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Abstract

The covariant quantization and light cone quantization formalisms
are followed to construct the coherent states of both open and closed
bosonic strings. We make a systematic and straightforward use of the
original definition of coherent states of harmonic oscillators to estab-
lish the coherent and their corresponding cat states. We analyze the
statistics of these states by explicitly calculating the Mandel parame-
ter and obtained interesting results about the nature of distribution of
the states. A tachyonic state with imaginary mass and positive norm
is obtained.
KEYWORDS: Coherent states; cat states; harmonic oscillator; bosonic
string.
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1 Introduction

The concept of coherent states was first introduced by Schrodinger in quan-
tum harmonic oscillators and is thus oftenly associated with harmonic oscil-
lators. It is for the same reason that it is also known as canonical coherent
states or standard coherent states and has seen application in many areas of
physics. The concept of coherent states has been well explained in mathemat-
ical physics and has been applied not only in quantization, signal processing
and image processing but is backbone of quantum optics. The term coherent
state was constructed by Glauber in the electromagnetic field and has been
defined as the eigenstates of the annihilation operator.[1] In Quantum me-
chanics coherent states being the states of minimal uncertainty has played
crucial role.[2] As per their role in string theory, the concept is yet to be
explored completely but till now it has been widely used for the computation
of scattering amplitudes [3].
The attempts to construct coherent states for a closed string in the orthonor-
mal covariant gauge to remove the ghosts by applying the mean values of
Virasoro operators have been studied long before, but the difficulties to gen-
eralize the results could not be completely eliminated [4].
In general coherent states can be defined in two equivalent ways either as
eigenstates of the annihilation operator, or as the exponential of the creation
operator acting on the ground state[5]. The concept of coherent states has
been recently generalized to Lie groups [6]. The entanglement of coherent
states is the current area being studied by many [7]. But the concept of
coherent states needs to be studied more in string theory to explore the wide
area of utility. Very recently the coherent states of open bosonic strings has
been studied using DDF and vertex operators [8, 9]. Unfortunately quanti-
zation using BRST symmetry can not be used for exponentially increasing
states. Therefore the equivalence of our theory with that of [10] cannot be
probed, unless it is possible to extend the quantization using BRST symme-
try to exponentially increasing states. That could be a new area of work,
clearly very general, very difficult and that escapes the purposes of our pa-
per. Some work on construction of coherent states has been discussed to
study the cosmic superstrings [11]. People have attempted to establish the
concept of coherent states in string theory, but no considerable theory has
been established yet.
The concept of cat states is in its early infancy, in the well known theory of
strings. In quantum mechanics this concept is attached to Schrodinger cat,
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which is defined as a quantum state composed of two diametrically opposed
conditions at the same time. The other definition relates it to the superpo-
sition of distinct states [12]. Cat states are actually a type of non-classical
states that results through the superposition of coherent states. These are
also known as even and odd coherent states[12]. Generalization of single-
mode Schrodinger cat states and the superposition of Gazeau-Klauder co-
herent states has been analysed to know the photon statistics. [13, 14]
A straightforward way to study the photon number squeezing or photon
statistics of any states is to evaluate the Mandel parameter.In well behaved
coherent states like the Glauber coherent states the Mandel parameter is
zero,which corresponds to the fact that the photon distribution is Poisso-
nian. Thus depending upon the value of Mandel parameter one can easily
comment on the statistics and thus the nature of the probability distribu-
tion of the states. For the Mandel parameter greater than 0 the statistics
correspond to super Poissonian and for less than 0, the distribution is sub-
Poissonian.[15] There are alternative methods to study the photon squeezing
through the second order correlation function.
The motivation for this work is to define the true coherent Glauber states
for the bosonic string. This has not been achieved so far by a covariant for-
mulation of the theory or by formulating it in the light cone Inquisitiveness
about the claims made by many for covariant formalism not being successful
in accomplishing the task of obtaining coherent states, is the real stimulus
for the present analysis. Quite motivated by the validity of the true defini-
tion of the coherent states being an eigenfunction of the harmonic oscillator
annihilation operator and having faith on the the pedagogical clout of the
straight forward approach of the covariant quantization, the present work
aims at constructing the coherent states for the bosonic string. Contrary
to the earlier claims, we constructed and developed not only the coherent
states of open and closed bosonic strings but have been able to remove the
difficulties arising due to g00 = −1, thus were successful in obtaining the
general form of coherent state. In this way we were able to define the coher-
ent state with well satisfied physical conditions. It is worth mentioning that
instead of lack of any literature of cat states in string theory, we made a bold
try and we calculated the complete cat states of the strings and evaluated
the corresponding Mandel parameters. we have obtained very interesting
and new results. An impressive work on tachyonic field related to complex
mass fields and their forbidden propagation asymptotically as free particles
and compatibility of Wheeler propagator Green function in suppressing the
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asymptotic free modes of the tachyonic field has been done [16, 17] and ref-
erences therein. In this study we also obtained new tachyonic states of the
string with imaginary mass and positive norm. This opens a new area to
be dealt with, using Wheeler propagator Green function in our future stud-
ies. This is first of its studies, which is very simple and straightforward and
based on the original definition of the coherent states of harmonic oscillator.
For the benefit of readers we have written three appendices with the main
mathematical results used in this paper.

2 Solution to and old problem in string the-

ory

As is known, the stress-energy tensor of the string must satisfy

Tαβ|phys >= 0 (2.1)

where |phys > is the physical state of the string. That translates exactly to
the Virasoro’s operators as:

(L0 − 1)|phys >= 0 (2.2)

Lm|phys >= 0 m 6= 0 (2.3)

But this last equality cannot be satisfied for all m since it leads to the
cancellation of all Lm. Instead it asks that:

(L0 − 1)|phys >= 0 (2.4)

Lm|phys >= 0 m > 0 (2.5)

This is not equivalent to (2.1). To satisfy (2.1) at mean values level we ask
then:

< [phys|(L0 − 1)|phys >= 0 (2.6)

< phys|m|phys >= 0 m 6= 0 (2.7)

Which is another possible choice, more appropriate for constraints.

In a foundational paper on coherent states for the string, Callucci [4] proves
that the integral that defines the norm of the coherent state is exponen-
tially divergent due to the g00 component of the metric tensor of space by
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Minkowski [4]. It also shows that the coherent states corresponding to the
annihilation operators a0n cannot be defined by the known series for the usual
coherent states.That is why it concludes that the coherent states for the string
cannot be defined in a covariant way. We have managed to solve this prob-
lem using new mathematical tools developed in [24] and references therein,
based on Ultradistributions theory of Sebastiao e Silva [26, 27], also known as
Ultrahyperfunctions. This solution is explained in detail in subsection 5.2 of
this manuscript. In Appendix A-C we show how to obtain the expression for
the coherent states corresponding to the operators a0n by a series that gen-
eralizes the Glauber series. We have thus obtained in a satisfactory way, the
theory of coherent states in covariant form, without using DDF operators,
that do not lead to the obtaining of the true Glauber coherent states.

