Further observations of structure of a possible
unification algebra
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Abstract. The trigintaduonion Cayley-Dickson algebra can be combined
with the complexified geometric algebra of space-time to generate an algebra
with features corresponding to the Clifford algebra of space-time, the
complex doublet of the Higgs mechanism, three families of fundamental
particles and anti-particles of the standard model, dark matter and dark
energy.
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1. Introduction

It seems reasonable to suppose that, in the tradition of the periodic table and
Bohr’s model of the atom, there might be a simplistic mathematical pattern with
a structure similar to that of the standard model which would provide insights
leading to a deeper understanding of the basis of reality. A pattern can be found
for a combination of the trigintaduonion Cayley-Dickson algebra, T with the
geometric algebra Cly(C) = M4(C) which may achieve this.

If a quaternionic subalgebra of the trigintaduonion algebra, T, is associated with
spatial bivectors for a space-time algebra so that spatial isotropy is exhibited by
its subalgebras, a striking correspondence between part of the pattern of its
sedenionic-type subalgebras and that of one family of fundamental particles of
the standard model is found. The remaining part of the pattern may be
associated with dark matter. This is described in section 3, using notation for T
set out in section 2.

The algebra of complex 4 x 4 matrices, M4(C), is isomorphic to Cly(C). When a
quaternionic subalgebra of My (C) is assigned to represent spatial bivectors for a
spacetime Clifford algebra, there are six possible choices of sets of three unit
elements of M,(C) which may be chosen to represent spatial vector unit
elements. It is postulated that these choices generate three families of
fundamental particles and their anti-particles. There are non-isotropic variations
to these sets which may be associated with dark energy. This is described in
section 5, using notation for My(C) set out in section 4.

The combined algebra, M,(C) @ T, is the same size as Cly 9, the geometric
spacetime algebra for the dimensionality used in string theories. It has
subalgebras used for several models, including subalgebras isomorphic to Clg(C)
and R © C ® H® Q. This is discussed in section 6.

Parallels between Clifford algebras and Cayley-Dickson-type algebras are
discussed in Appendix A.

A possible basis for the mexican hat potential for the Brout-Englert-Higgs
mechanism[1][2][3] is described in Appendix B.

The Loops package[4] for GAP4[5] has been used to investigate isomorphisms
and isotopisms for T and its subalgebras.
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2. Notation for unit elements and subalgebras of T

Greek letters with subscripts have been used to label unit elements of T, as this
assists in identifying spatial isotropy. The labels are shown in table 1 which maps
those labels to the conventional labels. Their Cayley table is shown in table 2.

The structure of the trigintaduonion algebra, T, has been described by Cawagas
et al[6]. T contains an embedded loop T of order 64 generated by its 32 unit
elements. 77, has 31 sedenion-type subloops of T of order 32, falling into four
isomorphism classes, which Cawagas et al. designated Sy, ‘L",Sf,Sz. This
scheme has been modified by replacing the subscripts with numbers to index the
subloops.

TABLE 1. Notation used to label positive unit elements for T

€0 €1 €2 €3 | €4 | €5 €6 | €7 | €s | €9 | €10 | €11 | €12 | €13 | €14 | €15
Oo | 0, | 05 | 0x | Ao | A | A | Ak | Mo | B | By | Bk | Vo | V| Yy | Uk

€16 | €17 | €18 | €19 | €20 | €21 | €22 | €23 | €24 | €25 | €26 | €27 | €28 | €29 | €30 | €31
Qo Q, Q, Qg Bo B, ﬁ] B Yo Ve Y Vr 0o d, 5] O

TABLE 2. Labels and Cayley table for T unit elements

€o | €1 | €2]€3 | €4 |€E5 | €C |€E7|€E8 |€E|€l0|C11|C12|€E13|C14|€15 €16 |C1T | €18 [ €10 | E20 | €21 | €22 | €23 | €24 | €25 | €26 | €27 | €28 | €29 | €30 | €31

To | e |0y | [ Ao [ A | A [ Ax | o | e | 1y [k [ Vo | Ve | Vg | Vs | o | u | @) |t

