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Abstract

We consider here the simple derivation of the Einstein equations by Fock.
Then, we approach the way from the spin 1 fields to the spin 2 fields for massive
and massless particles and we derive the gravity equations from this base. In
conclusion, we discuss the principle of equivalence in classical Einstein theory
and in the Schwinger spin 2 gravity.

1 Introduction

While the electromagnetic field was determined from the motion of charges and currents,
the Einstein-Hilbert theory of gravity being the spacetime geometry was determined
from presence of mass-energy and linear momentum. The corresponding equations -
Einstein-Hilbert equations (EHE) - determine the metric tensor of spacetime for a given
arrangement of stress-energy in the spacetime. The relationship between the metric
tensor and the Einstein tensor allows the EHE to be written as a set of non-linear partial
differential equations. The solutions of the EHE are the components of the metric tensor.
The inertial trajectories of particles and radiation (geodesics) in the resulting geometry are
then calculated using the geodesic equations. As well as obeying local energy-momentum
conservation, the EHE reduce to Newtons law of gravitation, where the gravitational field
is weak and velocities are much less than the speed of light.

We consider here the simple derivation of the Einstein equations by Fock. Then, we
approach the way from the spin 1 fields to the spin 2 fields for massive and massless
particles and we derive the corresponding action for spin 2 gravity from this base.

2 The Einstein equations derived by Fock

There is the simple derivation of the EHE given by Fock (1964). The similar derivation
was performed by Chandrasekhar (1972), Kenyon (1996), Landau et al. (1987), Rindler
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(2003) and others. Source theory derivation of Einstein equations was performed by
Schwinger (1970).

It is well known that the gravity mass MG of some body is equal to the its inertial mass
MI , where gravity mass is a measure of a massive body to create the gravity field (or,
gravity force) and the inertial mass of a massive body is a measure of the ability of the
resistance of the body when it is accelerated. At present time we know, that if components
of elementary particles have the same gravity and inertial masses, the body composed with
such elementary particles has the identical gravity and inertial mass. There is no need to
perform experimental verification. So, particle physics brilliantly confirms the identity of
the inertial and gravity masses.

According to the Newton theory, the gravity potential is given by the equation

U(r) = −κM
r
, (1)

where r is a distance from the center of mass of a body, κ is the gravitational constant
and its numerical value is in SI units 6.67430(15)10−11m3.kg−1.s−2 (CODATA, 2018).

The potential U is as it is well known the solution of the Poisson equation:

∆U(r) = −4πκ%, (2)

where % is the density of the distributed masses.
The problem is, what is the geometrical formulation of gravity equation (2) following

from the space-time element ds, which has the Minkowski form in case of the special
theory of relativity.

Let us postulate that the motion of a body moving in the g-field is determined by the
variational principle

δ
∫
ds = 0. (3)

In order to get the Newton equation of motion, we are forced to perform the following
identity:

g00 = c2 − 2U = −4πκ%. (4)

The second mathematical requirement, which has also the physical meaning is the
covariance of the derived equation. It means that the necessary mathematical operation
are the following replacing of original symbols:

U → gµν (5)

with
∆U → Tensor equation (6)

and

%→ Tµν , (7)

where Tµν is the tensor of energy and momentum.
In order to get the tensor generalization of eq. (2) it is necessary to construct new

tensor Rµν , which is linear combination of the more complicated tensor Rαβ,µν , or

Rµν = gαβRµα,βν (8)
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and the scalar quantity R, which is defined by equation

R = gλµRλµ (9)

and construct the combination tensor Gλµ of the form

Gµν = Rµν −
1

2
gµνR, (10)

which has the mathematical property, that the covariant divergence of this tensor is zero,
or,

∇λGλµ = 0. (11)

.
With regard to the fact that also the energy-momentum tensor Tµν has the zero

divergence, we can identify eq. (10) with the tensor Tµν , or

Rµν −
1

2
gµνR = −8πκ

c2
Tµν , (12)

where the appeared constant in the last equation is introduce to get the classical limit of
the equation.

The approximate solution of the last equation is as follows

ds2 = (c2 − 2U)dt2 −
(

1 +
2U

c2
(dx2 + dy2 + dz2)

)
. (13)

The space-time element (13) is able to explain the shift of the frequency of light in
gravitational field and the deflection of light in the gravitational field of massive body
with mass M .

So, we have seen that the basic mathematical form of the Einstein general relativity
is the Riemann manifold specified by the metric with the physical meaning. The crucial
principle is the equality of the inertial and gravitational masses.