3 Review of covariant quantization

Before going for the extensive calculation of the coherent states and the
corresponding cat states, we need to give a basic review of the string quanti-
zation, the commutation relations and the idea of Virasoro algebra followed
in the paper. In this paper we are following the covariant quantization for-
malism and later the light cone treatment to study the coherent states and
their respective physicality is studied using the Virasoro constraints. Treat-
ing all fields Xµ as operators and imposing the constraint equations on the
states is what we call covariant quantization. Xµ and their conjugate mo-
menta Πµ = 1

2πα
′ Ẋµ are promoted to operator valued fields which obey the

canonical equal-time commutation relations,

[Xµ(σ, τ), Πν(σ
′
, τ)] = iδ(σ− σ

′
)δµν

[Xµ(σ, τ), Xν(σ
′
, τ)] = [Πµ(σ, τ), Πν(σ

′
, τ)] = 0 (3.1)

These commutations relations are translated into the commutation relations
for the Fourier modes xµ, pµ, αµn and α̃µn as

[xµ, pν] = iδ
µ
ν (3.2)

[αµn, α
ν
m] = [α̃µn, α̃

ν
m] = nη

µνδn+m,0 (3.3)
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The commutation relations for xµ and pµ are same for operators governing
the position and momentum of the center of mass of the string. The commu-
tation relations of αµn and α̃µn are those of harmonic oscillator creation and
annihilation operators which after scaling are given as

an =
αn√
n
,n ≥ 0 (3.4)

a+
n =

α−n√
n
,n ≥ 0 (3.5)

and the resulting commutation relation becomes

[an, a
+
m] = δmn (3.6)

We consider a string equivalent to infinite countable number of harmonic
oscillators and the matrix raising and lowering operators can be expressed as

aµn =
1√
2
(xµn + ip

µ
n) (3.7)

a+µ
n =

1√
2
(xµn − ip

µ
n) (3.8)

[18, 19]. In momentum space we define quantum number pµ as the eigenvalue
of momentum operator p̂µ we can also write the vacuum state as |0;p > which
obeys p̂µ|0, p >= pµ|0, p >
The elegance and convenience of the Polyakov string action makes it the
most preferable choice of action, thus the starting point in any analysis of
the covariant string quantization. In its very suggestive form we write the
Polyakov action as

S = −
1

4πα ′

∫
dτdσηαβ∂αX

µ∂βX
νηµν (3.9)

with ηµν the Minkowski metric, α,β the indices corresponding to the two
world sheet coordinates τ and σ. [3] The beauty of Lorentz covariant quanti-
zation of string theory lies in the fact that it treats all the string coordinates
on equal footing, with all the coordinates including the X0, the time coor-
dinate become the operators, thus showing the built in time dependence of
the states and in addition keeps us away from the usual Hilbert space pos-
tulates. It has an upper hand over the light cone quantization in preserving
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the Lorentz symmetry , which occupies a pivotal importance in the string
theory.. Keeping in view the restrictions in other quantization schemes, and
the straightforward character of covariant approach, we prefer to follow the
old covariant quantization formalism. In this paper we are following the co-
variant quantization formalism and later the light cone treatment to study
the coherent states and the physicality is verified using the Virasoro con-
straints. All the fields and their conjugate momenta are treated as operators
and imposing the constraint equations on the states is the method followed
in covariant quantization. The mode expansion for open and closed string
coordinates read as

Xµ(τ, σ) = xµ0 +
√
2α ′αµ0τ+ i

√
α ′

2

∑
n6=0

e−inτ

n
(αµn cosnσ) (3.10)

Xµ(τ, σ) = xµ0 +
√
2α ′αµ0τ+ i

√
α ′

2

∑
n6=0

e−inτ

n
(αµne

inσ + α̃µne
−inσ) (3.11)

[3] These expansions are used for all the string coordinates. For open strings
only one set of modes αµn appears while as there are two independent sets
of modes for closed string αµn and α̃µn. The only constraints that relates the
left moving and right moving modes is the level matching condition of the
bosonic string. In open string, the boundary conditions force the left and
right moving modes to combine into standing waves. The Virasoro operators
obtained after exploring the constraints are

Ln =
1

2

∑
p

αµpαn−p,µ (3.12)

L̃n =
1

2

∑
p

αµpαn−p,µ (3.13)

In covariant formalism the quantum constraint satisfied for any physical state
of the open string φ is

(Ln − δn,0)|φ >= 0;n ≥ 0

For the closed string the constraints apply to both left and right moving
modes and are
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(Ln − δn,0)|φ >= 0;n ≥ 0 (3.14)

(L̃n − δn,0)|φ >= 0;n ≥ 0 (3.15)

The speciality of Virasoro operators is that it annihilates the physical states
and thus leaves no physical state. The commutation relations for the modes
αµn has shown that the Virasoro generators satisfy the relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (3.16)

where c = D = 26 is the space time dimension and is proportional to the
quantum effect and also called as central charge.[3]

4 A Useful Equality

A coherent state is defined as an eigenfunction of the Harmonic Oscillator
annihilation operator a (Glauber).[1] Thus we have:

â|α >= α|α > (4.1)

(Note that for true Glauber coherent states the eigenvalue of op-
erator â is given by λ = λα = α) Its usual and well-known expression
is

|α >= e−
|α|2

2

∞∑
m=0

(α)m

m!
(â+)m|0 > (4.2)

Has been proved in [20, 21] (see also Appendix A ) that the following equality
is valid:

|α >=
(mw
π

) 1
4

e−
(α)2

2 e−
|α|2

2

∫
e−

mw(y)2

2 e
√
2mwαy|y > dy (4.3)

As a consequence a simple component of the coherent state for the open
bosonic string is given by:

|αjn >= e
−

|α
j
n|2

2

∞∑
m=0

(αjn)
m

m!
(â+j
n )m|0 > (4.4)
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Where:

â+j
n =

α̂jn√
n

; n > 0 ; 1 ≤ j ≤ 25 (4.5)

Taking into account (10.3) we can write:

|αjn >=

(
mj
nw

j
n

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2

∫
e−

m
j
nw

j
n(y

j
n)2

2 e
√
2m

j
nw

j
nα
j
ny
j
n |yjn > dy

j
n

(4.6)
This proves that either of these two expressions can be used to define the
coherent state of the string for µ = j = 1, 2, ......, 25. The problem appears
when you want to use a similar equality for the case µ = 0. In this case,
the expression of the series that defines the coherent state component cannot
be used since the integrand of the integral that defines that component is
exponentially increasing. We now proceed to study and define a coherent
state for the bosonic string

5 Coherent states for open strings

It is very well known that the annihilation operator for the one-dimensional
harmonic oscillator is given by

âjn =
ŷjn + ip̂

j

√
2

(5.1)

In the y-representation of Quantum Mechanics, this operator is expressed via

ân
j(yjn) =

1√
2

(
yjn +

∂

∂yjn

)
(5.2)

Thus, a coherent state is defined as the eigenfunction of the annihilator op-
erator and indeed it has been stressed in various studies that eigenstates of
the annihilation operator are the actual coherent states possessing all the
required properties of coherent states because these properties are based on
the commutation relation between the creation and annihilation operators of
the harmonic oscillator [12]. Thus we express the states as:

ân
j(yjn)ψαjn(y

j
n) =

1√
2

(
yjnψαjn(y

j
n) +

∂ψ
α
j
n
(yjn)

∂yjn

)
= αjnψαjn(y

j
n) (5.3)
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or, equivalently,

∂ψ
α
j
n
(yjn)

∂yjn
=
(√
2αjn − y

j
n

)
ψ
α
j
n
(yjn). (5.4)

The solution of this differential equation is

ψ
α
j
n
(yjn) =

(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2 e−
(y
j
n)2

2 e
√
2α
j
ny
j
n . (5.5)

j = 1, 2, ..., 25 Thus

|αjn >=

(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2

∫
e−

(y
j
n)2

2 e
√
2α
j
ny
j
n |yjn > dy

j
n (5.6)

Here we used the general definition of coherent states to obtain a coherent
state of the bosonic string which is expressed as:

|αjn, p
j >= |αjn > ⊗|pj >=

[(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2 ×

∫
e−

(y
j
n)2

2 e
√
2α
j
ny
j
n |yjn > dy

j
n

]
⊗ |pj > (5.7)

And:
ψ
α
j
n
(yjn, p

j) = ψ
α
j
n
(yjn)φ(p

j) =[(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2 e−
(y
j
n)2

2 e
√
2α
j
ny
j
n

]
φ(pj). (5.8)

Now in order for the state obtained above to be an admissible or a represen-
tative of a physical state we need to prove the constraint relations imposed by
Virasoro operators on the strings. Here we analyze the physicality of states
of open strings. In this case we will demand that they are verified in average
value (See (5.22),(5.23)). We have for Virasoro operator:

