Introduction to a Quantum Impedance Model

Peter Cameron

Abstract

Two fundamental conceptual structures have been lost in quantum mechanics - geometric representation of Clifford algebra and quantization of wavefunction interaction impedances. This presentation outlines their histories and how their synthesis opens a new window on the standard model.

Department of Physics and Astronomical Sciences Central University of Himachal Pradesh (CUHP) and

Indian Association of Physics Teachers–Regional Council (IAPT-RC3) Jointly Organise an

Online Faculty Development Programme (FDP) from 1st to 7th August, 2021

on the topic **Quantum Physics Simulations Using Gnumeric Worksheets**

Introduction to a Quantum Impedance Model Peter Cameron Brookhaven National Laboratory (retired)

The content shall be uploaded on the following website: https://fdpqmsim.saivyasa.in/

Dr. Pawan Kumar Sharma (Organising Secretary) Executive Council Member(IAPT-RC3) Prof. O.S.K.S.Sastri (Convenor) Vice-President(IAPT-RC3)

The Theoretical Minimum

Three assumptions – geometry, fields, and 'mass gap'

- → defining impedance *a brief history*
- impedance matching like energy, what matters is relative
 - photon impedance match to a single free electron *H atom*
 - mechanical impedance topological inversion in SI units
 - unstable particle spectrum *nodes of the quantized impedance network*
 - geometric and topological impedances *scale dependent and invariant*
 - parametric impedances noiseless nonlinearity essential in QM
 - geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
 - wavefunction interactions the 'geometric S-matrix'
 - physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

A History of A Impedance Measurements classical by Henry P. Hall

	https://www.ietlabs.com/genrad_history/history_of_impedance_measurements	
Prefa	ace	2
Scope	8	2
Ackno	owledgements	2
Part	I. The Early Experimenters 1775-1915	3
	1.1 Earliest Measurements, Dc Resistance	3
	1.2 Dc to Ac, Capacitance and Inductance Measurements	6
	1.3 An Abundance of Bridges	10
	References, Part 1	14
Part	II. The First Commercial Instruments 1900-1945	16
	2.1 Comment: Putting it All Together	16
	2.2 Early DC Bridges	16
	2.3 Other Harry DC Instruments	20
	2.4 Early AC Bridges	21
	References Part II	26
Part	III. Electronics Comes of Age 1946-1965	28
	3.1 Comment: The Post-War Boom	28
	3.2 General Purpose, "RLC" or "Universal" Bridges	28
	2.4 Dreateion Ma Pridaes. The Transformer Datio Arm Pridae	20
	3.5 DF Bridges	37
	3.6 Special Purpose Bridges	38
	3,7 Impedance Meters	39
	3.8 Impedance Comparators	40
	3.9 Electronics in Instruments	42
	References Part III	44
Part	IV. The Digital Era 1966-Present transistor - solid state	47
	4.1 Comment: Measurements in the Digital Age	47
	4.2 Digital Dc Meters	47
	4.3 Ac Digital Meters	48
	4.4 Automatic Ac Bridges	50
	4.5 Computer-Bridge Systems	52
	4.6 Computers in Meters and Bridges	52
	4.7 Computing Impedance Meters	53
	4.8 Inscruments in ose loday 4.9 A Long Way from Ohm	57
	References Part IV	59
Apper	ndices.	
ubbei	A. A Transformer Equivalent Circuit	60
	B. LRC or Universal Bridges	61
	C. Microprocessor-Base Impedance Meters	62

Defining Impedance

- impedance *matching* governs amplitude and phase of energy/information transmission,...
- examples
 - trumpet (mechanical)
 - loudspeaker (electromechanical)
 - cellphone (electromagnetic)

 $F = m \frac{d^2 x}{dt^2} + R \frac{dx}{dt} + kx$

phase space conservation - Liuoville Conjugate variables – x and p, E and t,...

