Resolution of Polynomial Equation with Rational Coefficients

Juan Jorge Isaac Lopez
pandealocha1@gmail.com

Abstract

Identities of the coefficients of the polynomial equations are created in function of the parameters that define their roots, and with their application it is created a process to solve polynomial equations with rational coefficients.

\section*{Introduction}

The roots of the equation $F_{0} x^{n}-F_{1} x^{n-1}+F_{2} x^{n-2}-F_{3} x^{n-3}+\ldots \pm F_{n-1} x^{n-(n-1)} \pm$ $F_{n}=0$ are defined in this paper as the result of the division of one of the multiples of F_{n} between one of the multiples of F_{0}. The sets of multiples of F_{n} y F_{0} are determinable and of finite amount.

Proposal of Theory

Being $x_{1}=\frac{b_{1}}{c_{1}}, x_{2}=\frac{b_{2}}{c_{2}}, x_{3}=\frac{b_{3}}{c_{3}}, \ldots, x_{n}=\frac{b_{n}}{c_{n}}$ the roots of the equation $F_{0} x^{n}-F_{1} x^{n-1}+F_{2} x^{n-2}-F_{3} x^{n-3}+F_{4} x^{n-4}-\ldots \pm F_{n-1} x^{n-(n-1)} \pm F_{n}=0$, where $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{n} \in \mathbb{C}$.

Then we will have:
$F_{0}=c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n}$
$F_{1}=b_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n}+c_{1} b_{2} c_{3} c_{4} c_{5} \ldots c_{n}+c_{1} c_{2} b_{3} c_{4} c_{5} \ldots c_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-2} b_{n-1} c_{n}+$ $c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-1} b_{n}$
$F_{2}=b_{1} b_{2} c_{3} c_{4} c_{5} \ldots c_{n}+b_{1} c_{2} b_{3} c_{4} c_{5} \ldots c_{n}+b_{1} c_{2} c_{3} b_{4} c_{5} \ldots c_{n}+\ldots+b_{1} c_{2} c_{3} c_{4} \ldots c_{n-1} b_{n}+$ $c_{1} b_{2} b_{3} c_{4} c_{5} \ldots c_{n}+c_{1} b_{2} c_{3} b_{4} c_{5} \ldots c_{n}+\ldots+c_{1} b_{2} c_{3} c_{4} \ldots c_{n-1} b_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-2} b_{n-1} b_{n}$
$F_{3}=b_{1} b_{2} b_{3} c_{4} c_{5} c_{6} \ldots c_{n}+b_{1} b_{2} c_{3} b_{4} c_{5} c_{6} \ldots c_{n}+b_{1} b_{2} c_{3} c_{4} b_{5} c_{6} \ldots c_{n}+\ldots+$ $b_{1} b_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+b_{1} c_{2} b_{3} b_{4} c_{5} c_{6} \ldots c_{n}+\ldots+b_{1} c_{2} b_{3} c_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+b_{1} c_{2} c_{3} b_{4} b_{5} c_{6} \ldots c_{n}+$ $\ldots+b_{1} c_{2} c_{3} b_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+\ldots+b_{1} c_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-2} b_{n-1} b_{n}+c_{1} b_{2} b_{3} b_{4} c_{5} c_{6} \ldots c_{n}+$ $\ldots+c_{1} b_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-2} b_{n-1} b_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-3} b_{n-2} b_{n-1} b_{n}$
$\ldots F_{n-1}=c_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n}+b_{1} c_{2} b_{3} b_{4} b_{5} \ldots b_{n}+b_{1} b_{2} c_{3} b_{4} b_{5} \ldots b_{n}+\ldots+b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n-2} c_{n-1} b_{n}+$ $b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n-1} c_{n}$
$F_{n}=b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n}$
And also have the equation:

$$
\prod_{i=1}^{n}\left(c_{i}+b_{i}\right)=\sum_{i=0}^{n} F_{i}
$$

Application

Resolution of polynomial equations with rational coefficients. The coefficients of the equation are converted to whole numbers with a greatest common divisor of 1 . Then we will have $F_{0} x^{n}-F_{1} x^{n-1}+F_{2} x^{n-2}-F_{3} x^{n-3}+F_{4} x^{n-4}-$ $\ldots \pm F_{n-1} x^{n-(n-1)} \pm F_{n}=0$, where $F_{0}, F_{1}, F_{2}, F_{3}, \ldots, F_{n}$ are whole numbers.

We will call sets c to all sets of n elements whose product would be equal to F_{0} (without obviating elements of the type $[Z+Y i]$, with $Y \neq 0$).

