the curvilinear coordinates 𝑥𝑖. 

The equation (1.48) extends our understanding of the properties of electromagnetic fields, 

therefore, to emphasize this, it can be called the law of stress-energy tensor equality, composed 

of the electromagnetic field tensors dual to each other.  

 

3.6 Field in two-dimensional spaces 

  

    Since the formula (1.49) is another form of writing the law the law of stress-energy tensor 

equality of an electromagnetic field, therefore, writing down the formula (1.49) in curvilinear 

coordinates  𝑥′𝑖 and taking into account 

𝑔′𝑖𝑙𝑔′𝑘𝑙 = 𝛿𝑘
𝑖  , (1.50) 

 

we write the formulas (1.49) and (1.50) in the components. In order not to give all thirty-two 

equations, which are obtained by writing the formulas (1.49) and (1.50) in the components, we 

restrict ourselves to the minimum number of equations necessary to demonstrate the method of 

calculations. From (1.49) we have in curvilinear coordinates 𝑥′𝑖:  

𝑔′00(𝐹01
′2 − 𝐹01

′∗2) = (𝐇Γ
𝟐 − 𝐄Γ

𝟐)𝑔11
′ , 𝑔′01(𝐹01

′2 − 𝐹01
′∗2) = −(𝐇Γ

𝟐 − 𝐄Γ
𝟐)𝑔01

′ , 

 

𝑔′02(𝐹01
′ 𝐹23

′ − 𝐹01
′∗𝐹23

′∗) = (𝐇Γ
𝟐 − 𝐄Γ

𝟐)𝑔13
′ , 

 

𝑔′03(𝐹01
′ 𝐹23

′ − 𝐹01
′∗𝐹23

′∗) = −(𝐇Γ
𝟐 − 𝐄Γ

𝟐)𝑔12
′ . 

 

Multiply the first equation by 𝑔00
′ , the second equation by 𝑔01

′ , the third equation by 𝑔02
′  and the 

fourth equation by the value 𝑔03
′ . From (1.50) we have: 

 

𝑔00
′ 𝑔′00 + 𝑔01

′ 𝑔′01 + 𝑔02
′ 𝑔′02 + 𝑔03

′ 𝑔′03 = 1. 

 

We substitute here the values of the components from the left-hand side of this equation, which 

can be found from the four equations obtained after multiplying by the components of the metric 

tensor. Performing similar calculations for the other components of the formulas (1.49) and 

(1.50) and taking into account the calculations (1.42) and (1.43), we arrive at the following 

equation:  

�̂�(𝐹01
′2 − 𝐹01

′∗2) = 𝑞(𝐹23
′2 − 𝐹23

′∗2), (1.51) 

 

    Considering the condition √−𝑔′ = 1, we can write for a pseudo-tensor given in curvilinear 

coordinates,  𝐹𝑖𝑘
′∗ =

1

2
𝑒𝑖𝑘𝑙𝑚𝐹

′𝑙𝑚. Hence, using the equations (1.40) and (1.41), we find: 

 

𝐹01
′∗ = −

𝐹23
′

�̂�
 , (1.52) 

𝐹23
′∗ = −

𝐹01
′

𝑞
 . (1.53) 

 

Substituting (1.52) and (1.53) in (1.51), we finally get:     
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𝐹01
′2

𝑞
=
𝐹23
′2

�̂�
 . (1.54) 

From (1.34) it follows that 

𝐹𝑖𝑘
′ =

(

 

0 𝐹01
′ 0 0

−𝐹01
′ 0 0 0

0 0 0 𝐹23
′

0 0 −𝐹23
′ 0 )

 . (1.55) 

 

    The components of the tensor (1.55) 𝐹𝑎�̂�
′ = 0 that are equal to zero are connected with the 

components 𝐹′𝑎�̂�of the tensor 𝐹′𝑖𝑘 by the relation: 

 

𝐹𝑎�̂�
′ = 𝑔𝑎𝑐

′ 𝑔�̂��̂�
′ 𝐹′𝑐�̂� = 0, 

 

from which it follows that 𝐹′𝑎�̂� = 0, therefore 

 

𝐹′𝑖𝑘 =

(

 
 