o || 00| +0, |40, [H00 | F X0 [ F XN [N pto| Fpt | 1y [t FVo | 00 | 1 [0 [ v o [ Fay [+ov
|40 00 [Fo] -0y |42 N0 | A A a0 | =g |11y | v |[H 06| +0i| vy || - |- |+,
03 |40, -0k | =00 |40+ HFA] Ao | -Ad | Hpg 1| 110 | =10 | -5 | -V |[FV0| +0 |0y [ o] a0 | -,
O ||Hon| 40| -0, | =00 [FAk| Ny [HFA] A0 || =1y [F 10| 110 | -V | 40| -1 | H00 [ -0y |40, |-
Aol[HAo| A [Ny |-Ak | =00 |[Fou | +0) [Fow|Fro|+v | Fvy | 0| o | =t | =11y | ~1n |+ 80| +8. |5, |+ 8w
A Ao A |4 | =00 =00 | -0 |+, |40 | Vo | 0| -1y || =tto [F1is] =11y | +8.| 00 |[+Bx| -5,
A [ FA AR F | A | =0 [H0u] 00 |00 |4 | Vi | Vo |1 |F109| 10 | =100 | F10.| +85| -Br | -Bo |48 |+, | -0
Ael[ Ak Ay [FA o] -0k | -0, |40, | =00 [F0i| 15| -0 | Vo [ i+ | =10 | =10 |[+B| 85| -B. | -Bo ||+,
Ho ||t Ho| - |-ty |=bus | Vo | Vi | Vg |-V | -Oo |40 |40 |40l +Xo| A [+ [+ Ak +0 | +7 |+ |+ | +00 |+,
o || [ o |~ |10y | 20 [H V0| F0k| 1) | 200 |00 [0k |40, =M [F o[ F AR A [ F70] Y0 [F70] -2 [ 00| 200 | -0k [0, |+ |- [Fan| -, |+8,]-Bo |-
g |1 [t 10| 1 | vy |0 [Hvo |40 | 05 [H00] =00 | 200 | X5 [ A [F N FA] 75| Y | Yo | F7| 6, [H00| 00 | =6, |Fay|-0v |00 |+ |[+8) |84 -Bo | -B.
B ||t~y [Fp | p0] v |+, 5 5, | -0, :

Vo ||+ Vo |+ |1y [+ V| +Ho| -1
Vo ||+ | Vo [+Vi| -1y it |+ 1ol
vy ||+ v | Vo |0 |1 | -pn
Vi ||+ Vi |0y | -V | Vo ||+ iy

Fay | -a,

3|+ 80| =B | -5y | B | -0 |+ |+ o+
7B+ Bo| B |55 | -0 | a0 |-t |0y
Yo |8, [ HBu|+Bo| =B, |-y [ -a0 | -,
Yo |+ B8] -8y |8 |4 Bo| -0 | -y |+ | -y
|| -a, |-y |-an | -5, | -6, | 0| g | [ 1| Ao | v | |k
oy || ot -ag [+oy| B, |+, SNy | =it ol =ity || Vo | Vi | Yy
||+, ot -a. | -8, |-Bi |8 |+ )y |+0x | 00 | -0, . g FA g |~ [ o |1 | AV [V Vo | -0
|t -0 |tautao| B | 48| By |+Bo| v [+7%| % [+0|H0k| -0, |40, | 00 | -0 | 0, |40, | -Oo |-Au |+ | A |FX0| e |1ty | ~Hu [Hbto|+Ve| -V |[+00| Vo
Bo||[+Bo| B, |45, |+ BrlFao| -a, | -0y |-ak | -0, | -0, | -0, | -0 |+0| +7 | +75|F76| “Ao [FANFA [ HAL| 00 | 00 | -0, | -0k | Vo | -V | -1, | -V [ 0| Fpre |1y |10
B || 4+8.| =80 [+84] -8, |+ [+ J 0| Vi |0y | -t [ pto] i |11y
B, || 48,| B | -80 |48, |+, |- | o] v |-y [ a1
A Ao [0k 40y | -0 | =00 | Vi | -1y [ F0 | HVo| -t | -1y [H 0]+ 1o0
1y | | o | 1 [y [H 1| 200 | 00 | -0, |00 | -Xo | A [ D) |- Ae
Fpin| -y | 1| Vo | vk |1y | 0, 00 [H04] -0, [HA] Ao |-k [+
o ||y |F k| Vo | -1 |40, | -0k | <00 |40 [FN [ HA] Ao | <A
|| HFve| [ 27 | Y0 [0k | -0y [ 400 | -0, [ tay| -y [Fao|+Be| -6, | ~po |[FVi| vy || Vo [Fos|Ha,| o0 |-00 [HA A [HA] Ao
o || 00| =00 | -0, | -0w | Yo |7+ [H7e|+Bo| -1 By [+l o, Uy | Vi | o [ |10 [ F 1] Ao A | A, |-Ak | =00 |[+0u |40, +0n
Oy || 40 [+00| -0k | +0,] -7 | =70 | -7 |+ +5. B |- |[Fay| v [FVo| Vi |41y | - | -0 |t |F1|F A+ Ao A [+, 00 | -00 | -0, | +0,
5 -
)

Yo |+ H0x| 00 | -0, |y |0 [+ao|+au | +8[+8x

-7 |+8, ol tao -a, | vy || V0| v | -1y [ an| o | -1 [HX [ HFA| G| AL | -0y |04 00 | -0,
|| 0| =6, |40 +00| Ve | =% [+7 | Yo |[+8x -0 [F [t o) -t | 1y |[FV A Vo| i | -1y [F1] o [FAR] Ay [FA|FAo| -0k | -0, [+0,] 00
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3. Sedenionic-type subalgebras of T and the standard model, dark
matter

For an alignment of T to be spatially isotropic with respect to the geometric algebra
of space-time, spatial rotation must not change the isomorphism type of any of its
subalgebras. This property is found if [0,, 0,, 0] are chosen to be aligned with unit
spatial bivectors, but not if [\,, io, Vo] are chosen, as can be seen by inspection of
unit element participation in sedenion-type subloops as shown in table 3.