We will call sets b to all sets of n elements whose product would be equal to F_{n} (without obviating elements of the type $[Z+Y i]$, with $Y \neq 0$).

Being the case that $(Z+Y i)(Z-Y i)=Z^{2}+Y^{2}$, it is useful for this procedure to make a table of $Z^{2}+Y^{2}$ values, as big as needed, and then make a list with of those values ordered from lowest to highest alongside their associated Z and Y values.

A set c and a set b are chosen. Each element of each permutation (n of n) of the set c is assigned a different nomination from among $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$, always in the same sequence, achieving that way n ! configurations of values of c_{1}, c_{2}, c_{3}, \ldots, c_{n}. Each element of the set b is assigned a different nomination from among $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$. A configuration of $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ and the values of b_{1}, $b_{2}, b_{3}, \ldots, b_{n}$ are chosen, and the values of $F_{1}, F_{2}, F_{3}, \ldots, F_{n-1}$ are calculated. It must be verified if the values of $F_{1}, F_{2}, F_{3}, \ldots, F_{n-1}$ coincide with the coefficients of the equation. If there is no coincidence, the operation repeats with a different $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ configuration, until a coincidence is found or there are no more configurations available. If there is still no coincidence, the operation repeats with a different pair of c and b sets until there is a coincidence. Then each value of x is calculated using the $\left(c_{1}, b_{1}\right),\left(c_{2}, b_{2}\right), \ldots,\left(c_{n}, b_{n}\right)$ pair of values for which there was coincidence.

For higher degree equations, it may be convenient to filtrate all the sets of values of $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$ through the following equation:

$$
\prod_{i=1}^{n}\left(c_{i}+b_{i}\right)=\sum_{i=0}^{n} F_{i}
$$

The sets of values of $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$ that do not verify this equation can be discarted as candidates to be verified in the $F_{1}, F_{2}, \ldots, F_{n-1}$ identities.

Examples of Equation Resolution

1) $x^{5}-19 x^{4}+133 x^{3}-421 x^{2}+586 x-280=0$

Being $n=5$
$F_{0}=c_{1} c_{2} c_{3} c_{4} c_{5}$
$F_{1}=b_{1} c_{2} c_{3} c_{4} c_{5}+c_{1} b_{2} c_{3} c_{4} c_{5}+c_{1} c_{2} b_{3} c_{4} c_{5}+c_{1} c_{2} c_{3} b_{4} c_{5}+c_{1} c_{2} c_{3} c_{4} b_{5}$
$F_{2}=b_{1} b_{2} c_{3} c_{4} c_{5}+b_{1} c_{2} b_{3} c_{4} c_{5}+b_{1} c_{2} c_{3} b_{4} c_{5}+b_{1} c_{2} c_{3} c_{4} b_{5}+c_{1} b_{2} b_{3} c_{4} c_{5}+c_{1} b_{2} c_{3} b_{4} c_{5}+$ $c_{1} b_{2} c_{3} c_{4} b_{5}+c_{1} c_{2} b_{3} b_{4} c_{5}+c_{1} c_{2} b_{3} c_{4} b_{5}+c_{1} c_{2} c_{3} b_{4} b_{5}$

```
    \(F_{3}=b_{1} b_{2} b_{3} c_{4} c_{5}+b_{1} b_{2} c_{3} b_{4} c_{5}+b_{1} b_{2} c_{3} c_{4} b_{5}+b_{1} c_{2} b_{3} b_{4} c_{5}+b_{1} c_{2} b_{3} c_{4} b_{5}+b_{1} c_{2} c_{3} b_{4} b_{5}+\)
\(c_{1} b_{2} b_{3} b_{4} c_{5}+c_{1} b_{2} b_{3} c_{4} b_{5}+c_{1} b_{2} c_{3} b_{4} b_{5}+c_{1} c_{2} b_{3} b_{4} b_{5}\)
    \(F_{4}=b_{1} b_{2} b_{3} b_{4} c_{5}+b_{1} b_{2} b_{3} c_{4} b_{5}+b_{1} b_{2} c_{3} b_{4} b_{5}+b_{1} c_{2} b_{3} b_{4} b_{5}+c_{1} b_{2} b_{3} b_{4} b_{5}\)
    \(F_{5}=b_{1} b_{2} b_{3} b_{4} b_{5}\)
    \(F_{0}=1\)
    \(F_{0}=1 * 1 * 1 * 1 * 1 ; F_{0}=-1 *-1 * 1 * 1 * 1 ; F_{0}=-1 * i * i * 1 * 1 ; \ldots\)
    \(F_{5}=280(2,2,2,5,7)\)
    \(F_{5}=1 * 2 * 4 * 5 * 7 ; F_{5}=-1 * 2 * 4 * 5 *-7 ; F_{5}=(1+i) *(1-i) * 4 * 5 * 7 ;\)
\(F_{5}=2 * 4 *(1+2 i) *(1-2 i) * 7 ; F_{5}=(1+i) *(1-i) *(1+2 i) *(1-2 i) * 28\);
\(F_{5}=(1+i) *(1-i) *(2+i) *(2-i) * 28 ; \ldots\)
```