0 𝑞−1𝐹01
′ 0 0

−𝑞−1𝐹01
′ 0 0 0

0 0 0 �̂�−1𝐹23
′

0 0 −�̂�−1𝐹23
′ 0 )

 
 
. (1.56) 

 

    From (1.54), (1.55) and (1.56) we find: 

 

𝐹01
′ −

1

2
 √𝐹𝑖𝑘

′ 𝐹′𝑖𝑘√𝑞 = 0, (1.57) 

 

𝐹23
′ −

1

2
 √𝐹𝑖𝑘

′ 𝐹′𝑖𝑘√�̂� = 0. (1.58) 

 

These equations determine the electromagnetic field in two-dimensional spaces. The equations 

(1.57) defines an electromagnetic field in a two-dimensional space (u, v), and the equation (1.58) 

defines a field in a two-dimensional space (w, n), and establishes a relationship between the 

electromagnetic field and determinants of the metric tensors (1.38) and (1.39) that define the 

two-dimensional spaces. 

  

3.7 Spherically symmetric systems 

 

    We show that the formula (1.57) is the Coulomb law written in curvilinear coordinates. To do 

this, we write the formula (1.57) in three-dimensional space in orthogonal coordinates. Using the 

formulas [1]: 

𝛾𝛼𝛽 = −𝑔𝛼𝛽
′ +

𝑔0𝛼
′ 𝑔0𝛽

′

𝑔00
′ , 𝛼, 𝛽 = 1,2,3, (1.59) 

 

−𝑔′ = 𝑔00
′ 𝛾 , (1.60) 
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where 𝛾 = det[𝛾𝛼𝛽]  is a determinant of the metric tensor 𝛾𝛼𝛽, and taking into account that in 

orthogonal coordinates 𝛾 = 𝛾11𝛾22𝛾33 , as well as the equation √−𝑔′ = 1, we obtain for the 

determinant (1.42): 

𝑞 = −
1

𝛾22𝛾33
. (1.61) 

 

    The electric field, which is considered in the Coulomb law, is spherically symmetric. Such a 

field is most conveniently viewed in spherical coordinates. Therefore, to determine 𝛾22 and 𝛾33, 

we write the square of the element of length in spherical coordinates  

 

𝑑𝑆2 = 𝑑𝑟2 + 𝑟2𝑑𝜗2 + 𝑟2sin2𝜗𝑑𝜑2. 

 

But in this form it is impossible to use this equation to determine the components of the three-

dimensional metric tensor. The fact is that the spherical coordinates 𝜗 and 𝜑 enter it non-

symmetrically and, moreover, they are dimensionless.  

     To eliminate these shortcomings, one should consider an infinitely small neighborhood of a 

point with the spherical coordinates (𝜌0 ,𝜗0,𝜑0). Then we draw through this point a tangent plane 

to a sphere of the radius 𝜌0. Let us introduce on this plane a rectangular coordinate system (�̃�,�̃�) 

with the origin at a point (𝜌0,𝜗0,𝜑0) so that the coordinate axis �̃� is tangent to the coordinate line 

𝜗, and the coordinate axis �̃� is tangent to the coordinate line 𝜑. In an infinitely small 

neighborhood of the point, we have: 

 

𝑑�̃� ≈ 𝜌0𝑑𝜗; 𝑑�̃� ≈ 𝜌0𝑠𝑖𝑛𝜗0𝑑𝜑 ≈ 𝜌0𝑠𝑖𝑛𝜗𝑑𝜑. 

From here, we get:  

                                               𝑑𝑆2 = 𝑑𝑟2 +
𝑟2

𝜌0
2 𝑑�̃�

2 +
𝑟2

𝜌0
2 𝑑�̃�

2.                                              (1.62)    

 

From (1.62), we have the following values for the components of the three-dimensional metric 

tensor in an infinitely small neighborhood of the point (𝜌0 ,𝜗0,𝜑0):  

𝛾22 = 𝛾33 =
𝑟2

𝜌0
2. (1.63) 

 

     For the transformations 𝑥′𝑖 = 𝑥𝑖 + 𝜉𝑖 considered in the article, from (1.27), (1.29) we have 

𝛿𝑥0 = 𝛿𝑥1 = 0. Therefore, for the variation of the metric tensor, we obtain: 

 

𝛿𝑔𝑖𝑘 =
𝜕𝑔𝑖𝑘

𝜕𝑥𝑙
𝛿𝑥𝑙 =

𝜕𝑔𝑖𝑘

𝜕𝑥2
𝛿𝑥2 +

𝜕𝑔𝑖𝑘

𝜕𝑥3
𝛿𝑥3. 