TABLE 3. Unit elements for sedenion-type subloops

\ \ \Joa,,ajah: Ao A A | A || o |1 |1y | s | |[Vo [ |9 Vi || o |t | 0ty |t 606,,63\/35- VoYV [00]9.]05 |0
1]S)|[m|m{mm|mn. . EEEE EEEE
2(Sg||m|mmm LU HEEE EEEE
3157 |mmmm EmEE HEEE .
4]5¢|m|m uE (L L] mn L] mn L]
5(¢(m| m| |m| m| |m| m| |m| |m E m| m m @ E m |m
6]55m LTI LTI LI u| (mm L] L um
7[5 m|m um L L] L] HE EE um
glsy|m| (m| |m| |m H m| m m m m m =E = (@ =
9/s7m LTI | = um mE Em |m LI ]
10[5¢ || m|m HEnn L] EE N EE En
11/S¢|(m| |m H (mm |m m (m| = mE |m H mm =
12/ S¢|(m H| mm |m m (mm EE |m | Em |m ]
135/ || m|m L LI LI (L L
1457 |m| |m H m| m mm |m E mE m (= = L
15/ 57 ||m H| (mm Em (= | mm |m LY H mm
16 S || I | || | || |

175, || |{H|H|H ||} .. EEENE EEEN

18| S, ||M|H|H|H LU EEEN EEEN

19( S || M |m|m | EEEE BN NN EEEE
20/ S, || m|m L (L L] L] L L] L
21/S;|m| m| |m| m| |m| m |(m |m |[m |(m |® (W |m [ |m |m
22/ S; || m LTI LTI LI L LI LI LI ]
23/ S ||m|m L L EEEE L L L]
24/ Ss|m| |m| (m| |m H | m mm m (m |m H m mm
25/ S, || M LTI | mm am ||m LI | mm um
26|50/ 1 M EEEn EEEE HE | EE L]
27/5,;/|m| |m E (mm |m m mm |m H EE m L
28|51,/ M H| mm |m H mm ||m H| mm |m H mm
29|55/ W |m L] HE|En OC L] EE En
30[S,,/|m| |m m m [ (mm [m [m = H m m mm =
31/5;;5/| M H| (mm Em (= nm H| mm am ||m ]
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3.1. Correspondence with the standard model

The structure of My(C) matches that of T in many respects. As noted by
JWBales[7], the Cayley tables of both My(C) and T can be assembled as
normalised latin squares with elements ordered so that bit-wise ‘exclusive or’
(XOR) of binary representations of two unit elements’ numbering generates the
numbering of their product. As a result, if the sign of products is ignored, their
Cayley tables are the same and, for subalgebras that include the negative of the
identity, their subalgebra inventory is the same (refer to Appendix A). This
enables them to be aligned with each other.

Spatial unit bivectors can be represented by unit quaternions, so may correspond
to, or be aligned with unit elements for a quaternionic subalgebra of T such as
[0,0,0]. For fundamental particles, there is no special orientation in space, so an
algebra representing particles that persist must be isotropic with respect to
spatial bivectors. However, within confinement this requirement for isotropy
could be relaxed to apply to combinations of particles.

This suggests the hypothesis that quantum fields with observable excitations are
associated with sedenionic subalgebras of T that are either spatially equivalent,
or can combined in sets of isomorphic subalgebras which would be collectively
spatially equivalent, so that spatial reorientation results in a transformation for a
sedenionic subalgebra that is either completely internal, or that is confined to a
set of isomorphic subalgebras.

Analysis of table 3 reveals that:

1. One unit element of T (other than the identity), o, , has unique status. As
My (C) also features an unique unit imaginary element, this suggests identi-
fication of these unit elements with the unit imaginary elements of the com-
plex doublet for the Brout-Englert-Higgs mechanism[1][2][3].

2. If [0,0,0,] are chosen as unit elements aligned with spatial unit bivectors,
spatial equivalence for subalgebras of T is achieved, but not if [A,, o, Vo]
are chosen. This suggests alignment of [0,0,0,] with spatial unit bivectors
for a geometric space-time algebra. If [Apov,] commute with all unit
elements of the space-time geometric algebra, they would generate a scalar
algebra. It is possible to combine a scalar quaternionic algebra with a
spatial bivector quaternionic algebra in a way that generates a mexican hat
potential, a feature of the Brout-Englert-Higgs mechanism (refer to
Appendix A for details).