The values $c_{1}=1, c_{2}=1, c_{3}=1, c_{4}=1, c_{5}=1, b_{1}=1, b_{2}=2, b_{3}=4, b_{4}=$ $5, b_{5}=7$ that correspond to $F_{0}=1 * 1 * 1 * 1 * 1$ and $F_{5}=1 * 2 * 4 * 5 * 7$ verify the values of $F_{1}, F_{2}, F_{3}, F_{4}$ according to the proposed formulas. Then:
$x_{1}=b_{1} / c_{1}=1 / 1=1 ; x_{2}=b_{2} / c_{2}=2 / 1=2 ; x_{3}=b_{3} / c_{3}=4 / 1=4 ;$ $x_{4}=b_{4} / c_{4}=5 / 1=5 ; x_{5}=b_{5} / c_{5}=7 / 1=7$
2) $21 x^{6}-838 x^{5}+10799 x^{4}-69988 x^{3}+231891 x^{2}-367190 x+217833=0$

Being $n=6$
$F_{0}=c_{1} c_{2} c_{3} c_{4} c_{5} c_{6}$
$F_{1}=b_{1} c_{2} c_{3} c_{4} c_{5} c_{6}+c_{1} b_{2} c_{3} c_{4} c_{5} c_{6}+c_{1} c_{2} b_{3} c_{4} c_{5} c_{6}+c_{1} c_{2} c_{3} b_{4} c_{5} c_{6}+c_{1} c_{2} c_{3} c_{4} b_{5} c_{6}+$ $c_{1} c_{2} c_{3} c_{4} c_{5} b_{6}$
$F_{2}=b_{1} b_{2} c_{3} c_{4} c_{5} c_{6}+b_{1} c_{2} b_{3} c_{4} c_{5} c_{6}+b_{1} c_{2} c_{3} b_{4} c_{5} c_{6}+b_{1} c_{2} c_{3} c_{4} b_{5} c_{6}+b_{1} c_{2} c_{3} c_{4} c_{5} b_{6}+$ $c_{1} b_{2} b_{3} c_{4} c_{5} c_{6}+c_{1} b_{2} c_{3} b_{4} c_{5} c_{6}+c_{1} b_{2} c_{3} c_{4} b_{5} c_{6}+c_{1} b_{2} c_{3} c_{4} c_{5} b_{6}+c_{1} c_{2} b_{3} b_{4} c_{5} c_{6}+c_{1} c_{2} b_{4} c_{4} b_{5} c_{6}+$ $c_{1} c_{2} b_{3} c_{4} c_{6} b_{6}+c_{1} c_{2} c_{3} b_{4} b_{5} c_{6}+c_{1} c_{2} c_{3} b_{4} c_{5} b_{6}+c_{1} c_{2} c_{3} c_{4} b_{5} b_{6}$
$F_{3}=b_{1} b_{2} b_{3} c_{4} c_{5} c_{6}+b_{1} b_{2} c_{3} b_{4} c_{5} c_{6}+b_{1} b_{2} c_{3} c_{4} b_{5} c_{6}+b_{1} b_{2} c_{3} c_{4} c_{5} b_{6}+b_{1} c_{2} b_{3} b_{4} c_{5} c_{6}+$ $b_{1} c_{2} b_{3} c_{4} b_{5} c_{6}+b_{1} c_{2} b_{3} c_{4} c_{5} b_{6}+b_{1} c_{2} c_{3} b_{4} b_{5} c_{6}+b_{1} c_{2} c_{3} b_{4} c_{5} b_{6}+b_{1} c_{2} c_{3} c_{4} b_{5} b_{6}+c_{1} b_{2} b_{3} b_{4} c_{5} c_{6}+$ $c_{1} b_{2} b_{3} c_{4} b_{5} c_{6}+c_{1} b_{2} b_{3} c_{4} c_{5} b_{6}+c_{1} b_{2} c_{3} b_{4} b_{5} c_{6}+c_{1} b_{2} c_{3} b_{4} c_{5} b_{6}+c_{1} b_{2} c_{3} c_{4} b_{5} b_{6}+c_{1} c_{2} b_{3} b_{4} b_{5} c_{6}+$ $c_{1} c_{2} b_{3} b_{4} c_{5} b_{6}+c_{1} c_{2} b_{3} c_{4} b_{5} b_{6}+c_{1} c_{2} c_{3} b_{4} b_{5} b_{6}$