L0 =
1

2
α̂20 +

∞∑
s=1

α̂−s · α̂s (5.9)

Lk =
1

2

∞∑
s=−∞ α̂k−s · α̂s (5.10)
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And for annihilation and creation operators:

âjn =
1√
n
α̂jn n > 0 (5.11)

â+j
n =

1√
n
α̂j−n n > 0 (5.12)

Thus we get in the |y > representation

L0 =
α20
2

+

3∑
j=1

∞∑
s=1

s

(
yjs −

∂

∂y
j
s

)
√
2

(
yjn +

∂

∂y
j
s

)
√
2

+ α0−sαs0 (5.13)

Now we consider the case µ = 0. For it we have:

â0n =
ŷ0n − ip̂

0

√
2

(5.14)

The coherent state is now:

ψα0n(y
0
n) =

(
1

π

) 1
4

e
(α0n)2

2 e
|α0n|2

2 e
(y0n)2

2 e−
√
2α0ny

0
n. (5.15)

And:

|α0n >=

(
1

π

) 1
4

e
(α0n)2

2 e
|α0n|2

2

∫
e

(y0n)2

2 e−
√
2α0ny

0
n |y0n > dy

0
n (5.16)

We now calculate its norm:

< α0n|α
0
n >=

1

π
1
2

∫
e
x2

2 e
y2

2 e2α
02
Rne−

√
2α0Rn(x+y)e−

√
2α
j
In(x−y) < x|y > dxdy =

1

π
1
2

∫
e
x2

2 e
y2

2 e2α
02
Rne−

√
2α0Rn(x+y)δ(x− y)dxdy =

1

π
1
2

∫
ex
2

e2α
02
Rne−2

√
2α0Rnxdx =

1

π
1
2

∫
e(x−

√
2α0Rn)

2

dx =

1

π
1
2

∫
ez
2

dz =

12



1

π
1
2

∞∫
0

s−3/2e
1
sds (5.17)

Now we use the result [22](Appendix B):

∞∫
0

xν−1e
β
xdx = cos(πν)βνΓ(−ν), (5.18)

As a consequence:

|||α0n > || = 0 (5.19)

Thus the complete state is defined as:

|α, p >=
∏
n6=0

25∏
j=1

⊗|αjn > ⊗|α0n > ⊗|p > (5.20)

Since the coherent state has a null norm, that is

< α, p
′
|α, p >= 0 (5.21)

It is then verified that

< α, p
′
|(L0 − I)|α, p >= 0 (5.22)

and
< α, p

′
|Lk|α, p >= 0 ; k > 0 (5.23)

We must clarify that in this case the constraints of Virasoro can only be
satisfied in average value. The mass of the coherent state is given by:

M2δ(p− p
′
) =< α, p

′
|2L0 − 2− α

2
0|α, p >= 0 (5.24)

As a consequence:
M2 = 0 (5.25)

We will prove that:

I =

∫
|αjn >

dαjn
π

< αjn| (5.26)

and

0 =

∫
|α0n >

dα0n
π

< α0n| (5.27)
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Let αjn be given by αjn = αjRn + iα
j
In Then we have∫

|αjn >
dαjn
π

< αjn| =

1

π
3
2

∫
e−

x2

2 e−
y2

2 e−2α
j2
Rne
√
2α
j
Rn(x+y)e

√
2α
j
In(x−y)|x >< y|dxdydαjRndα

j
In =

1

π
1
2

√
2

∫
e−

x2

2 e−
y2

2 e−2α
j2
Rne
√
2α
j
Rn(x+y)δ(x− y)|x >< y|dxdydαjRn =

1

π
1
2

√
2

∫
e−x

2

e−2α
j2
Rne2

√
2α
j
Rnx|x >< x|dxdαjRn =

1

π
1
2

√
2

∫
e
−2(αjRn−

x√
2
)2
|x >< x|dxdαjRn =∫

|x > dx < x| = I (5.28)

Let now α0n be given by α0n = α0Rn + iα
0
In∫

|α0n >
dα0n
π

< α0n| =

1

π
3
2

∫
e
x2

2 e
y2

2 e2α
02
Rne−

√
2α0Rn(x+y)e−

√
2α
j
In(x−y)|x >< y|dxdydα0Rndα

0
In =

1

π
1
2

√
2

∫
e
x2

2 e
y2

2 e2α
02
Rne−

√
2α0Rn(x+y)δ(x− y)|x >< y|dxdydα0Rn =

1

π
1
2

√
2

∫
ex
2

e2α
02
Rne−2

√
2α0Rnx|x >< x|dxdα0Rn =

1

π
1
2

√
2

∫
e
2(α0Rn−

x√
2
)2
|x >< x|dxdα0Rn =

1

π
1
2

√
2

∫
e2z

2

dz

∫
|x > dx < x| =

0

∫
|x > dx < x| = 0 (5.29)

As a consequence we conclude that the components with µ = 0 can be
eliminated from the coherent state and the coherent states are redefined as

|α, p >=
∏
n6=0

25∏
j=1

⊗|αjn > ⊗|p > (5.30)
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Thus the redefined form of coherent states is with us and we then have:

< α, p
′
|(L0 − I)|α, p >=

(
p2

2
− 1+

∞∑
n=1

n|αn|
2

)
δ(p− p

′
) = 0 (5.31)

and as a consequence:

p2

2
− 1+

∞∑
n=1

n|αn|
2 = 0 (5.32)

When k > 0 they must satisfy:

< α, p
′
|Lk|α, p >=< α, p

′
|

(
k∑
n=0

√
k− n

√
nânâk−n+

+

∞∑
n=k+1

√
n− k

√
nânâ

+
n−k

∞∑
n=1

√
n+ k

√
nâk+nân

)
|α, p >= 0 (5.33)

And when k < 0 :

< α, p
′
|Lk|α, p >=< α, p

′
|

( ∞∑
n=0

√
n− k

√
nâ+

n−kân+

+

∞∑
n=−k

√
n+ k

√
nâ+

n ân+k +

−k−1∑
n=1

√
−n− k

√
nâ+

−k−nâ
+
n

)
|α, p >= 0 (5.34)

The mass of the coherent state is now:

M2δ(p
′
− p) =< α, p

′
|(2L0 − 2− α

2
0)|α, p > (5.35)

And then:

M2 = 2

∞∑
n=1

n|αn|
2 − 2 (5.36)

Looking closely at (5.36) we can see that by suitably choosing the
αn we can obtain states for which M2 < 0 and < α, p

′
|α, p >= δ(p

′
−p)

that is, a tachyonic state whose norm is positive. For example if
we select α = 0.

In the section 11 of the paper, we will prove that these results coincide
with those obtained by defining the coherent states in the Light cone quan-
tization formalism.
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6 Mandel Parameter for coherent states of

open bosonic strings

The definition of Mandel parameter [15] Q for a single mode of the string is
given as Q = Q1 +Q2 where:

Q1 = −
< â+j

n â
j
n > − < (â+j

n â
j
nâ

+j
n â

j
n) > + < â+j

n â
j
n >

2

< â+j
n â

j
n >

(6.1)

(We use the convention summation repeated indices for 1 ≤ j ≤ 25) We
use this expression for Mandel parameter to evaluate the Mandel parameter
of the coherent states of open strings obtained in the previous section. We
evaluate the terms as below

< â+j
n â

j
n >=< α

j∗
n |â

+j
n â

j
n|α

j
n > (6.2)

Now âjn|α
j
n >= α

j
n|α

j
n > and as consequence: < α∗jn |â

+j
n =< α∗jn |α

∗j
n .Thus

< â+j
n â

j
n >= |αjn|

2 (6.3)

Thus substituting the results in the equation for Q parameter we could get
the Mandel parameter as:

Q1 = −
|αjn|

2 − |αjn|
2 < âjnâ

+j
n > +|αjn|

4

|αjn|2
(6.4)