Impedance History

Heavisideintroduced the following terms of art:Sep 1885 conductancereal part of admittance, reciprocal of RSep 1885 permeability μ a measure of magnetizationFeb 1886 inductanceL

July 1886 <mark>impedance</mark> Z

Nov 1886 elastance reciprocal of capacitance

Jun 1887 permittance *c* now capacitance

Jun 1887 permittivity ε

Dec 1887 admittance reciprocal of impedance

May 1888 reluctance reciprocal of susceptance

<u>electret</u> - electric analogue of a permanent magnet, in other words, substance exhibiting quasi-permanent electric polarization (e.g. <u>ferroelectric</u>);

Heaviside is sometimes also credited with introducing <u>susceptance</u> (the imaginary part of admittance, reciprocal of reactance), but this is actually due to <u>Charles Proteus Steinmetz</u>

As important as Heaviside was in early history of electromagnetics, his influence (and Gibbs) there is far overshadowed by his role in the math war between Clifford algebra (valid in all dimensions) and his invention of vector algebra (valid in 3D only). Clifford algebra is math of physics, vector algebra that of the engineer.

The physicists (and mathematicians!) lost.

Impedance Matching

https://studylib.net/doc/8358945/impedance-matching Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul/

The term *Impedance* is a general term which can be applied to any electrical ethnicity which *impedes* (obstruct) the flow of the current. <u>Oliver Heaviside</u> (1850-1925) coined *Impedance* definition, as well as many other terms of art in electromagnetic theory: *Inductance, Admittance, Conductance, Permeability, Permittance (Susceptance), Reluctance, Electret.*

Oliver Heaviside also reformulated Maxwell's field equations in terms of electric and magnetic forces and energy flux, and independently co-formulated *Vector Analysis,* which is needed to express the *impedance* in coordinates. **not true?** dimensionality, background independence,...

Impedance Matching was originally developed for electrical power, but can be applied to any other field where a form of energy (not necessarily electrical) is transferred between a *source* and a *load*.

• The first *Impedance Matching* concept in RF domain was related to **Antenna Matching**. Designing an antenna can be seen as matching the free space to a transmitter or a receiver.

Impedance Matching is always performed between two specified terminations

Conjugate match of resistive source and complex load for maximum power transfer

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
- physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
- examples particle physics, gravitational mass, cosmology,...
- condensed matter the next frontier, lattice impedances, quantum computing,...

http://redshift.vif.com/JournalFiles/V17N03PDF/V17N3CA1.pdf

Photon Impedance Match to a Single Free Electron

Electromagnetic Impedance

Near-field photon impedance of the basic photon-electron interaction of QED is not to be found in the curriculum, textbooks, or journals of the physicist.

What governs amplitude and phase of the flow of energy in QED got lost in physics.

In addition to near-field impedance of the photon, one's model must include the corresponding quantized near-field impedance of the electron. A second piece of the puzzle that got lost in physics.

How Impedance matching was lost in QM

- Topological inversion units of mechanical impedance are [kg/s]. Intuitively one might expect that more [kg/s] would mean more mass flow. However more impedance means less flow. Thwarted Bjorken, Feynman,...
- 2. concept of *exact* impedance quantization did not exist until vonKlitzing et.al discovered QHE in 1980.
- 3. QHE was easy scale invariant!
- 4. habit of setting fundamental constants to dimensionless unity h = c = G = Z = ... = 1 let Z slip over the horizon.

Dirac relation eq = hbarelectric charge magnetic charge inverse top, Higgs, Rydberg Z, W 'classical' Bohr radius radius Compton Compton wavelength wavelength 'classical' Bohr radius radius top, Higgs, inverse Rydberg Z. W

Mismatches are Feynman's regularization parameters of QED. Inclusion renders QED finite. This is what Bjorken discovered back in 1959, anticipated it would be a powerful tool, was led astray by the inversion of SI units. Feynman had an EE student do a thesis on impedance matching to the maser.