3. Subalgebras 1 to 15 exclude the unique imaginary element, «,, and feature
three isomorphism types. Subalgebras 16 to 31 include the unique imaginary
element, o, and feature one isomorphism types. This suggests assignment of
subalgebras 1 to 15 to fermionic quantum fields and subalgebras 16 to 31 to
bosonic fields.
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Fermionic subalgebras 1, 2 and 3, feature internal spatially equivalent sets,
suggesting that they correspond to leptons.

Fermionic subalgebras 4 to 15 do not feature internal spatial equivalence,
but can be placed in sets of three which are collectively spatially equivalent,
suggesting that each set of three corresponds to three colors of one chirality
for one quark family.

For some subalgebras the A, ;. content matches the . content, whereas
for others the ji4,,. content matches the v,,,, content or the v,,,, content
matches the A\, content. As sedenionic subalgebras are not isomorphic with
respect to [Aoy i lbowyi Vo] content, this could generate the chiral property of
taking part in weak interactions for some subalgebras but not for others.
There are three subalgebras identified as corresponding to leptons, so one
of them would not have a counterpart with opposite chirality. The particle
identifications in table 5 use the arbitrarily chosen criteria:

Proportion of I\, content present — charge.

If Ao yn content matches fi,y content — isospin 0, if not — isospin 1 /2.
Whilst they change isomorphism types for sedenionic type subalgebras,
transformations such as Ao — floys — Vo do not affect spatial
equivalence. This suggests the possibility of mixing.

The pattern for the bosonic subalgebras 16 to 31 resembles that of generators
for SU(4), suggesting a relationship to the Pati-Salaam SU(4) ® SU(2) ®
SU(2) approach to unification]8].

Bosonic subalgebras 16, 17, 18 and 19 are colorless with internal spatial
equivalence so may relate to electro-weak fields.

Bosonic subalgebras 20, 21 and 22 do not feature internal spatial
equivalence, but can be placed in sets of three which are collectively
spatially equivalent, so each set of three may correspond to there being
three colors for the strong nuclear force and relate to the strong nuclear
field. Their Ay, . content matches both their p,,,, and their v,,,, content,
suggesting no interaction with electroweak forces.

Bosonic subalgebras 23 to 31 do not feature internal spatial equivalence, but
can be placed in sets of three which are collectively spatially equivalent, so
would also be subject to the strong nuclear force. However, they can also be
placed in sets of three that are collectively equivalent with respect to [Ao o]
or [Bo70,0,] transformations, suggesting that they would be subject to a
further force, and could be associated with dark matter, and be responsible
for anomalies in predicted flavor mixing. A fifth force has been proposed as
being responsible for quark mixing and the related CP violation[9].

For each fermionic subalgebra, there is a bosonic subalgebra with the same
[UOLJm )\oum Hougr I/OL]K] content, but inverted [U%L]m Boum Yougk s 6OL]R]
content. This suggests a form of supersymmetry. The bosonic subalgebra Sy
is left without a supersymmetric partner.
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Re-labelling «,, the unique unit element of T (postulated as being associated
with a Higgs complex doublet) as I, and [B,, Yo, do] as [I Ao, I1io, [V,], a possible
identification of subalgebras with fundamental quantum fields based on these
observations is shown in table 4.

TABLE 4. Sedenion-type subloops

Fermionic subloops

Composition Type Color  |I\,x —Charge,Q|A = i —Weak Isospin| Family
1S5 [00 0,0y 0k ] @ [06 Ao Tpto Tve ] [No Tog —=Spin 1/2] 0,y = w | No TAye =0 | Aoy = fogr = 1/2 | Vepr
215§ 00 0,0y 0k ] ® 06 IXo pto I ] |No To, =Spin 1/2| 0,y = w | ALTN e — £1 | Aoyyw # flogye — 0 e, T
3 S{f 00 0,0,00] @ [06 Ao Tto Vo] |No To, —Spin 1/2| 0,50 — w | AILTA, 0 — £1 | Ao = floye = 1/2 | ep, 7
415¢| 0o 0, [0, [0, | ® (06 Ao o Vo | No To, —Spin 1/2|0, 10, — b| TA,c — £2/3 | Aoy = fowe — 1/2 |quarkye
5158| 00 0y Io, 10y ] & [06 Ao o Vo ] |No To, =Spin 1/2|0,10,x = g| Thw = £2/3 | Aoyr = poyr — 1/2 |quarkye
6155| 00 0x Io, I, ] ® [06 Ao o Vo ] |No Io, —Spin 1/2|0Io,, — r| I\, — +2/3 Xovge = fowyr — 1/2 |quarkye
7 Sif loo 0, Io, 10y ] ® [06 Ao Tpto Iv, ||No To, —Spin 1/2|0, 10, — b| I\, — +2/3 Aouyr Z Moy — 0 |quarkye¢
815700, Tov 172 [0 A Tt 10 |No T +Spim /2,10 5] Dhax = 22/3 | sy Z e 0|k
9 S; oo 0w Io, I, ] ® [0 Ao Tpto v, ||No To, —Spin 1/2|0I0,, — | I\, — +2/3 Aougr Z Moy — 0 |quarkye¢
10|5¢ [0 0, [0, [0, | 2 (06 IAo po 11 ||No Io, —Spin 1/2|0,I0 . — b| I\, — +1/3 Aoyr # Moy — 0 |quarkgsy
11152 |[0, 0, Io, Io, | ® 06 IXo pio 11, ]|No I, —Spin 1/2|0,10,x — g| IX) — £1/3 Aoy Z Moy = 0 |quarkgsy
125§ \[oo 01 o, Io, | 2 (06 IAo po 11 ||No Io, —Spin 1/2|0I0,, — r| I\, — £1/3 Aouyr Z Moy — 0 |quarkgsy
13 S_f loo 0, Io, 10y ] ® [0 TN To v, ||No To, —Spin 1/2|0,I0,, — b| T\, — £1/3 Xovye = foryr — 1/2 |quarkgsp
14 55j l0o 0y Io, 10y ] ® [06 TAo To v, ||No To, =Spin 1/2|0,I0,c = g| I\, — £1/3 Xovyr = foyr — 1/2 |quarkygy
15 Sg; loo 0w Io, Io) ] ® [0 TAo Tio v, ||No To, —Spin 1/2|0I0o,, — | X, — +1/3 Xovge = foryr — 1/2 |quarkggp