While the derivation of the EHE is elementary, Feynman wrote that the derivation of
EHE by Einstein is difficult to understand. Namely:

Einstein himself, of course, arrived at the same Lagrangian but without the help of
a developed field theory, and I must admit that I have no idea how he guessed the final
result. We have had troubles enough arriving at the theory - but I feel as though he had
done it while swimming underwater, blindfolded, and with his hands tied behind his back!
(Feynman et al., 1995).

Now the question arises, what is the the force acting on the point moving in the
homogenous gravitational field. It was calculated in the 3-form as follows (Landau, et al.,
1987):

f =
mc2√
1− v2

c2

{
grad ln

√
h+
√
h
[
v

c
rot g

]}
, (14)

with (Landau, et al., 1987).

h = 1 +
2ϕ

c2
, (15)

where ϕ s gravitational potential generating the acceleration g. So, we see that it is not
in the simple Newton form.
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Let us still remark that the derived Einstein equations (12) can be generalized to form
the Einstein equations with the cosmological constant, or, (Einstein, 1917)

Rµν −
1

2
gµνR + Λgµν = −8πκ

c2
Tλµ, (16)

where Λ is the new cosmological constant introduced formally, with the goal to find new
form of the cosmological model and their solutions in the mathematical form. In addition
to that the last equation can be still derived in order to involve so cosmological matrix
(Pardy, 2018b). The new form of such equations is as follows:

Rµν −
1

2
gµνR + (Λαβg

αβ)gµν = −8πκ

c2
Tµν , (17)

where

Λαβ =


Λ00 Λ01 Λ02 Λ03

Λ10 Λ11 Λ12 Λ13

Λ20 Λ21 Λ22 Λ23

Λ30 Λ31 Λ32 Λ33

 . (18)

The generalization of cosmology and the new deal of cosmology is then based on the
Einstein-Pardy gravity equations (17) (Pardy, 2018b).

3 The spin 1 field equations

Spin was originally introduced as the rotation with an angular momentum of a particle
around some axis. On the other hand, spin has some peculiar properties that distinguish it
from orbital angular momenta: a) Spin quantum numbers may take half-integer values. b)
Although the direction of its spin can be changed, an elementary particle cannot be made
to spin faster or slower. c) The spin of a charged particle is associated with a magnetic
dipole moment with a g-factor differing from 1. This could only occur classically if the
internal charge of the particle were distributed differently from its mass.

The conventional definition of the spin quantum number, s, is s = n/2, where n can
be any non-negative integer. So, the allowed values of s are 0, 1/2, 1, 3/2, 2, etc. The
value of s for an elementary particle depends only on the type of particle, and cannot be
altered in any known way (in contrast to the spin direction).

We show that the natural construction of the field of the particles with spin 1 is
presented in source theory method. The relation

|〈0+|0−〉|2 = exp {−2ImW} ≤ 1 (19)

is postulated to be valid for all spin fields. Let us show here the construction of action
and field equations concerning spin one.

If spin zero particles and fields are described by the scalar source, then a vector source
denoted here as Jµ(x) can be considered as a candidate for the description of the spin 1
fields and particles. However, there exist some obstacles because source Jµ(x) has four
components and spin one particles have only three spin possibilities. Nevertheless first,
let us investigate by analogy with the spin zero fields the following form of the action for
the unit spin fields:

W (J) =
1

2

∫
(dx)(dx′)Jµ(x)∆+(x− x′)Jµ(x′). (20)
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Then,

|〈0+|0−〉|2 = eiW eiW
∗

= exp
{
−
∫

dωpJ
∗µ(p)Jµ(p)

}
. (21)

However,
J∗µ(p)Jµ(p) = |J(p)|2 − |J0(p)|2 ≤ 0, or, > 0 (22)

and it means that the quantity defined by eq. (21) cannot be considered as the probability
of the persistence of vacuum.

The difficulty can be overcome by replacing the original form J∗µ(x)Jµ(x) by the
following invariant structure:

J∗µ(p)
[
gµν +

1

m2
pµpν

]
Jν(p), (23)

which can be with regard to its invariance, determined in the rest frame of the time-like
vector pµ, where pµ = (m, 0, 0, 0) in the rest frame. Then, with gαα = (−1, 1, 1, 1) we have