Bjorken was perhaps not familiar with their work when writing his 1959 thesis [46]. In that thesis is an approach summarized [47] as "...an analogy between Feynman diagrams and electrical circuits, with Feynman parameters playing the role of *resistance*, external momenta as current sources, and coordinate differences as voltage drops. Some of that found its way into section 18.4 of..." the canonical text [48]. As presented there, the units of the Feynman parameter are [sec/kg], the units of mechanical *conductance*[5].

One of the black hole event horizon impedances is the 25812 ohm quantum Hall. scale invariant, topological, communicates phase only, can do no work.

J. Bjorken, "Experimental tests of Quantum electrodynamics and spectral representations of Green's functions in perturbation theory", Thesis, Stanford (1959) http://searchworks.stanford.edu/view/2001021

J. Bjorken, private communication (2014)

J. Bjorken, and S. Drell, Relativistic Quantum Fields, McGraw-Hill, section 18.4 (1965)

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
 - unstable particle spectrum *nodes of the quantized impedance network*
 - geometric and topological impedances *scale dependent and invariant*
 - parametric impedances noiseless nonlinearity essential in QM
 - geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
 - wavefunction interactions the 'geometric S-matrix'
 - physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

Impedance <u>History</u>

color code

white – classical yellow – quantum theory gold – experiment green - BSM

Synchronous counter-rotating eccentrics transform 2D rotation to 1D translations, are an analog to electron and positron spinors of Dirac equation counter-rotating in phase space.

A typical vibratory piledriver generates a sinusoidal inertial force of many tens or hundreds of tons, might be thought of as an `inertia wave generator'. Given equivalence of gravitational and inertial mass, it might also be called a gravitational wave generator.

The extent to which such a toy model might ultimately prove useful remains to be seen. For now it seems clear that it provides a simple shortcut to calculating quantized electromagnetic impedances

this is important – impedance matching governs amplitude and phase of energy transmission

July 24, 1975

THE TWO BODY PROBLEM AND MACH'S PRINCIPLE

Peter Cameron background independence! 2210 Water Street

Port Huron, Michigan 48060

The classical analysis of the two-body problem is frequently complicated by the introduction of a system of co-ordinates which is independent of either of the bodies. The validity of such an analysis rests' upon the premise that the co-ordinate frame does not interact with the physical system via any known physical laws, and that one is therefore free to choose whatever reference frame seems most useful.

A strong epistemological argument might be advanced against this reasoning. If sufficiently rigorous constraints are placed upon the spatial properties of the interacting bodies, the introduction of an independent observer will have a radical effect upon the form of the ecuations which describe the interaction, to the extent that strongly

pizza sauce fundamental things as space, time, and matter. Newton submitted to Am.J.Phys 1975 referees: 'No new physics here' Published 2011 as an appendix to the Electron Impedances paper. <u>http://redshift.vif.com/JournalFiles/V1</u> <u>8NO2PDF/V18N2CAM.pdf</u>

> Mass is quantized. All rest mass particles have quantized mechanical impedances. EM conversion factor is squared inverse of line charge density [m/coul]² Resulting model has correct amplitudes and some phase information, but mass is single field, EM is two fields – orientational information needed to apply Maxwell's eqns is lacking.

Mechanical Impedances - 2010

Apeiron, Vol. 18, No. 2, April 2011

impedance network of the 'mass gap'

Electron Impedances

Peter Cameron Brookhaven National Laboratory Upton, NY 11973 <u>cameron@bnl.gov</u>

It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

To understand the electron would be enough - Einstein

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum nodes of the quantized impedance network
 - geometric and topological impedances *scale dependent and invariant*
 - parametric impedances noiseless nonlinearity essential in QM
 - geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
 - wavefunction interactions the 'geometric S-matrix'
 - physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

Generalized Quantum Impedances: A Model for the Unstable Particles

Peter Cameron* Brookhaven National Laboratory Upton, NY USA 11973

(Dated: June 20, 2012)