Bosonic subloops

Composition Attributes Associated fields
16/So| 000,050, 2 (06 Ao o Vo | Uncolored, Unflavored Electro-weak boson fields
17|S1| [00 00 05 0k | ® [06 Tog No TN, | Uncolored, Flavored
18]Sz | (00 0, 0, 04 ] © |06 T0o p1o Tpto | Uncolored, Flavored
19Ss| [00 0, 0y 04 ] ® |06 oo Vo 11, | Uncolored, Flavored
20(S4| (06 0, o, o, | @ [06 Ao fho Vo | Colored, Unflavored Strong nuclear color fields
21|S5| 00 0y oo Lo, ] ® [06 Ao o Vo ] Colored, Unflavored
22|Sg | (00 0k L0, 104 ] & (04 Ao Jlo Vo ) Colored, Unflavored
23|S7| 00 04 ) pis | ® [00 oo A, TN, ] Colored, Flavored New ficlds possibly associated with
24{Sg | 00 0 pu pix ] @ [00 oo Ay TN, ] Colored, Flavored Havor mixing mediated by
25| Sg | (06 0% pu pty | @ (06 Too A TA ] Colored, Flavored Z-prime bosons or
26(S10| [06 00 vy vk | @ |06 Too o I ] Colored, Flavored Lepto-quark bosons
271Su1| [0 0y v v | @ [0, Tog 1y Iy ] Colored, Flavored
28(S12| [00 ok v vy ] ® [0 oo i Ljix ] Colored, Flavored
29(S13| [00 00 Ay A | ® [0 Lo v, T, ] Colored, Flavored
30[S14| [0 0y A Ax | ® [0 Log vy I ] Colored, Flavored
31[S15| 00 0k A Ay ] ® [06 Too Vi Ty | Colored, Flavored

Although likely to be inaccurate, this analysis demonstrates the potential for the
trigintaduonion algebra to account for many of the features of the standard
model.
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4. Notation for unit elements of M,(C)

Capital roman letters are used to label real matrix unit elements of My(C), as
shown in table 4. These labels are combined with ¢ to represent their imaginary
counterparts which are used for imaginary matrix unit elements of M,(C).

These labels have been chosen so that, when unit elements of a quaternionic
subalgebra, labelled [LM N], are assigned to represent unit spatial bivectors for
the Clifford algebra of space-time, other unit elements related by spatial rotation
are also labelled using sets of three sequential letters:

[X,Y,Z],|[D,E, F),|P,Q, R] and [iL,iM,iN|,[iX,iY,iZ],[iD,iE,iF)],[iP,iQ,iR].

TABLE 5. Notation used to label 4 x 4 unit matrices

1 0 0 0
01 00
=10 0 1 0
0 0 0 1
fo 0 1 07 1 0 0 0 ] f[o 0 —1 0 ]
00 0 1 01 0 o0 00 0 -1
B=11 00 o P=10 0 -1 o M=11 9 0o o
L0 1 0 0 | Lo 0o 0 -1 | Lo 1 0o 0 |
ro 1 0 017 [1 0 0 0 ] [0 -1 0 0 ]
1 0 0 0 0 -1 0 0 1 0 0 0
Y=10 0 0 1 E=10 0 1 o =10 0o o -1
00 1 0 L0 0 o0 -1 Lo o 1 o0 |
0 0 0 1 0 0 1 0 0 0 0 -1
00 1 0 0 0 0 —1 0 0 1 0
D=109 10 0 X=11 0 o o N=1o -1 0 o
1 0 0 0 0 -1 0 0 1 0 0 0
ro 1 0 07 1 0 0 0 0 -1 0 0
1 0 0 0 0 -1 0 0 1 0 0 0
F=10 0 o -1 Z=10 0o -1 0 E=1l0o 0o o 1
Lo 0o -1 0 | 0 0 0 1 0 0 -1 0
[0 0 0 —17 0 0 -1 0 0 0 o0 1
00 -1 0 0 0 0 1 0 0 -1 0
U=1lo 1 0o o V=11 0 0o o @=l0o -1 0 o
L1 0 0 o0 | 0 -1 0 0 1 0 0 0