ḡµν = gµν +
1

m2
pµpν =


δkl; µ = k; ν = l
0; µ = 0; ν = 0
0; µ = k; ν = 0

(24)

and

J∗µ(p)ḡµνJ
ν(p) ≡ |J|2, (25)

and now the quantity |〈0+|0−〉|2 can be interpreted as the vacuum persistence probability.
At the same time |J|2 contains three independent source components, transforming

among themselves under spatial rotation, as it is appropriate to unit spin.
After using eq. (23) it may be easy to get W (J) in the space-time representation by

the Fourier transformation, as it follows

W (J) =
1

2

∫
(dx)(dx′) ×{

Jµ(x)∆+(x− x′)Jµ(x′) +
1

m2
∂µJ

µ∆+(x− x′)∂′νJν(x′)
}
. (26)

The field of spin one particles can be defined using the definition of the test source
δJµ(x) by the relation

δW (J) =
∫

(dx)δJµ(x)ϕµ(x), (27)

where ϕµ is the field of particles with spin 1. After performing variation of the formula
(26) and comparison with eq. (27) we get the equation for field of spin 1 in the following
form:

ϕµ(x) =
∫

(dx′)∆+(x− x′)Jµ(x′)− 1

m2
∂µ

∫
(dx′)∆+(x− x′)∂′νJν(x′). (28)

The divergence of the vector field ϕµ(x) is given by the relation

∂µϕ
µ(x) =

∫
(dx′)∆+(x− x′)∂′µJµ(x′) −

1

m2
∂2∆+(x− x′)∂′νJν(x′) =

1

m2
∂µJ

ν(x), (29)
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where we used relation −∂2∆+ = δ(x− x′)−m2∆+.
Further, we have after applying operator (−∂2+m2) on the equation (28) the following

equation:

(
−∂2 +m2

)
ϕµ(x) = Jµ(x)− 1

m2
∂µ∂νJ

ν(x) (30)

(
−∂2 +m2

)
ϕµ(x) + ∂µ∂νϕ

ν(x) = Jµ(x) (31)

as a consequence of eq. (29).
It may be easy to cast the last equation into the following form

∂νGµν +m2ϕµ = Jµ, (32)

where
Gµν(x) = −Gνµ(x) = ∂µϕν − ∂νϕµ. (33)

Identifying Gµν with Fµν of the electromagnetic field we get instead of eq. (32) so
called the Proca equation for the electromagnetic field with the massive photon.

It is evident that the zero mass limit does not exist for ∂µJ
µ(x) 6= 0. In such a way we

are forced to redefine action W (J). One of the possibilities is to put

∂µJ
µ(x) = mK(x) (34)

and identify K(x) in the limit m→ 0 with the source of massless spin zero particles.
Since the zero mass particles with zero spin are experimentally unknown in any event,

we take K(x) = 0 and we write

W[m=0](J) =
1

2

∫
(dx)(dx′)Jµ(x)D+(x− x′)Jµ(x′), (35)

where
∂µJ

µ(x) = 0 (36)

and
D+(x− x′) = ∆+(x− x′;m = 0). (37)

The detail discussion concerning helicity, angular momentum, etc. of this new particle
(photon) can be found in the Schwinger book (Schwinger, 1970).

4 Spin 2 fields

Exploiting the experience with spin 1 fields we form the combinations

Tµν(x), (38)

∂µT
µν(x), (39)

∂µ∂νT
µν(x) (40)

and T (x) with appropriate coefficients in order to get the plausible form of action W (T )
for particles with spin 2.
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While the spin one particles are described by the four-vector fields and sources the
possible mathematical object describing particles with spin 2 should be the tensor field
ϕµν and the tensor source Tµν . Let us suppose that the tensor source is symmetrical, or,
Tµν = Tνµ.

Then, it has ten independent components. The vector source

∂µT
µν(x) (41)

has 3 + 1 components and the scalar source

T (x) = gµνT
µν(x) (42)

is the one-component object. If we eliminate them, then the multiplicity of the system
will be equal to five and this situation corresponds to the particle with spin 2.

Now, the question arises, what is the mathematical structure of the action W (T )
for particles with spin 2. Exploiting the experience with spin 1 fields we observe
that W (J) as the scalar quantity is formed by suitable combinations of sources and
their derivatives. Similarly, in case with spin 2 particles we use the combinations of
Tµν(x), ∂µT

µν(x), ∂µ∂νT
µν(x) and T (x) with appropriate coefficients. The plausible form

of W (T ) for particles with spin 2 is as follows:

W (T ) =
1

2

∫
(dx)(dx′) {T µν(x)∆+(x− x′)Tµν(x) +

2

m2
∂νT

µν(x)∆+(x− x′)∂′λTµλ(x′) +

1

m4
∂µ∂νT

µν(x)∆+(x− x′)∂′α∂′βTαβ(x′) −

1

3

(
T (x)− 1

m2
∂µ∂νT

µν(x)
)

∆+(x− x′)
(
T (x′)− 1

m2
∂′α∂

′
βT

αβ(x′)
)}

, (43)

where the coefficients follow (as we will see in the next text) from the probability condition
|〈0+|0−〉|2 ≤ 1.