The discovery of exact impedance quantization in the quantum Hall effect was greatly facilitated by scale invariance. Both follow from the application of the Lorentz force to a two dimensional ballistic current carrier. This letter speculates upon the possibility that quantum impedances may be generalized, defined not just for the Lorentz force, but rather for all forces, resulting in a precisely structured network of scale dependent and scale invariant impedances. If the concept of generalized quantum impedances correctly describes the physical world, then in quantum physics such impedances govern how energy is transmitted and reflected, how the hydrogen atom is ionized by a 13.6eV photon, or why the π_0 branching ratio is what it is. An impedance model of the electron is presented, and explored as a model for the unstable particles as well.

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances scale dependent and invariant
- parametric impedances noiseless nonlinearity essential in QM
 - geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
 - wavefunction interactions the 'geometric S-matrix'
 - physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

Geometric and Topological Impedances

- geometric impedances
 - gravitational/Coulomb, dipole, scalar Lorentz,...
 - 1/r and 1/r³ potentials
 - scale dependent
 - communicate both amplitude and phase
 - can do work resultant motion is parallel to applied force
 - can be shielded
 - associated with translation gauge fields
- topological impedances
 - vector Lorentz (quantum Hall, Aharonov-Bohm), centrifugal, three-body,...
 - 1/r² potentials
 - scale invariant
 - communicate phase only, not a single measurement observable
 - cannot do work resultant motion is perpendicular to applied force
 - cannot be shielded
 - associated with rotation gauge fields and anomalies
 - the channel of non-local entanglement

gauge = phase? phase coherence defines boundary of wavefunction Impedances shift phases – alternative to covariant derivative

Parametric Impedances

- quantum mechanics requires a non-linear process for energy transformation in the frequency domain.
- Clifford algebra accomplishes this via multiplication, the geometric product.
- physics accomplishes this via the scale-dependent geometric impedances.
 - monopole, dipole, scalar Lorentz,...
 - 1/r and 1/r³ potentials
 - communicate both amplitude and phase
 - can do work resultant motion is parallel to applied force
 - can be shielded
- child 'pumping' a swing at 2f₀,
- variable capacitor/varactor,...
- topological impedances cannot do work
 - phase shifters
 - mode couplers?
 - gravitation?

fermions, bosons, and the dimension changing geometric product

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra *vacuum wavefunction* (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
- physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
- examples particle physics, gravitational mass, cosmology,...
- condensed matter the next frontier, lattice impedances, quantum computing,...

The Theoretical Minimum

Pauli σ matrices are basis vectors of 3D space, Dirac γ matrices those of 4D spacetime

Three assumptions – geometry, fields, and 'mass gap'

Division Algebras - add, subtract, multiply, divide

- division is essential for invertibility (... topology, singularities, dark matter, T-duality, ...)
- there exist four normed division algebras real, complex, quaternion, octonion
- these are Clifford algebras, more familiar in Pauli and Dirac matrix representations
 - Pauli matrices are basis vectors of 3D space in GA
 - Dirac matrices " " " 4D spacetime
- eight-component 3D Pauli algebra is minimally and maximally complete
- the 'natural' vacuum wavefunction of quantum mechanics the same at all scales

Hurwitz

http://geocalc.clas.asu.edu/pdf/SpacetimePhysics.pdf

"Geometric Algebra is the universal language for mathematical physics"

Given two vector bosons W and Z, the product WZ changes grades. In the product $WZ = W \cdot Z + W \cdot Z$, two grade 1 vector bosons transform to grade 0 scalar boson and grade 2 bivector fermion WZ = Higgs + top Taken together, the four superheavies comprise a minimally complete 2D Clifford algebra – one scalar, two vectors, and one bivector sum mode $m_7 + m_W = m_{top}$

difference mode $m_Z - m_W = m_{bottomonium}$

no Higgs mass here?

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
 - physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

Pauli σ matrices are basis vectors of 3D space, Dirac γ matrices those of 4D spacetime

the geometric S-matrix

blue background = even dimensions = eigenmodes ~ flavor? yellow background = odd dimensions = transition modes ~ color?