With < âjnâ
+j
n >=< 1+ â

+j
n â

j
n >= 1+ |αjn|

2 We obtain

Q1 = 0 (6.5)

Similarly,for µ = 0 we have:

Q2 = −
< â+0

n â
0
n > − < (â+0

n â
0
nâ

+0
n â

0
n) > + < â+0

n â
0
n >

2

< â+0
n â

0
n >

(6.6)

Again we calculate the terms and use then for calculating Q as

< â+0
n â

0
n >=< α

0∗
n |â

+0
n â

0
n|α

0
n > (6.7)

Now â0n|α
0
n >= α

0
n|α

0
n > and as consequence: < α∗0n |â

+0
n =< α∗0n |α

∗0
n .Thus

< â+0
n â

0
n >= |α0n|

2 (6.8)
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Then we have:

Q2 = −
|α0n|

2 − |α0n|
2 < â0nâ

+0
n > +|α0n|

4

|α0n|
2

(6.9)

With < â0nâ
+0
n >=< −1+ â+0

n â
0
n >= −1+ |α0n|

2 We obtain

Q2 = −2 (6.10)

Then:
Q = −2 (6.11)

Q indicates the sub-Poisson nature of distribution of states. For the redefined
coherent state we have

Q = 0 (6.12)

Distribution of states is Poisson.

7 Mandel parameter for even cat states of

open strings

The cat state is defined as the quantum superposition of two opposite phases
coherent states of a single optical mode. We define even cat state as

|Cate(α
j
n) >= C(|α

j
n > +|− αjn >) (7.1)

Its norm is given by:
< Cate(α

∗j
n )|Cate(α

j
n >=

|C|2[< α∗jn |α
j
n > + < α∗jn |− α

j
n > + < −α∗jn |α

j
n > + < −α∗jn |− α

j
n >] (7.2)

Or equivalently:

< Cate(α
∗j
n )|Cate(α

j
n >= |C|2[2+ 2<[< α∗jn |− α

j
n >]] (7.3)

As we have:
< α∗jn |− α

j
n >= e

−2|αJN|2 (7.4)

We obtain:
< Cate(α

∗j
n )|Cate(α

j
n >= |C|22[1+ e−2|α

J
N|2] (7.5)
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And as a consequence:

C =
e|α

J
N|2√

2(1+ e2|α
J
N|2)

(7.6)

For this cat state it is verified:

ajn|Cate(α
j
n) >= α

j
n

e|α
J
N|2√

2(1+ e2|α
J
N|2)

(|αjn > −|− αjn >) (7.7)

Also we have:

< a+j
n a

j
n >= |αjn|

2e
2|αJN|2 − 1

e2|α
J
N|2 + 1

(7.8)

And:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2 − 1

e2|α
J
N|2 + 1

(
1+ |αjn|

2e
2|αJN|2 + 1

e2|α
J
N|2 − 1

)
(7.9)

Thus we obtain:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2 − 1

e2|α
J
N|2 + 1

+ |αjn|
4 (7.10)

As a consequence:

Q1 = 4|α
j
n|
2 e2|α

J
N|2

e4|α
J
N|2 − 1

(7.11)

Or equivalently:

Q1 =
2|αjn|

2

sinh(2|αjn|2)
(7.12)

For µ = 0 we have:Q2 = −2 Thus

Q =
2|αjn|

2

sinh(2|αjn|2)
− 2 (7.13)

For the redefined cat state we have

Q =
2|αjn|

2

sinh(2|αjn|2)
(7.14)

The Mandel parameter of cat states show clear dependence on |αjn|. The
nature of the distribution, whether it is Poissonian, sub-Poissonian or super-
Poissonian will be decided by the value of |αjn|.
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8 Mandel parameter for odd cat states of open

strings

The whole calculation of Mandel parameter for even cat states is repeated
for the odd cat states. We define odd cat state as

|Cato(α
j
n) >= C(|α

j
n > −|− αjn >) (8.1)

The norm of this state is:

< Cato(α
∗j
n )|Cato(α

j
n >=

|C|2[< α∗jn |α
j
n > − < α∗jn |− α

j
n > + < −α∗jn |α

j
n > + < −α∗jn |− α

j
n >] (8.2)

Or equivalently:

< Cato(α
∗j
n )|Cato(α

j
n >= |C|2[2− 2<[< α∗jn |− α

j
n >]] (8.3)

As is verified:
< α∗jn |− α

j
n >= e

−2|αJN|2 (8.4)

Or:
< Cato(α

∗j
n )|Cato(α

j
n >= |C|22[1− e−2|α

J
N|2] (8.5)

As a consequence:

C =
e|α

J
N|2√

2(e2|α
J
N|2 − 1)

(8.6)

We have now:

ajn|Cato(α
j
n) >= α

j
n

e|α
J
N|2√

2(e2|α
J
N|2 − 1)

(|αjn > +|− αjn >) (8.7)

And then:

< a+j
n a

j
n >= |αjn|

2e
2|αJN|2 + 1

e2|α
J
N|2 − 1

(8.8)

Moreover:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2 + 1

e2|α
J
N|2 − 1

(
1+ |αjn|

2e
2|αJN|2 − 1

e2|α
J
N|2 + 1

)
(8.9)
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Or equivalently:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2 + 1

e2|α
J
N|2 − 1

+ |αjn|
4 (8.10)

Then, we have the result:

Q1 = −4|αjn|
2 e2|α

J
N|2

e4|α
J
N|2 − 1

(8.11)

And finally:

Q1 = −
2|αjn|

2

sinh(2|αjn|2)
(8.12)

For µ = 0 we obtain:Q2 = −2. Thus

Q = −
2|αjn|

2

sinh(2|αjn|2)
− 2 (8.13)

For the redefined cat states we have:

Q = −
2|αjn|

2

sinh(2|αjn|2)
(8.14)

The results Mandal parameter for odd cat states are interpreted the same
way as that of the even states.

9 Coherent states for closed strings

The mathematical analysis of closed strings involves a doubling of the degrees
of freedom of that of the open strings. Here the left or right moving modes
are the same as the standing waves on open strings. In string theory, closed
strings are of particular importance because the spectrum includes a massless
graviton. The two sets of modes are independent except for the relation
L0 = L̃0 [3] The covariant quantization of the closed strings in fact brings no
complications. The procedure and the general behavior is very similar to that
of open strings. Here we have two sets of covariant Virasoro operators and the
operators which possess non-negative mode number annihilate the physical
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states. In fact the left and right number operators have the same eigenvalue
when acting on physical states. We begin by considering the coherent states:

ψ
α
j
n
(yjn) =

(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2 e−
(y
j
n)2

2 e
√
2α
j
ny
j
n . (9.1)

ψ̃
α̃
j
n
(ỹjn) =

(
1

π

) 1
4

e−
(α̃
j
n)2

2 e−
|α̃
j
n|2

2 e−
(ỹ
j
n)2

2 e
√
2α̃
j
nỹ
j
n (9.2)

j = 1, 2, ..., 25. We have then:

|αjn >=

(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2

∫
e−

(y
j
n)2

2 e
√
2α
j
ny
j
n |yjn > dy

j
n (9.3)

|α̃jn >=

(
1

π

) 1
4

e−
(α̃
j
n)2

2 e−
|α̃
j
n|2

2

∫
e−

(ỹ
j
n)2

2 e
√
2α̃
j
nỹ
j
n |ỹjn > dỹ

j
n (9.4)

A coherent state of the closed bosonic string is:

|αjn, α̃
j
n, p

j >= |αjn > ⊗|α̃jn > ⊗|pj >[(
1

π

) 1
2

e−
(α
j
n)2

2 e−
|α
j
n|2

2 e−
(α̃
j
n)2

2 e−
|α̃
j
n|2

2∫
e−

(y
j
n)2+(ỹ

j
n)2

2 e
√
2α
j
ny
j
n+
√
2α̃
j
nỹ
j
n |yjn > ⊗|ỹjn > dyjndỹjn

]
⊗ |pj > (9.5)