 

Hence, if the components 𝑔𝑖𝑘 depend only on the coordinates 𝑥0, 𝑥1, for example, as in the 

spherically symmetric system (1.62), then in this system 𝛿𝑔𝑖𝑘 = 0. Let us construct a tensor 𝑔𝑖𝑘, 

satisfying the above conditions. We find the component 𝑔00 from (1.60). The components 𝑔𝛼𝛽 

are determined from (1.59). They will depend on 
𝑟2

𝜌0
2 (1.63) and on the components 𝑔0𝛼 =

𝑔0𝛼(𝑥
0, 𝑥1). It is easy to check that the determinant of this tensor is −1. Let us find the values of 

the diagonal components of the metric tensor 𝑔𝑖𝑘 given in curvilinear coordinates 𝑥𝑖. We neglect 

the terms 
𝑟4

𝜌0
4 𝑔0𝛼

2 , which have a higher order of smallness. Using 𝑥Γ
𝑖 = 𝑥𝑖 − 𝜉𝑖, we get: 
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𝑔00 = 1 − 2𝜉,0
0 ; 𝑔11 = −1 + 2𝜉,1

1 ; 𝑔22 = −1 + 2𝜉,2
2 ; 𝑔33 = −1 + 2𝜉,3

3 . 
 

In Galilean coordinates, the values of the diagonal components of the metric tensor on the left 

side of these equalities will be as follows: 1, −1,−1,−1. Hence, we obtain that the derivatives 

on the right-hand side of these equalities will be equal to zero. This is one more proof that the 

equality 𝜉,𝑖
𝑖 = 0 holds in Galilean coordinates. Now let us consider the curvilinear coordinates 

𝑥𝑖  describing a spherically symmetric system. As mentioned above, such a system should be 

considered in the tangent plane to a sphere of radius 𝜌0 in an infinitesimal neighborhood of the 

point of tangency (𝜌0, 𝜗0, 𝜑0) of the plane with the sphere. In an infinitely small neighborhood 

of this point, we can write 
𝑟

𝜌0
≈ 1 + 𝛿, where 𝛿 is a small quantity, therefore, for the diagonal 

components of the metric tensor of a spherically symmetric system, we have: 

 

𝑔00 = 1 − 4𝛿; 𝑔11 = −1; 𝑔22 = 𝑔33 = −1 − 2𝛿. 
 

Comparing these values with the previously obtained ones, we find: 

 

𝜉,0
0 = 2𝛿; 𝜉,1

1 = 0; 𝜉,2
2 = 𝜉,3

3 = −𝛿. 
 

From this, we see that for a spherically symmetric system 𝜉,𝑖
𝑖 = 0. 

     Substituting (1.63) into (1.61) and the result of this substitution into (1.57), we arrive at the 

formula:  

𝐹01
′ =

1

2
√−𝐹𝑖𝑘

′ 𝐹′𝑖𝑘
𝜌0
2

𝑟2
. (1.64) 

 

Considering that 𝐴 = 𝐴Γ, the equation (1.36) and the calculation (1.6), we find 𝐹01
′ = 𝐄Γ𝐟Γ −

𝐇Γ𝐬Γ. But we consider only the electric field, therefore 𝐇Γ = 0. In the absence of any movement 

and change, time remains unchanged, therefore 𝑢 ≡ 𝑥′0 = 𝑥Γ
0 ≡ 𝑐𝑡. Thus, everything comes 

down to the transformation of spatial coordinates: the rectangular Cartesian coordinates 

𝑥, 𝑦, 𝑧 and the curvilinear coordinates 𝑣,𝑤, 𝑛, which naturally should be taken as spherical 

coordinates. So, for instance, 𝑣 = 𝑟, and for the electric field we have 𝐸𝑟 = 𝐸; 𝐸𝜗 = 𝐸𝜑 = 0. It 

follows that 𝐄Γ = 𝐸(sin𝜗cos𝜑, sin𝜗sin𝜑, cos𝜗). From (1.8), (1.10), etc., we obtain: 𝐟Γ =

(sin𝜗cos𝜑, sin𝜗sin𝜑, cos𝜗). Considering the above, we arrive at this value 𝐹01
′ = 𝐄Γ𝐟Γ = 𝐸. 