Serendipity – 2011 Gang of Eight matched 2015 discovery of Geometric Algebra octonion

 QUANTIZING GAUGE THEORY GRAVITY
 equivalence with GR

 P. Cameron
 Hestenes and the

 Strongarm Studios
 1990s

Strongarm Studios Mattituck, NY USA peter.cameron@protonmail.ch

2015 Barcelona conference on applications of Geometric Algebra

ABSTRACT. The shared background independence of spacetime algebra and the impedance approach to quantization, coupled with the natural gauge invariance of phase shifts introduced by quantum impedances, opens the possibility that identifying the geometric objects of the impedance model with those of spacetime algebra will permit a more intuitive understanding of the equivalence of gauge theory gravity in flat space with general relativity in curved space.

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
- physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
 - examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

$\alpha = \frac{1}{e^2} \approx 0.0$	0073 Ape	Apeiron, Vol. 18, No. 2, April 2011			
$4\pi\epsilon_0 \hbar c$ $1/\alpha \approx 137$	physical ma	nifestation – coupling constant			
electric charge		$e := 1.602176487 \cdot 10^{-19} \cdot coul$			
magnetic charge	$\mathbf{g} := \frac{\mathbf{h}}{\mathbf{e}}$	$g = 4.1356673326 \times 10^{-15} tesla \cdot m^2$			
magnetic flux quantum (photon)	$\Phi_{\mathbf{B}} \coloneqq \frac{\mathbf{h}}{\mathbf{e}}$	$\Phi_{\rm B} = 4.1356673326 \times 10^{-15} \text{ tesla} \cdot \text{m}^2$			
large electric flux quantum (photon)	$\Phi_{E1} := \frac{\mathbf{h} \cdot \mathbf{c}}{\mathbf{e}}$	$\Phi_{E1} = 1.2398418751 \times 10^0 \text{ mvolt} \cdot \text{mm}$			
small electric flux quantum (electron)	$\Phi_{E2} \coloneqq \frac{e}{\varepsilon_0}$	$\Phi_{\rm E2} = 1.809512651 \times 10^{-2} {\rm volt} \cdot \mu { m m}$			
Bohr magneton	$\mu_{\mathbf{B}} := \frac{\mathbf{e} \cdot \lambda \mathbf{bar}_{\mathbf{e}} \cdot \mathbf{c}}{2}$	$\mu_{\rm B} = 9.2740091365 \times 10^{-24} \frac{\rm joule}{\rm tesla}$			
large EDM	$d_{Bohr1} := \frac{g \cdot hbar}{\mu_0 \cdot m_e \cdot c^2}$	$d_{Bohr1} = 4.2391764 \times 10^{-30} m coul$			
small EDM	$d_{Bohr2} := e \cdot \lambda bar_e$	$d_{Bohr2} = 6.1869529329 \times 10^{-32} m coul$			