$F_{4}=b_{1} b_{2} b_{3} b_{4} c_{5} c_{6}+b_{1} b_{2} b_{3} c_{4} b_{5} c_{6}+b_{1} b_{2} b_{3} c_{4} c_{5} b_{6}+b_{1} b_{2} c_{3} b_{4} b_{5} c_{6}+b_{1} b_{2} c_{3} b_{4} c_{5} b_{6}+$ $b_{1} b_{2} c_{3} c_{4} b_{5} b_{6}+b_{1} c_{2} b_{3} b_{4} b_{5} c_{6}+b_{1} c_{2} b_{3} b_{4} c_{5} b_{6}+b_{1} c_{2} b_{3} c_{4} b_{5} b_{6}+b_{1} c_{2} c_{3} b_{4} b_{5} b_{6}+c_{1} b_{2} b_{3} b_{4} b_{5} c_{6}+$ $c_{1} b_{2} b_{3} b_{4} c_{5} b_{6}+c_{1} b_{2} b_{3} c_{4} b_{5} b_{6}+c_{1} b_{2} c_{3} b_{4} b_{5} b_{6}+c_{1} c_{2} b_{3} b_{4} b_{5} b_{6}$
$F_{5}=b_{1} b_{2} b_{3} b_{4} b_{5} c_{6}+b_{1} b_{2} b_{3} b_{4} c_{5} b_{6}+b_{1} b_{2} b_{3} c_{4} b_{5} b_{6}+b_{1} b_{2} c_{3} b_{4} b_{5} b_{6}+b_{1} c_{2} b_{3} b_{4} b_{5} b_{6}+$ $c_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$
$F_{6}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$
$F_{0}=21(3,7)$
$F_{0}=1 * 1 * 1 * 1 * 7 * 3 ; F_{0}=1 * 1 * 1 * 1 * 1 * 21 ; F_{0}=1 * 1 * 1 * 1 *-7 *-3 ;$ $F_{0}=1 * 1 * 1 *-1 * 7 *-3 ; F_{0}=1 * 1 * 1 *-1 *-7 * 3 ; F_{0}=1 * 1 *-1 *-1 * 7 * 3$; $F_{0}=1 * 1 * 1 * 1 *-1 *-21 ; F_{0}=1 * 1 * 1 *-1 *-1 * 21 ; \ldots$
$F_{6}=217833(3,7,11,23,41)$
$F_{6}=1 * 3 * 7 * 11 * 23 * 41 ; F_{6}=1 * 1 * 1 * 1 * 1 * 217833 ; F_{6}=1 * 1 * 1 * 1 * 3 * 72611 ;$ $F_{6}=1 * 1 * 1 * 3 * 7 * 10373 ; F_{6}=1 * 1 * 3 * 7 * 11 * 943 ; F_{6}=3 * 7 * 11 * 23 *(5+4 i) *(5-4 i)$; $F_{6}=3 * 7 * 11 * 23 *(4+5 i) *(4-5 i) ; \ldots$

The values $c_{1}=7, c_{2}=3, c_{3}=1, c_{4}=1, c_{5}=1, c_{6}=1, b_{1}=11, b_{2}=7$, $b_{3}=3, b_{4}=23, b_{5}=(5+4 i), b_{6}=(5-4 i)$ that correspond to $F_{0}=1 * 1 * 1 * 1 * 3 * 7$ and $F_{6}=3 * 7 * 11 * 23 *(5+4 i) *(5-4 i)$ verify the values of $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ according to the proposed formulas. Then:
$x_{1}=\frac{b_{1}}{c_{1}}=\frac{11}{7} ; x_{2}=\frac{b_{2}}{c_{2}}=\frac{7}{3} ; x_{3}=\frac{b_{3}}{c_{3}}=\frac{3}{1}=3 ; x_{4}=\frac{b_{4}}{c_{4}}=\frac{23}{1}=23 ;$ $x_{5}=\frac{b_{5}}{c_{5}}=\frac{(5+4 i)}{1}=(5+4 i) ; x_{6}=\frac{b_{6}}{c_{6}}=\frac{(5-4 i)}{1}=(5-4 i)$