And then:
ψ
αα̃
j
n
(yjnỹ

j
n, p

j) = ψ
α
j
n
(yjn)ψ̃α̃jn(ỹ

j
n)φ(p

j) =[(
1

π

) 1
4

e−
(α
j
n)2

2 e−
|α
j
n|2

2 e−
(y
j
n)2

2 e
√
2α
j
ny
j
n

]
[(
1

π

) 1
4

e−
(α̃
j
n)2

2 e−
|α̃
j
n|2

2 e−
(ỹ
j
n)2

2 e
√
2α̃
j
nỹ
j
n

]
φ(pj). (9.6)

The annihilation operators for the one-dimensional harmonic oscillator is
given by

âjn =
ŷjn + ip̂

j

√
2

(9.7)
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^̃ajn =
^̃yjn + i^̃p

j

√
2

(9.8)

In the x-representation of Quantum Mechanics, this operators are ex-
pressed via

ân
j(yjn) =

1√
2

(
yjn +

∂

∂yjn

)
(9.9)

^̃ajn(ỹ
j
n) =

1√
2

(
ỹjn +

∂

∂ỹjn

)
(9.10)

Thus, a coherent state is defined as the eigenfunction

ân
j(yjn)ψαjn(y

j
n) =

1√
2

(
yjnψαjn(y

j
n) +

∂ψ
α
j
n
(yjn)

∂yjn

)
= αjnψαjn(y

j
n) (9.11)

^̃ajn(ỹ
j
n)ψ̃α̃jn(ỹ

j
n) =

1√
2

(
ỹjnψ̃α̃jn(ỹ

j
n) +

∂ψ̃
α̃
j
n
(ỹjn)

∂ỹjn

)
= α̃jnψ̃α̃jn(ỹ

j
n) (9.12)

or, equivalently,

∂ψ
α
j
n
(yjn)

∂yjn
=
(√
2αjn − y

j
n

)
ψ
α
j
n
(yjn). (9.13)

∂ψ̃
α̃
j
n
(ỹjn)

∂ỹjn
=
(√
2α̃jn − jỹ

j
n

)
ψ̃
α̃
j
n
(ỹjn). (9.14)

We have now for Virasoro operators:

L0 =
1

2
α̂20 +

∞∑
s=1

α̂−s · α̂s (9.15)

L̃0 =
1

2
^̃α20 +

∞∑
s=1

^̃α−s · ^̃αs (9.16)

Lk =
1

2

∞∑
s=−∞ α̂k−s · α̂s ; k > 0 (9.17)

L̃k =
1

2

∞∑
s=−∞

^̃αk−s · ^̃αs ; k > 0 (9.18)
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And
^̃ajn =

1√
n
^̃αjn n > 0 (9.19)

^̃a+j
n =

1√
n
^̃αj−n n > 0 (9.20)

As for the open string we have (in the representations |y >, |ỹ >):

L0 =
α20
2

+

3∑
j=1

∞∑
s=1

s

(
yjs −

∂

∂y
j
s

)
√
2

(
yjs +

∂

∂y
j
s

)
√
2

+ α0−sαs0 (9.21)

L̃0 =
α̃20
2

+

3∑
j=1

∞∑
s=1

s

(
ỹjs −

∂

∂ỹ
j
s

)
√
2

(
ỹjs +

∂

∂ỹ
j
s

)
√
2

+ α̃0−sα̃s0 (9.22)

And:

â0n =
ŷ0n − ip̂

0

√
2

(9.23)

^̃a0n =
^̃y0n − i^̃p

0

√
2

(9.24)

The states coherent states turn out to be now:

ψα0n(y
0
n) =

(
1

π

) 1
4

e
(α0n)2

2 e
|α0n|2

2 e
(y0n)2

2 e−
√
2α0ny

0
n. (9.25)

ψ̃α̃0n(ỹ
0
n) =

(
1

π

) 1
4

e
(α̃0n)2

2 e
|α̃0n|2

2 e
(ỹ0n)2

2 e−
√
2α̃0nỹ

0
n . (9.26)

And:

|α0n >=
(
π

) 1
4

e
(α0n)2

2 e
|α0n|2

2

∫
e

(y0n)2

2 e−
√
2α0ny

0
n |y0n > dy

0
n (9.27)

|α̃0n >=

(
1

π

) 1
4

e
(α̃0n)2

2 e
|α̃0n|2

2

∫
e

(ỹ0n)2

2 e−
√
2α̃0nỹ

0
n |ỹ0n > dỹ

0
n (9.28)

Using (5.18) we have again:

|||α0n > || = 0 (9.29)

|||α̃0n > || = 0 (9.30)
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The complete state:

|α, α̃, p >=
∏
n≥1

25∏
j=1

⊗|αjn > ⊗|α0n > ⊗|α̃jn > ⊗|α̃0n > ⊗|p > (9.31)

Again the coherent state has a null norm, that is

< α, α̃, p
′
|α, α̃, p >= 0 (9.32)

And then
< α, α̃, p

′
|(L0 − I)|α, α̃, p >= 0 (9.33)

< α, α̃, p
′
|(L̃0 − I)|α, α̃, p >= 0 (9.34)

and
< α, α̃, p

′
|Lk|α, α̃, p >= 0 (9.35)

< α, α̃, p
′
|L̃k|α, α̃, p >= 0 (9.36)

Subtracting (9.34) to (9.33) we see that the level-matching condition is sat-
isfied:

< α, α̃, p
′
|L0 − L̃0)|α, α̃, p >= 0 (9.37)

The mas of the coherent state is given by

M2δ(p− p
′
) =< α, α̃, p

′
|2[2(L0 + L̃0) − α

2
0 − α̃

2
0 − 2]|α, α̃, p >= 0 (9.38)

As a consequence
M2 = 0 (9.39)

The same thing happens for the closed string as for the open string. In that
case we have:

I =

∫
|αjn, α̃

j
n >

dαjn
π

dα̃jn
π

< αjn, α̃
j
n| (9.40)

and

0 =

∫
|α0n, α̃

0
n >

dα0n
π

dα̃0n
π

< α0n, α̃
0
n| (9.41)

We can then redefine the coherent state as follows:

|α, α̃, p >=
∏
n6=0

25∏
j=1

⊗|αjn > ⊗|α̃jn > ⊗|p > (9.42)
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The treatment of Virasoro constraints is similar. We give here the mass of
the redefined coherent state:

M2δ(p− p
′
) =< αnα̃n, p

′
|2[2(L0 + L̃0) − α

2
0 − α̃

2
0 − 4]|αn, α̃n, p > (9.43)

Then we have:

M2 = 4

[ ∞∑
n=1

n(|αn|
2 + |α̃n|

2) − 2

]
(9.44)

In this case the level-matching condition translates into:

∞∑
n=1

n(|αn|
2 − |α̃n|

2) = 0 (9.45)

10 Mandel Parameter for closed bosonic string

cat states

The Mandel parameter of closed string coherent states is calculated in the
same way as in open bosonic string coherent states and the results for both
right handed and left handed coherent states of the closed strings are same

Q1 = Q̃1 = 0

Q2 = Q̃2 = −2 (10.1)

Following the procedure for open strings the Mandel parameter for both
the sides of closed string have same result and is given as:

Q = Q̃ = −2 (10.2)

In this section we will calculate the cat states and the corresponding Mandel
parameter for closed strings. The even cat states of closed strings are defined
as:

|Cate(α
j
n) >= C(|α

j
n, α̃

j
n > +|− αjn,−α̃

j
n >) (10.3)

As:
< α∗jn , α̃

∗j
n |− α

j
n,−α̃

j
n >= e

−2|αJN|2e−2|α̃
J
N|2 (10.4)

We have:

C =
e|α

J
N|2e|α̃

J
N|2√

2(1+ e2|α
J
N|2e2|α̃

J
N|2)