	electric charge (e) scalar	elec dipole moment 1 d _{E1} vector	elec dipole moment 2 d _{E2} vector	mag flux quantum ф_B <i>vector</i>	elec flux quantum 1 \$\$\$\$ \$	elec flux quantum 2 Ф_{E2} <i>bivector</i>	magnetic moment (µ _{Bohr}) <i>bivector</i>	magnetic charge g trivector
(e)	scalar	ed _{E1}	ed _{E2} vector	еф _в ●	eφ _{E1}	e¢ _{E2} bivector	ещв	eg trivector
d _{E1}	d _{E1} e		d _{E1} d _{E2}	d _{ε1} φ _B	d _{e1} φ _{e1}	$d_{E1}\phi_{E2}$	d _{ε1} μ _β	d _{E1} g
d _{E2}	d _{E2} e	d _{E2} d _{E1}	d _{E2} d _{E2} ◆	d _{E2} φ _B	$d_{e2}\phi_{e1}$	$d_{E2}\phi_{E2}$	d _{ε2} μ _Β	d _{E2} g
фв	φ _B e	φ _B d _{E1}	ф _в d _{E2} scalar + bivector	φ _в φ _в	φ _β φ _{ε1} γ	Φ _B Φ _{E2} vector + trivector	ф _в µ _в	ф _в g bv + qv
ф е1	¢ _{E1} e ▲	$\phi_{E1}d_{E1}$	$\phi_{E1}d_{E2}$	φ _{ε1} φ _β γ	Φε1Φε1	φ _{ε1} φ _{ε2}	φ _{ε1} μ _в	Φ _{E1} g
ф _{е2}	φ _{ε2} e ▲	$\phi_{e2}d_{e1}$	$\phi_{E2}d_{E2}$	φ _{ε2} φ _в	φ _{ε2} φ _{ε1}	φ _{ε2} φ _{ε2}	φ _{ε2} μ _β	¢ _{E2} g ●
(µ _B)	bivector	μ _B d _{E1}	μ _B d _{E2} vector + trivector	μ _в φ _в	μ _в φ _{ε1}	μ _B φ _{E2} scolar + quadvector	μ _β μ _β	<mark>µ_вg</mark> vector + pv
g	ge trivector	gd _{E1}	gd _{E2} vector + quadvector	бфв	gφ _{ε1} ●	B¢E2 ● vector + pentavecto	gµ _B	gg ■ scalar + sv

S-matrix of Dirac's QED, extended to the full eight-component vacuum wavefunction in the geometric representation of Clifford algebra. Symbols (triangle, diamond,...) correspond to following slides.

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
- physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
- examples particle physics, gravitational mass, cosmology,...
 - condensed matter the next frontier, lattice impedances, quantum computing,...

BSM example 2 – origin of gravitational mass, inflation, chirality, baryon asymmetry,...

BSM example 3 mismatch attenuated Hawking photon ('graviton' is full 8-component wavefunction?)

Where in this network do we want to match for SRGW? How?

BSM example 4 – chiral anomaly – precise pizero, eta, and eta' branching ratios in powers of α

An Impedance Approach to the Chiral Anomaly

- defining impedance a brief history
- impedance matching like energy, what matters is relative
- photon impedance match to a single free electron *H atom*
- mechanical impedance topological inversion in SI units
- unstable particle spectrum *nodes of the quantized impedance network*
- geometric and topological impedances *scale dependent and invariant*
- parametric impedances noiseless nonlinearity essential in QM
- geometric representation of Clifford algebra vacuum wavefunction (1,3,3,1)
- wavefunction interactions the 'geometric S-matrix'
- physical manifestation the 'electromagnetic S-matrix', origin of inertial mass,...
- examples particle physics, gravitational mass, cosmology,...
- condensed matter the next frontier, lattice impedances, quantum computing,...

condensed matter - the next frontier

- deBroglie frequency is Doppler shift of Compton frequency $v=0 \rightarrow \lambda_{dB} = h/mv \rightarrow \infty$
 - match to deBroglie, not Compton
 - vacuum wavefunction is the same at all scales
- how to calculate lattice impedances?
 - Feynman and Hibbs path integral book mentions matching in 1D
 - start with Hydrogen atom, then molecular Hydrogen? need proton wavefunction?
 - then carbon nanowire, graphene, diamond,...?
- already in the jump from wavefunction interaction two-body modes to threecomponent neutrino oscillation, octonion algebra is fertile. Failure of three component associativity yields chiral symmetry breaking, left-handed universe.
- we want to go to N-body.
- impedance matching is absolutely essential in computers as we know them.
 Is *quantum* impedance matching essential in *quantum* computers?
- primary decoherence in quantum computing is the stochastic thermal background.
- weak measurement theory?
 - To close a phase loop within the wavefunction, to excite then lock and track, would seem to require quantum impedance matching to a low energy coupled mode.
 - What does a quantum network analyzer look like?

thank you