Refractive index and mass in curved space

Miftachul Hadil:2

Y Physics Research Centre, Indonesian Institute of Sciences (LIPI), Puspiptek, Serpong, Tangerang Selatan 15314,

Banten, Indonesia.

2) Institute of Mathematical Sciences, Kb Kopi, Jalan Nuri I, No.68, Pengasinan, Gn Sindur 16340, Bogor,

Indonesia. E-mail: instmathsci.id@gmail.com

The refractive index-mass relation in curved space is derived using the decomposed form of refractive index.

The curvature-mass relation is also showed.

I. GEOMETRICAL OPTICS

The ray propagation equation of a steady monochro-
matic wave where the frequency is a constant can be

derived from Fermat’s principle'. It gives
1 . Vn
—_=N.— = 1
7 - (1)

where R is the radius of curvature, N is the unit vec-
tor along the principal normal, n is the refractive index,
a function of coordinates. Eq.(1) shows that the rays
are therefore bent in the direction of increasing refractive
index .

The curvature of space in one dimension, 1/R, in eq.(1)
can be generalized for higher dimension. In case of the
dimension is more than two, the curvature can be ex-
pressed as the Riemann-Christoffel curvature tensor. It
is a generalization of the Gauss’ curvature of one and two
dimensions”. The generalised form of eq.(1) is”

Ruvpe = gNg Oplnny, (2)

where R, - is the Riemann-Christoffel curvature tensor.
In our previous work on the magnetic symmetry of the
geometrical optics, we obtained the result as below
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where n,,, is the second rank tensor of refractive index,

Ag(l) is the unrestricted electric (scalar) potential of U(1)
group and mU() is the restricted magnetic (vector) po-
tential of U(1) group.

Eq.(3) shows that the refractive index is decomposed
into the unrestricted electric (scalar) potential part and
the restricted magnetic (vector) potential part. This de-
composition is a consequence of the magnetic symme-
try existence for the gauge potential in the geometrical
optics™.

Il. THE REFRACTIVE INDEX AND A MASS IN
CURVED SPACE

Let us consider the Schwarzschild metric”” and assume
that the space is isotropic and spherically symmetric.

Then, the line element is
ds® = goo(r) ¢ dt* — g, (1) dr?
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where r is the spatial coordinate, M is a mass of an object
in curved space, G is the gravitational constant.

The world line corresponding to the propagation of
light is defined as null geodesic as follows

ds* =0 (5)

Substitute this eq.(5) into (4), we obtain
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If we substitute dr/dt = v into (6) and rearrange the
terms, then we obtain
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where
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So, we have the space dependent refractive index, n(r),
related to the mass of an object, M, as below”

n(r) = (1 _ M) - (9)
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How to formulate the space dependent linear the sec-
ond rank tensor of refractive index related to the mass
of an object as expressed in eq.(9)? In order to answer
this question, we need to understand the quantities G, ¢
in eq.(9). The simple understanding of G is coming from
the Einstein field equation as follows™~

Gm/ = _87CTTG v (10)
We are informed from eq.(10) that the gravitational con-
stant, G, is a scalar (because the speed of light, ¢, is a
scalar).

In the case of linear optics, we take the space depen-
dent refractive index as the second rank tensor’. Because

of the gravitational constant, G, the speed of light, ¢, the



spatial coordinate (distance), r, are scalars, then eq.(9)
can be written as
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where M* is the second rank tensor of mass'’'?.
The second rank tensor of mass can be expressed as
M"Y =X (1-n,)) (12)
where X = ¢?r/2G and n,,, is given in eq.(3).
Substituting eq.(11) into eq.(2), we obtain the curva-
ture and mass relation as below
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where M*” is given in eq.(12).
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