(10.5)
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In a similar way that for the open string we have:

ajn|Cate(α
j
n, α̃

j
n) >= α

j
n

e|α
J
N|2e|α̃

J
N|2√

2(1+ e2|α
J
N|2e2|α̃

J
N|2)

(
|αjn, α̃

j
n > −|− αjn,−α̃

j
n >
)

(10.6)

ãjn|Cate(α
j
n, α̃

j
n) >= α̃

j
n

e|α
J
N|2e|α̃

J
N|2√

2(1+ e2|α
J
N|2e2|α̃

J
N|2)

(
|αjn, α̃

j
n > −|− αjn,−α̃

j
n >
)

(10.7)
The mean values are now

< a+j
n a

j
n >= |αjn|

2e
2|αJN|2e2|α̃

J
N|2 − 1

e2|α
J
N|2e2|α̃

J
N|2 + 1

(10.8)

< ã+j
n ã

j
n >= |α̃jn|

2e
2|αJN|2e2|α̃

J
N|2 − 1

e2|α
J
N|2e2|α̃

J
N|2 + 1

(10.9)

And:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2e2|α̃

J
N|2 − 1

e2|α
J
N|2e2|α̃

J
N|2 + 1

+ |αjn|
4 (10.10)

< ã+j
n ã

j
nã

+j
n ã

j
n >= |α̃jn|

2e
2|αJN|2e2|α̃

J
N|2 − 1

e2|α
J
N|2e2|α̃

J
N|2 + 1

+ |α̃jn|
4 (10.11)

We are going to calculate the normalization constant for these states.

|Cato(α
j
n, α̃

j
n) >= C(|α

j
n, α̃

j
n, α̃

j
n > −|− αjn,−α̃

j
n >) (10.12)

As:
< α∗jn , α̃

∗j
n |− α

j
n,−α̃

j
n >= e

−2|αJN|2e−2|α̃
J
N|2 (10.13)

We obtain:

C =
e|α

J
N|2e|α̃

J
N|2√

2(e2|α
J
N|2e2|α̃

J
N|2 − 1)

(10.14)

For the annihilation operators we have:

ajn|Cato(α
j
n, α̃

j
n) >= α

j
n

e|α
J
N|2e|α̃

J
N|2√

2(e2|α
J
N|2e2|α̃

J
N|2 − 1)

(
|αjn, α̃

j
n > +|− αjn,−α̃

j
n >
)

(10.15)
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ãjn|Cate(α
j
n, α̃

j
n) >= α̃

j
n

e|α
J
N|2e|α̃

J
N|2√

2(e2|α
J
N|2e2|α̃

J
N|2 − 1)

(
|αjn, α̃

j
n > +|− αjn,−α̃

j
n >
)

(10.16)
We have as a consequence:

< a+j
n a

j
n >= |αjn|

2e
2|αJN|2e2|α̃

J
N|2 + 1

e2|α
J
N|2e2|α̃

J
N|2 − 1

(10.17)

< ã+j
n ã

j
n >= |α̃jn|

2e
2|αJN|2e2|α̃

J
N|2 + 1

e2|α
J
N|2e2|α̃

J
N|2 − 1

(10.18)

And:

< a+j
n a

j
na

+j
n a

j
n >= |αjn|

2e
2|αJN|2e2|α̃

J
N|2 + 1

e2|α
J
N|2e2|α̃

J
N|2 − 1

+ |αjn|
4 (10.19)

< ã+j
n ã

j
nã

+j
n ã

j
n >= |α̃jn|

2e
2|αJN|2e2|α̃

J
N|2 + 1

e2|α
J
N|2e2|α̃

J
N|2 − 1

+ |α̃jn|
4 (10.20)

The Mandel parameter for even cat states is

Q1 =
2|αjn|

2

sinh(2(|αjn|2) + |α̃jn|2))
(10.21)

Q̃1 =
2|α̃jn|

2

sinh(2(|αjn|2) + |α̃jn|2))
(10.22)

For the odd cat states for both right and left handed states we have

Q1 = −
2|αjn|

2

sinh(2(|αjn|2 + |α̃jn|2))
(10.23)

Q̃1 = −
2|α̃jn|

2

sinh(2(|αjn|2 + |α̃jn|2))
(10.24)

11 Cat states for µ = 0

For µ = 0, the even cat states are

|Cate(α
0
n) >= C(|α

0
n, α̃

0
n > +|− α0n,−α̃

0
n >) (11.1)
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The scalar products are null again.

< α∗0n , α̃
∗0
n |− α

0
n,−α̃

0
n >= 0 (11.2)

< α∗0n , α̃
∗0
n |α

0
n, α̃

0
n >= 0 (11.3)

< −α∗0n ,−α̃
∗0
n |− α

0
n,−α̃

0
n >= 0 (11.4)

These integrals vanish for the following reason

< α0∗n |α
0
n >=(

1

π

) 1
2

e
(α0n)2

2 e
|α0n|2

2 e
(α∗0n )2

2 e
|α0n|2

2∫
e

(y0n)2+(y
′0
n )2

2 e−
√
2[α0ny

0
n+α

∗0
n y
′0
n ] < y

′0
n ||y

0
n > dy

0
ndy

′0
n (11.5)

We use:
< y0n|y

′0
n >= δ(y

0
n − y

′0
n )

And then:
< α0∗n |α

0
n >=(

1

π

) 1
2

e
(α0n)2

2 e
(α∗0n )2

2 e|α
0
n|
2

∫
e(y

0
n)
2

e−
√
2[[α0n+α

∗0
n ]y0n]dy0n (11.6)

Completing squares

(y0n)
2 −
√
2(α0∗n + α0n) =

(
(y0n) −

(α0∗n + α0n)√
2

)2
−

(α0∗n + α0n)
2

2

and making the variable change

z = (y0n) −
(α0∗n + α0n)√

2

We have:

< α0∗n |α
0
n >= 2π

−1/2

∞∫
0

ez
2

dz (11.7)
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We made the change of variable:z2 = u

< α0∗n |α
0
n >= π

−1/2

∞∫
0

u−1/2eudu (11.8)

And after: s = 1/u

< α0∗n |α
0
n >= π

−1/2

∞∫
0

s−3/2e
1
sds (11.9)

Using again (5.18) we obtain:

< α0∗n |α
0
n >= 0 (11.10)

Since in the integrals from 9.26 to (9.28) we have the product of the type
of (9.29). thus all these vanish. keeping in view the values of the above
expressions we evaluate Q parameter and obtain

Q2 = Q̃2 = −2 (11.11)

By similar procedure the Mandel parameter is −2 for odd cat states. The
Mandel parameter for even cat states is

Q = Q̃ =
2|αjn|

2

sinh(2(|αjn|2) + |α̃jn|2))
− 2 (11.12)

and for odd:

Q = Q̃ = −
2|αjn|

2

sinh(2(|αjn|2) + |α̃jn|2))
− 2 (11.13)

12 Coherent States in the light cone quanti-

zation formalism

Heuristic at par with the covariant formalism but pedagogically more intu-
itive, the method of light cone quantization, has been successful in advanced
problems like the calculation of string amplitudes. The idea behind the light
cone quantization lies actually in the fact that it preserves the physical de-
grees of freedom and eliminate the part of the string degrees of freedom by
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using residual symmetry and fix the residual gauge by setting X+ = x++p+τ
and thus Lorentz covariance is explicitly broken. Here the zero modes x+ and
p+ are the integration constants, are arbitrary and left as free parameters.
This choice of gauge is advantageous because it allows every point on the
string to be at the same value of time or we can say that X+ is independent
of σ. Classically interpreting this gauge fixing means to set the oscillator
coefficients α+

n to zero for n 6= 0. The mode expansion scheme of the os-
cillator remains the same, but the formalism involves in setting an infinite
set of modes to zero thus everything is formulated in terms of the transverse
oscillators alone. Thus α̃−

n is expressed as

α̃−
n =

1

2lp+

∑
k

αn−k.αk (12.1)