Note: the forms of these matrices differ from those used in previous papers by
this author[10][11]. Positive forms have been chosen to allow [S,L, M, N] to
represent unit elements for a right isoclinic quaternion algebra Hyg, and

[S,T,U, V] to represent unit elements for a left isoclinic quaternion algebra Hy,,
as used by Van Elfrinkhof[12].
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5. Space-time, three families of fundamental particles, dark energy

Based on the analysis in section 4, one family of fermions and a basis for the
Brout-Englert-Higgs mechanism[1][2][3] can be found for an alignment of T with
My (C) = Cly(C). This suggests exploring the possibility of other alignments that
might generate the observed three families of fermions. In section 4 the
alignment has been defined in terms of aligning quaternionic unit elements of
0, of T with unit spatial bivectors for Cly(C) = My(C).

For [0,,0,0,] aligned with [L, M, N| there are six sets of unit elements of T that
may be aligned with spatial vector unit elements for the spacetime geometric
algebra which result in spatial equivalence:

[N Ags Awly [y bty ]y TRy g ]y (TG TN IAG], [T, Lpag, To] or [Thu, Iy, Thug].
These alignments can be assigned to three families of fundamental particles and
their anti-particles. The alignments could have been identified as a choice of one
of six sets of unit elements of My (C) to be aligned with [o,,0,0]:

[X,Y,Z], [D,E,F], [P,Q,R], [iX,iY,iZ], [iD,iE,iF] or [iP,iQ,iR).

The two ways of describing re-alignments could correspond to wave/particle
duality. As re-orientation of alignment has similarities to the re-orientation in
Minkowski space associated with the change in relativistic mass, this suggests
that the families would differ in mass.

For each of these sets of isotropic spatial vector alignments there are two possible
unit elements that could be aligned with a timelike unit vector. For [A,, A}, Ax],
either y, or v, could be chosen. For sedenionic subalgebras Sy, S¢, S§, SS, Sf ,
Sg and Sf , their [go,.] content matches their [vo,,;] content, an internal
symmetry. For the other sedenionic subalgebras, their [p,;.] content does not
match their [v,,,,] content, but either their [v,,,,] content matches their [Ao, ]
content or their [Ay,;.] content matches their [16,,.] content. This suggests that
the availability of two possible unit elements that could be aligned with a
timelike unit vector is associated with flavor mixing.

My(C) ® T is a larger algebra than required to generate these features.
M>(C) ® T could be used, with [0,,0,0,] replacing [L, M, N], but then spatial
bivector unit elements would not be associative with respect to T making the
smaller algebra less suitable. My(C) ® T is four times the size of M3(C) @ T,
suggesting that three-quarters of it could describe something other than particles
of the standard model. This is, approximately, the proportion of the universe’s
mass/energy attributed to dark energy. If the dark energy components of
M,(C) @ T are identified as corresponding to alignment of [A,, Ay, Ax], (£, by fis)s
(s s o)y [T TNy, ING], [Tptey Tpng, Tpu) or [Tp,, Tpy, Ipu,] with one time-like and
two spatial unit vector elements, this would indicate that the quantum fields for
dark energy are tachyonic, as has been proposed for some models[13].
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6. Comparison with other algebras used in unification models

For positive spatial signature the Clifford algebra basis of the original
Kaluza-Klein model[14], which allows Maxwell’s equations to be combined with
general relativity[15], is Cl4, 1, isomorphic to My(C). M4(C) ® T has the same
dimensionality as Cl; 9, which is the geometric algebra for the dimensionality
used in string theories[16][17]. When assembled as Cli 3 @ [T @ C] or as
Cls1 ® [T ® C], the Clifford algebra of space-time commutes with the [T © C]
subalgebra, providing a logical basis for the dimensionality of spacetime.

My(C)® T has C ® O and My (C) ® Hw~ = Clg(C) as a subalgebras. Cohl
Furey has postulated that minimal left ideals of a Clg(C) algebra extracted from
C ® O correspond to one family of fundamental particles[18][19], and refers to
others who have advocated the existence of a connection between non-associative
algebras and particle theory[20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
[32] [33] [34] [35] [36] [37][38]. There have been approaches based on complexified
sedenions[39]. M4(C) ® T has sub-algebras on which all of these approaches are
based. For instance, the octonion based approach proposed by G.Dixon[27][28]
uses the tensor product R ® C ® H ® O to account for one family of fundamental
particles, which can be assembled with basis elements: [SZQD] for three copies
of R, [SiS] for C, [SLMN] for H and [0,0,0,0.]0,10,tlc,10,] for O.