Now the formula (1.64) can be written as follows: 

𝐸 =
1

2
√−𝐹𝑖𝑘

′ 𝐹′𝑖𝑘
𝜌0
2

𝑟2
. 

 

From this formula it follows that a physical value equal to 

 

2𝜋𝜀0𝜌0
2√−𝐹𝑖𝑘

′ 𝐹′𝑖𝑘 , 

 

is an electric charge 𝑒, where 𝜀0 – electric constant. Thus, we get the formula 𝐸 =
𝑒

4𝜋𝜀0𝑟2
 , which 

completely coincides with Coulomb’s law. 

    Now we will consider the formula (1.58) in a three-dimensional space in spherical 

coordinates. To do this, we again use the formulas (1.59), (1.60) and again we take into account 

that √−𝑔′ = 1. Thus, after the transformation, we obtain the determinant (1.43): 
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                                      �̂� = 𝛾22𝛾33 −
𝑔2
2

𝛾11𝛾22
−

𝑔3
2

𝛾11𝛾33
,                                                 (1.65) 

 

where 𝑔𝛼 = −
𝑔0𝛼
′

𝑔00
′  [1]. Substituting in this expression the values of the components of the three-

dimensional metric tensor (1.63), as well as 𝛾11 = 1, see (1.62), we arrive at the following 

formula: 

�̂� =
𝑟4

𝜌0
4 −

𝜌0
2

𝑟2
(𝑔2
2 + 𝑔3

2). (1.66) 

 

We multiply the left side and the right side of the formula (1.66) by the value 
𝑟2

𝜌0
2. Then, denoting 

𝜒 =
𝑟2

𝜌0
2, we represent (1.66) as a cubic equation  

                                                     𝜒3 − �̂�𝜒 − 𝑔2
2 − 𝑔3

2 = 0.                                                    (1.67) 

Its solution is three roots: 

𝜒1 =
𝑟1
2

𝜌0
2 ; 𝜒2 =

𝑟2
2

𝜌0
2 ; 𝜒3 =

𝑟3
2

𝜌0
2 . 

 

These roots satisfy the following relations: 

 

𝜒1 + 𝜒2 + 𝜒3 = 0. (1.68) 

 

𝜒1𝜒2 + 𝜒2𝜒3 + 𝜒3𝜒1 = −�̂�. (1.69) 

 

𝜒1𝜒2𝜒3 = 𝑔2
2 + 𝑔3

2. (1.70) 

 

Raising the left side of the equation (1.68) to the square and taking into account (1.69), we get: 

 

�̂� =
𝑟1
4 + 𝑟2

4 + 𝑟3
4

2𝜌0
4 . (1.71) 

 

We divide the left side of the equation (1.69) by the left side of the equation (1.70) and, 

accordingly, the right side of the equation (1.69) by the right side of the equation (1.70), and 

thus, we find: 

�̂� = −𝜌0
2 (
1

𝑟1
2 +

1

𝑟2
2 +

1

𝑟3
2) (𝑔2

2 + 𝑔3
2). (1.72) 

 

From (1.72) it follows that the value �̂� is formed by three separate ‘particles’ with relative 

charges as follows: 

1

𝜒1
=
𝜌0
2

𝑟1
2 ;
1

𝜒2
=
𝜌0
2

𝑟2
2 ;
1

𝜒3
=
𝜌0
2

𝑟3
2. 

 

Their total relative charge is equal to the relative charge of the proton. Taking the relative charge 

of the proton equal to unity, from (1.72) we obtain the relationship between the coefficient and 

the free term of equation (1.67): �̂� = −𝑔2
2 − 𝑔3

2. Obviously, only quarks can be such ‘particles’. 
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It is easy to verify as for quarks forming a proton and having charges of 
2

3
;
2

3
; −

1

3
 the relation 

(1.68) is really fulfilled: 
3

2
+
3

2
−
3

1
= 0. From these simple considerations, it follows that the two-

dimensional space (𝑤, 𝑛) has finite dimensions and it, in fact, is what we call an elementary 

particle, for example, a proton. 