The quantization takes place in the same way as in canonical formalism but
for the transverse oscillators only.
α̃−
n are defined as operators as

α̃−
n =

1

2lp+

∑
k

: αn−k.αk : −aδn,0 (12.2)

For the zero mode n = 0 the square mass operator is defined as

M2 =
1

α ′

( ∞∑
n=1

α−n.αn − a

)
(12.3)

This is the same mass-shell condition as found in that of the covariant treat-
ment, with the only difference that in light cone treatment only the transverse
oscillators contribute. For the theory to be Lorentz invariant, the parame-
ter a must be equal to 1 and the dimension D has to be 26. As per the
status of physical states is concerned, the light cone formalism is considered
to be ghost free.[3] Thus the treatment of coherent states in the light cone
quantization is similar to that of coherent states of open bosonic string with
the only difference that j = 2, 3, 4, ...25. Following the same mathematical
procedure we express the coherent states for the open string in light cone
treatment as

|α, p >=
∏
n6=0

25∏
j=2

⊗|αjn > ⊗|p > (12.4)
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and for the closed string we again have the result expressed in two degrees
of freedom:

|α, α̃, p >=
∏
n6=0

25∏
j=2

⊗|αjn > ⊗|α̃jn > ⊗|p > (12.5)

Thus we have constructed the coherent states of both open and closed string
in light cone quantization formalism and found the results are similar as that
obtained from the old covariant formalism. The mass of the string will also
be similar as that of the results obtained in covariant treatment. Note that
the only difference between (5.30) and (12.4) and between (9.42) and (12.5)
are the states with j = 1. This clearly justifies that for practical purposes
the coherent states obtained with quantization in the light cone can be used
as an approximation to the coherent states obtained in covariant form

13 Conclusion

In this paper we have obtained the Glauber coherent states for the bosonic
string in the four instances, two using old covariant formalism and the two in
the light cone quantization scheme, followed in this paper. In the covariant
quantization formalism, we followed the original definition of coherent states
of harmonic oscillator and rigorously defined the coherent states for both
open and closed string. The coherent states thus obtained in both the cases,
identically satisfied the Virasoro constraints at mean value. The interesting
point to see here is that, the coherent states have zero mass very similar to
that of the Glauber’s coherent states for the electromagnetic fields, which
validates the covariant quantization approach followed by us in establishing
the coherent states of the string. Taking advantage of the fact that the iden-
tity resolution for the temporal components of the coherent state is null, we
were able to redefine them into the coherent states of non-zero mass.
The behavior of the coherent states obtained by light cone quantization treat-
ment is similar as that of the redefined states obtained using the covariant
formalism. Thus we have a good indication of the validity of the covariant
approach followed in the paper.We evaluated the Mandel parameter for the
coherent states and the respective cat states to see the statistical nature of
their probability distributions, which turned out to be sub-Poissonian, Pois-
sonian and super-Poissonian depending on the value of the parameter being
negative, null and positive respectively.
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An important fact we found is as : Looking closely for example at
(5.36), we can see and infer that by a suitable choice of the αn (say
for example αn = 0 ), we come across with positive norm states
bearing imaginary mass, i.e the states with < α, p

′
|α, p >= δ(p

′
− p)

and M2 < 0 which conclusively corresponds to a tachyonic state
with positive norm.
The decision to construct the coherent states of strings analogous to that of
the quantum harmonic oscillator was not liked by our contemporaries, but
the rhythmic mathematical treatment and the musical results of the theory
is really an encouraging and motivating force to proceed to construct and
establish the super coherent states in very near time.

14 Acknowledgement

A special thanks to our friends Mir Faizal and Salman Wani for their very
helpful and in-depth discussions on this work..

15 Conflicts of Interest Statement

The authors certify that they have NO affiliations with or involvement in any
organization or entity with any financial interest (such as honoraria; educa-
tional grants; participation in speakers’ bureaus; membership, employment,
consultancies, stock ownership, or other equity interest; and expert testimony
or patent-licensing arrangements), or non-financial interest (such as personal
or professional relationships, affiliations, knowledge or beliefs) in the subject
matter or materials discussed in this manuscript.

32



References

[1] R. J. Glauber.Phys. Rev. 131 2766 (1963).

[2] E. Merzbacher, ”Quantum Mechanics” (Wiley, New York, 1970)

[3] M.B. Green, J.H. Schwarz and E. Witten, ”Superstring Theory” (Cam-
bridge University Press, Cambridge, 1994).

[4] G. Callucci. Nuclear Physics B287 658 668 (1987)

[5] A. L. Larsen, N. Sánchez. NPB 618 301 (2001).

[6] S. Floquet, M. A. S. Trinidade, J. D. M. Vianna. IJMPA 32 1750015
(2017).

[7] S. Baskal, Young S. Kim, M. E. Noz. Symmetry 8 55 (2016).

[8] M.Hindmarsh,D. Skliros. PRL 106 081602 (2011).

[9] M. Bianchi, M. Firrotta. NPB 952 114943 (2020).

[10] D. Friedan, E. Martinec, S. Shenker. NPB 271 93 (1986).

[11] M. G. Jackson, N. T. Jones, and J. Polchinski, J. High Energy Phys. 10
013 (2005)

[12] V. V. Dodonov, I. A. Malkin, V. I. Man’ko, Physica 72 597-618 (1974).

[13] M. K. Tavassoly, Phys.A:Math.Gen.39 11583 (2006).

[14] A.I. Solomon, Phys. Lett. A196 29 (1994).

[15] L. Mandel, Optics Letters 4 205 (1979).

[16] C. G. Bollini, M. C. Rocca. IJTP 37 2877 (1998).

[17] C. G. Bollini, M. C. Rocca ”Study of the Wheeler Propagator”.
ArXiv:1012.4108v1.[hep-th] (2010).

[18] N. Itzhaki and J. McGreevy, PRD 71 025003 (2005).

[19] B. Zwiebach:”A First Course in String Theory” Cambridge University
Press (2004).

33



[20] A. Plastino, M. C. Rocca. Revista Mexicana de F́ısica E 65 191 (2019).

[21] A. Plastino, M. C. Rocca. IJMP B 31, 1759151 (2017).

[22] D. J. Zamora, M. C. Rocca, A. Plastino, G. L. Ferri. Physica A 503 793
(2018).

[23] I. S. Gradshteyn and I. M. Ryzhik : “Table of Integrals, Series and
Products”. Academic Press, Inc (1980).

[24] A. Plastino, M. C. Rocca: J. Phys. Commun. 2, 115029 (2018).

[25] I. M. Gel’fand and G. E. Shilov : “Generalized Functions” Vol. 1.
Academic Press (1964).

[26] Sebastiao e Silva J (1958) Mathematische Annalen.136, 58.
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A Appendix: Coherent states

The well known annihilation operator is expressed as

â =
x̂+ ip̂√
2

(A.1)

In the x-representation of Quantum Mechanics, this operator is written as:

â(x) =
1√
2

(
x+

d

dx

)
(A.2)

By definition, a coherent state is an eigenfunction of â

â(x)ψα(x) =
1√
2

(
xψα(x) +

dψα(x)

dx

)
= αψα(x) (A.3)

The solution of (A.3) reads

ψα(x) = Ce
− x

2

2 e
√
2αx (A.4)

To evaluate the constant C we use the normalization.