For type IIB string theory based on AdS/CFT correspondence[40], AdSs x S° is
equivalent to N = 4 supersymmetric YangMills theory on the four-dimensional
boundary. For this approach, the spacetime in which the gravitational theory
embedded is effectively five-dimensional and there are five additional compact
dimensions (encoded by the S®). Cly 5 is isomorphic to My(C).

Some twistor[41] approaches use quaternions to doubly complexify space-time.
The observations made in this paper suggest extension of this to an
“ultracomplexifying” of space-time using T.

The geometric algebra of space-time is a graded algebra generated by
anti-commuting vector unit elements, which may be represented by the matrices
such as: [iX,:Y,iZ,iT]. If a sedenion-type subalgebra of T is used to
ultracomplexify it using, for instance, the S subalgebra of T, alignment of
[As Ass Ay Vo] with those unit vectors, this would generate unit product elements:
(XA, YN, ZXg, T,]. These unit elements commute and have opposite signature
to the original vector unit elements. They can be used to generate a graded
algebra. The Lie bracket for the original algebra becomes the Jordan bracket for
this algebra, and vice-versa.
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Appendix A. Clifford algebras and Cayley-Dickson-type algebras

A.1. Cayley tables

The Cayley tables of both My(C) and T can be assembled as normalised latin
squares with elements ordered so that bit-wise ‘exclusive or’ (XOR) of binary
representations of two elements’ numbering generates the numbering of their
product. As a result, if the sign of products is ignored, their Cayley tables are
the same and, for subalgebras that include the negative of the identity, their
subalgebra inventory is the same.

A.2. The equivalent of isoclinic C subalgebras for T

For My(C) the unit imaginary has unique status, commuting with all other unit
elements. For the subalgebra structure of T, a, has unique status.

A.3. The equivalent of isoclinic H subalgebras for T

A.3.1. Standard Cayley-Dickson construction for T. Trigintaduonions are
usually generated using the Cayley Dickson construction, with the product:
(a,b)(c,d) = (ac — db*,a*d + cb)

Its subalgebra structure has been analysed by Cawagas et al[6]. Cayley-Dickson
type algebras have also been analysed by J.W.Bales[7]. He arranges Cayley
tables for their unit elements as normalised latin squares with elements ordered
so that the bit-wise ‘exclusive or’ (XOR) of binary representations of two
element’s numbering generate the numbering of their product. He uses “twist
maps” to display the pattern of signs of products of unit elements. He designates
T as the “ws twisted Cayley-Dickson algebra for Ag”. Its twist map is:
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A.3.2. An alternative construction of T. A Cayley Dickson-type construction:
(a,b)(¢c,d) = (ac — b*d,da* 4 be) is used by JW Bales to assemble the wy algebra
for As. It contains an embedded S” loop. It can be used to generate T from
elements g and h in S? using a procedure usually used to assemble Moufang
loops from groups. A new element u, not in S% is defined. Then let
T = S# U (SPu). Define the product in T as:

(g,9u) X (h,hu) = (g.h + gu.h + gu.h + gu.hu), where:

g-h = (gh)
(gu)h = (gh™"u
g(hu) = (hg

Yu
(gu)(hu) = h~'g

For its multiplication table arranged as a normalised latin square with elements
ordered so that bit-wise ‘exclusive or’ (XOR) of binary representations of two
element’s numbering generate the numbering of their product, the twist map is:

The embedded loop of order 64 for this algebra is isotopic to the embedded loop
Ty, for the standard representation of T. The isotopism is:
(2,25,21,19,26,45,39,12,22,43,14,31,32,8,20)(3,10,29,23,60,6,27,62,15,16,56,4,50,9,5)
(7,44,54,11,46,63,64,40,52,34,57,53,51,58,13)(18,41,37,35,42,61,55,28,38,59,30,47,48,24,36)
Applying the isotopism to My(C) is equivalent to:

Hy, 9 Hp @ C - Hg @ Hy, @ C

together with swapping the labels of some unit matrices with their negatives.
This indicates [0,,0,,0,] and [Ao, ito, Vo] generate the equivalent of left and right
handed quaterionic subalgebras of T.
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Appendix B. The Brout-Englert-Higgs mechanism

This appendix is part of a previous paper by this author[?].

The Brout-Englert-Higgs mechanism acts on a complex doublet and involves
scalar fields. For MyC' ® T a scalar subalgebra can be assembled as the product:
[06S, 0,15, apS, piS] ® [0S, 0,T,0,V,0,U] Q [055, AoS, oS, V65].