     Here is one more proof of the correctness of the theoretical calculations and the conclusions 

made on their basis. From (1.57) and (1.58), we find: 

 

𝐹23
′

𝐹01
′ = √

�̂�

𝑞
. 

 

For the proton �̂� = −𝑔2
2 − 𝑔3

2, and from (1.60) and (1.61) we have 𝑞 = −𝑔00
′ . If we use these 

values, by means of (1.66), we obtain: 

𝐹23
′

𝐹01
′ =

𝑟5

𝜌0
5

√1 −
𝑟2

𝜌0
2

. 

At 
𝑟2

𝜌0
2 → 0, 

𝐹23
,

𝐹01
, → 0; at 

𝑟2

𝜌0
2 → 1, 

𝐹23
,

𝐹01
, → ∞. This result proves that formula (1.58) describes a strong 

interaction acting in a finite region of space, the magnitude of which is determined by the radius 

𝜌0. And in this region of space, the magnitude of the strong interaction grows with the increasing 

radius 𝑟. 

 

3.8 Evidence 

 

     The solution to equation (1.67) was obtained for �̂� > 0. This inequality is fulfilled in the 

region of four-dimensional space, which in spherical coordinates is defined as follows: 𝜌0 < 𝑟 ≤
∞. It is in this region that the quark nature of an elementary particle is manifested. This can be 

explained by the fact that two invariants �̂� and 𝐹𝑖𝑘
′ 𝐹′𝑖𝑘 (their invariance follows from the equality 

to unity of the Jacobian transformation, since √−𝑔 = 1) in Galilean coordinates decompose into 

three invariants of Lorentz transformations [2]. For example, 

 

𝐻Γ𝑥
2 − 𝐸Γ𝑥

2 ; 𝐻Γ𝑧
2 − 𝐸Γ𝑦

2 ; 𝐻Γ𝑦
2 − 𝐸Γ𝑧

2  

 

which behave like independent entities. But in curvilinear coordinates, these three invariants will 

no longer be invariants. Therefore, their complete independence is impossible. Because of this, 

quarks are not particles in the usual sense. In the absence of a magnetic field 

 

𝐹𝑖𝑘
′ 𝐹′𝑖𝑘 = −2𝐄Γ

2 < 0, 

 

 and in the indicated region of space, a complex quantity appears in equality (1.58), which is 

unacceptable. Therefore, Equality (1.58) is inapplicable in this region of four-dimensional space. 

Equality (1.58) will consist of real values for �̂� < 0. This inequality holds in the region defined 

as 0 ≤ 𝑟 < 𝜌0. This is easy to prove if we notice that it is in this region of the four-dimensional 

space that Equation (1.67) has one more solution. Substituting the equal value �̂� = −𝑔2
2 −

𝑔3
2 into Equation (1.67) instead of the free term, we find 
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�̂� =
𝜒3

𝜒 − 1
. 

 

Hence it follows that for 𝜒 ≤ 1 we have �̂� ≤ −∞. It can be seen that the indicated solution is 

obtained for 𝜒~1, when |�̂�| ≫ 𝜒3, therefore 𝜒3 in the equation can be neglected. Note, that in 

the region 0 ≤ 𝑟 < 𝜌0 the electromagnetic field radically changes its dependence on the spatial 

coordinates (1.58) and completely coincides with the dependence that is observed for the strong 

interaction.  

 

4 Conclusions 

 

    Summing up, it must be said that in electrodynamics, considered in curvilinear coordinates, 

the second pair of Maxwell’s equations can be obtained using the antisymmetric character of the 

electromagnetic field tensor. From this antisymmetry it follows:  𝐹;𝑖;𝑘
𝑖𝑘 = 0.  If we mark     

                                                                                 

−
𝑐

4𝜋
𝐹;𝑘
𝑖𝑘 

 

as a four-dimensional vector of current density, we obtain the second pair of Maxwell’s 

equations in a known form, and from the equation 𝐹;𝑖;𝑘
𝑖𝑘 = 0, taking into account the introduced 

notation, we get the continuity equation. So, classical electrodynamics which neglects the 

internal structure of elementary particles can be called a macroscopic theory that considers 

electromagnetic fields on the scale of the macro-world.  
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