∞∫
−∞

|ψα(x)|
2dx = |C|2

∞∫
−∞
e−x

2

e
√
2(α+α∗)xdx = 1 (A.5)

We have then:

∞∫
−∞

|ψα(x)|
2dx = |C|2e

(α+α∗)2
2

∞∫
−∞
e
−
(
y−α+α

∗
√
2

)2
dy = 1 (A.6)

By recourse to the Table [23] we obtain

∞∫
−∞
e
−
(
y−α+α

∗
√
2

)2
dy =

√
π. (A.7)

As a consequence,

C =

(
1

π

) 1
4

e−
(α+α∗)2

4 . (A.8)
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Thus, we have for ψα(x) the expression

ψα(x) =

(
1

π

) 1
4

e−
(α+α∗)2

4 e−
x2

2 e
√
2αx (A.9)

or, equivalently,

ψα(x) =

(
1

π

) 1
4

eiαRαIe−
α2

2 e−
|α|2

2 e−
x2

2 e
√
2αx (A.10)

where we have:α = αR + iαI. As eiαRαI is an imaginary phase, it can be
eliminated from (A.10) to finally obtain

ψα(x) =

(
1

π

) 1
4

e−
α2

2 e−
|α|2

2 e−
x2

2 e
√
2αx. (A.11)

In the Abstract Hilbert space we have

|α >=

(
1

π

) 1
4

e−
α2

2 e−
|α|2

2

∫
e−

x2

2 e
√
2αx|x > dx. (A.12)

Thus we have obtained a simple formula for coherent states without the use
of a series

We will prove now that (A.12) is a Glauber’s coherent state. The n−th HO
eigenfunction is

φn(x) = Hn (x) , (A.13)

where Hn is Hermite’s n−th order generalized function

Hn(x) =
(
π
1
22nn!

)− 1
2

e−
x2

2 Hn(x), (A.14)

Here Hn is the n−th Hermite polynomial. We take Eq. (A.11), expand it in
a Hermite series, and verify that one arrives to the Glauber expansion for a
coherent state.
In the x-representation, the coherent state (A.11) expanded into HO eigen-
functions is written:

ψα(x) =

(
1

π

) 1
4

e−
α2

2 e−
|α|2

2 e−
x2

2 e
√
2αx =

∞∑
n=0

anφn(x), (A.15)
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Then we express an as:

an =

∫
ψα(x)φn(x)dx, (A.16)

We can further write

an =

(
1

π

) 1
4

e−
α2

2 e−
|α|2

2

∫
e−

x2

2 e
√
2αxφn(x)dx. (A.17)

We obtain:

an = π− 1
4e−

α2

2 e−
|α|2

2

∞∫
−∞
e−

x2

2 e
√
2αxHn (x)dx. (A.18)

We can also write it as:

an = π− 1
4

(
π
1
22nn!

)− 1
2

e−
α2

2 e−
|α|2

2

∞∫
−∞
e−x

2

e
√
2αxHn (x)dx. (A.19)

or equivalently in we express it as:

an =
π− 1

4e−
|α|2

2(
n!2nπ

1
2

) 1
2

∞∫
−∞
e
−
(
y− α√

2

)2
Hn(y) dy. (A.20)

We appeal now to a result of (see [23]) to obtain

an =
π− 1

4e−
|α|2

2(
n!2nπ

1
2

) 1
2

π
1
22

n
2αn, (A.21)

and

an =
αn√
n!
e−

|α|2

2 . (A.22)

Replacing (A.22) in (A.15) we obtain the Glauber’s result:

ψα(x) = e
−

|α|2

2

∞∑
n=0

αn√
n!
φn(x). (A.23)

In the Hilbert’s abstract space (A.23) reads:

|α >= e−
|α|2

2

∞∑
n=0

αn√
n!

|n > (A.24)

We have proved that (A.12) and (A.24) are equals.
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B Appendix: Analytic extension

We consider the integral:

∞∫
0

xν−1(x+γ)µ−1e−
β
xdx = β

ν−1
2 γ

ν−1
2

+µΓ(1−µ−ν)e
β
2γWν−1

2
+µ,−ν

2

(
β

γ

)
, (B.1)

| arg(γ)| < π, <(1−µ−ν) > 0, where W is the second Whittaker’s function.
Note that <(β) > 0 is not required, as made clear by Gradshteyn and
Rizhik in their table [23] (this formula figure in page 340, eq. (7), called ET
II 234(13)a, where reference is made to [22] (Caltech’s Bateman Project).
The last letter ”a” indicates that analytical extension has been performed.
Selecting µ = 1 in (B.1) we obtain:

∞∫
0

xν−1e−
β
xdx = β

ν−1
2 γ

ν+1
2 Γ(−ν)e

β
2γWν+1

2
,−ν
2

(
β

γ

)
, (B.2)

The last formula is valid for ν 6= 0, 1, 2, 3, ..... The following formula appears
in the same table [23]:

Wν+1
2
,−ν
2

(
β

γ

)
=Mν+1

2
,ν
2

(
β

γ

)
=

(
β

γ

)ν+1
2

e−
β
2γ , (B.3)

where M is the first Whittaker’s function. We have then the result:

∞∫
0

xν−1e−
β
xdx = βνΓ(−ν) (B.4)

This integral can be evaluated using the generalization of the Bollini and Gi-
ambiagi dimensional regularization obtained [24] for ν = 1, 2, 3, ... Changing
now β by −β in (B.4) we have

∞∫
0

xν−1e
β
xdx = (−β)νΓ(−ν) (B.5)

Eq. (B.5) displays a cut at <(β) > 0.
One can therefore choose
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(−β)ν = eiπνβν, (−β)ν = e−iπνβν, or (−β)ν = cos(πν)βν.
As the integral must be real for β to be real, we choose the last possibility
of the three expressions available and finally obtain:

∞∫
0

xν−1e
β
xdx = cos(πν)βνΓ(−ν), (B.6)

We have used this important result in section 4 of this paper.

C Appendix: The new Glauber theory

We will show now that (5.15) is a new type Glauber’s coherent state. In the
x-representation, the new coherent state (5.15) expanded into HO eigenfunc-
tions is written:

ψα(x) =

(
1

π

) 1
4

e
α2

2 e
|α|2

2 e
x2

2 e−
√
2αx =

∞∑
n=0

anφn(x), (C.1)

Then we express an as:

an =

∫
ψα(x)φn(x)dx, (C.2)

We can further write

an =

(
1

π

) 1
4

e
α2

2 e
|α|2

2

∫
e
x2

2 e−
√
2αxφn(x)dx. (C.3)

We obtain:

an = π− 1
4e

α2

2 e
|α|2

2

∞∫
−∞
e
x2

2 e−
√
2αxHn (x)dx. (C.4)

We can also write it as:

an = π− 1
4

(
π
1
22nn!

)− 1
2

e
α2

2 e
|α|2

2

∞∫
−∞
e−
√
2αxHn (x)dx. (C.5)
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or equivalently in we express it as:

∞∫
−∞
eiαxHn (x)dx = H̃n(α) (C.6)

Here H̃n(α) is the complex Fourier transform of Hn (x), and it is an analytic
functional [25]

an = π− 1
4

(
π
1
22nn!

)− 1
2

e
α2

2 e
|α|2

2 H̃n(i
√
2α) (C.7)

Replacing (C.7) in (C.1) we obtain the new Glauber’s result:

ψα(x) = π
− 1
4e

α2

2 e
|α|2

2

∞∑
n=0

(
π
1
22nn!

)− 1
2

H̃n(i
√
2α)φn(x) (C.8)

In the Rigged Hilbert Abstract Space (C.8) reads:

|α >= π− 1
4e

α2

2 e
|α|2

2

∞∑
n=0

(
π
1
22nn!

)− 1
2

H̃n(i
√
2α)|n > (C.9)

40


	Introduction
	Solution to and old problem in string theory
	Review of covariant quantization
	A Useful Equality
	Coherent states for open strings
	Mandel Parameter for coherent states of open bosonic strings
	Mandel parameter for even cat states of open strings
	Mandel parameter for odd cat states of open strings
	Coherent states for closed strings
	Mandel Parameter for closed bosonic string cat states
	Cat states for =0
	Coherent States in the light cone quantization formalism
	Conclusion
	Acknowledgement
	Conflicts of Interest Statement
	Appendix: Coherent states
	Appendix: Analytic extension
	Appendix: The new Glauber theory