[06S,0,T,0,V,0,U] & [055, A0S, 1155, 1,S] is isomorphic to H ® H and to My(R).
Its unit elements can be relabeled as matrices from table 1 as follows:

[06S] 2 [S], [0oT, 00V, 0,U] = [TVU], [AoS, 165, V6S] =2 [LM N]

AT, o T, voT] = [PQR], [NV, oV, v, V] 2 [DEF], (AU, poU, v, U] 2 [XY Z]

The Brout-Englert-Higgs mechanism is based on a scalar field with a mexican
hat potential. It is possible to find subalgebras of My(R), and thus of
[06S,0,T,0,V,0,U] ® [0,5, AoS, oS, 1,5], with this property

Subalgebras of My(R) for which the scalar component (unit matrix [S]), is
associated with a mexican hat potential, can be found by considering unitary
abelian subgroups of My(R). Unitary abelian subgroups of My(R) can be
represented by diagonal 4 x 4 matrices.

(e 0 0 0
0 €2 0 0
0 0 e 0
0 0 0 e

where 01 4+ 02 + 03 + 04 = 0, allowing it to be rewritten:

e 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

The product of two elements of this type with parameters a,b,c and a’,’, ¢ has
parameters a + a’,b + V', ¢+ ¢’. A subgroup of the Heisenberg group H(5) shares
this property:

(1 a b c+ab

010 b
001 a
000 1

This matrix has determinant = 1, and the commuting products of the form:

1 a4+d b+b c+c +(a+d)xb+b)
0 1 0 b+ b

0 0 1 a+ad

0 0 0 1
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This matrix can be written in terms of unit elements of My(R) as:
[S]4+a/2[V+Y]+b/2[M + F]+ (¢c+ab)/A[E+U + N + P].

There are other combinations of unit elements of My(R) with similar properties.
These can be found using a 6 x 6 array having anti-commuting basis matrices
and the identity in each row/column:

S VT XY Z
Vv S U P Q R
T U S D E F
X P D S N M
Y Q E N S L
Z RF M L S

Interchanging rows and matching columns preserves group properties and
commutation relationships with respect to position in the array. For example,
rows and columns 1 and 2 can be interchanged to make the array:

S V U P Q R
Vv S T X Y Z
U T S D E F
P X D S N M
QY E N S L
'R Z F M L S |

Inspecting this array to assign unit matrices for an equivalent H5 subgroup
group, they would be:

[S]+a/2[V+Q]+b/2[M + F]+ (c+ab)/A[E+ N + T + X]

This combination has the same properties. Interchanging rows and columns 1
and 2 has not changed the signatures of the matrices allocated to each position.

If a further interchange is made that does affect the signatures, e.g interchanging
rows and columns 1 and 4, to generate:

S Q U PV R
Q S E N Y L
U E S D T F
P ND S X M
VY EN S L
R L F M Z S

For the combination:

[S] +a/2[Y + Q] +b/2[M + F| + (c+ ab)/JA[P + U + T + X]

The determinant is no longer 1. To make this combination generate a unitary
matrix, a factor has to be applied to [S]. That factor is \/( + 1 & 2(a/2)?),
provided that the factor is real and not imaginary.
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For the resulting matrix, there are four plus/minus permutations, for which the
possible components for [S] are :

[ /(1 +a?/2) 0 0 0
0 V(1 +a?/2) 0 0
0 0 V(1 +a?/2) 0
L 0 0 0 V(1 +a?/2)
Which always has real entries, and determinant = 1 + a2 + a*/4
[ V/(—1-4a?%/2) 0 0 0
0 V(—1-a%/2) 0 0
0 0 V(—1-a%/2) 0
i 0 0 0 V(-1-a?/2)
Which never has real entries, and determinant = 1+ a? + a*/4
[ /(1 —a?/2) 0 0 0
0 V(1 —a?/2) 0 0
0 0 V(1 —a?/2) 0
L 0 0 0 V(1 —a?/2)
Which has real entries for a?/2 < 1, and determinant = 1 — a? + a*/4
[ /(= 1+4a%/2) 0 0 0
0 V(= 14a%/2) 0 0
0 0 V(—1+4a2/2) 0
i 0 0 0 V(—1+a2/2)

Which has real entries for a?/2 > 1, and determinant = 1 — a? + a*/4
The function fla) = 1 — a® + a*/4 has the form of a mexican hat potential.

For the assignment of unit elements of U to matrices:

[06S] = [S], [0oT, 00V, 0,U] = [TVU], [AoS, 165, V6S] = [LM N]
[)\OT> 1o, VOT] = [PQR], [/\OVMUOM VOV] = [DEF]a [/\OU» ,U’OU7 VOU] = [XYZ]

The group represented by a plus/minus choice for:

V(£1+a2/2)[S]+a/2[Y + Q] +b/2[M + F] + (c+ ab)/4[P + U + T + X]

is isomorphic to that for the same plus/minus choice for:

V(£ 1+a2/2)[06S] + a/2[uoU + poT) + b/2[10S + V]
+ (¢4 ab) /AT + 0,U 4+ 0,T + AU]

for which [TVU] symmetry is broken.