The probability of the vacuum persistence generated by action (43) calculated in the
momentum space is of the form:

|〈0+|0−〉|2 = exp
{
−
∫

dωpT
∗µν(p)Πµν,αβ(p)Tαβ(p)

}
, (44)

where (Schwinger, 1970):

Πµν,αβ(p) =
1

2
[ḡµαḡνβ + ḡναḡµβ]− 1

3
ḡµν ḡαβ (45)

with

ḡµν = gµν +
1

m2
pmupnu (46)

being the invariant tensor.
It may be easy to calculate T ∗ΠT in the rest frame of pµ where

7



ḡµν → δkl. (47)

Under this condition it is

T ∗ΠT → T̄ ∗klT̄ kl ≥ 0; k, l 6= 0, (48)

where

T̄ µν = T µν − 1

3
gµν ḡ%σT

%σ (49)

and the following relations have been used:

ḡµνT̄
µν = 0 (50)

pµḡµν = 0 (51)

ḡµν ḡµν = 0. (52)

By analogy with spin 1 fields we define the spin 2 field ϕµν(x) by relation

δW (T ) =
∫

(dx)δT µν(x)ϕµν(x), (53)

which can be easily transformed into momentum space as

δW (T ) =
∫ (dp)

(2π)4
δT µν(−p)ϕµν(p). (54)

The symmetrical field ϕµν(x) following from eq. (54) has the following form (Schwinger,
1970)

ϕµν(x) =
∫

(dx′)∆+(x− x′)Tµν(x′) −

1

m2
∂µ

∫
(dx′)∆+(x− x′)∂′λTλν(x′) −

1

m2
∂ν

∫
(dx′)∆+(x− x′)∂′λTµλ(x′) +

1

m4
∂µ∂ν

∫
(dx′)∆+(x− x′)∂′κ∂′λT κλ(x′) −

1

3
(gµν −

1

m2
∂µ∂ν)

∫
(dx′)∆+(x− x′) ×

(T (x′)− 1

m2
∂′κ∂

′
λT

κλ(x′)). (55)

From this equation follows immediately the divergence of ϕµν(x):

∂µϕµν(x) =
1

m2
∂µTµν(x)− 1

3m2
∂ν [T (x)− 2

m2
∂κ∂λT

κλ(x)] (56)
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and

ϕ = gµνϕ
µν = − 1

3m2
[T (x) +

2

m2
∂κ∂λT

κλ(x)]. (57)

The combination of eq. (56) and (57) forms

∂µϕµν(x)− ∂νϕ =
1

m2
∂µTµν(x). (58)

The differential equation following from eq. (55) is of the form:

(−∂2 +m2)ϕµν(x) = Tµν(x) −

1

m2

[
∂µ∂

λTλν(x) + ∂ν∂
λTµλ(x)

]
+ gµν

1

m2
∂κ∂λT

κλ(x) −

1

3
(gµν −

1

m2
∂µ∂ν)

[
T (x) +

2

m2
∂κ∂λT

κλ(x)
]
. (59)

If we replace the scalar and vector combinations of sources in eq. (59) by the field
objects from eqs. (56)–(58), we get the following differential equation for ϕµν :

(−∂2 +m2)ϕµν + ∂µ∂
λϕλν(x) + ∂ν∂

λϕµλ(x)− ∂µ∂νϕ(x) −

gµν
[
(−∂2 +m2)ϕ(x) + ∂κ∂λϕ

κλ(x)
]

= Tµν(x), (60)

which also follows from δW (T ) = 0, where

W (T ) =
∫

(dx) [T µν(x)ϕµν(x) + £] , (61)

where £ is the Lagrange function and it has the following mathematical structure:

£ = −1

2

[
∂αϕµν(x)∂αϕµν(x) +m2ϕµν(x)ϕµν(x) −

∂αϕ(x)∂αϕ(x)−m2ϕ2(x)
]
−

∂µϕ
µν(x)∂νϕ(x) + ∂µϕ

µν(x) + ∂µϕ
µν(x)∂αϕαν(x). (62)

If we take the spur of eq. (60), we get

(−∂2 +m2)ϕ(x) + ∂µ∂νϕ
µν(x) = −1

2

[
T (x) +m2ϕ(x)

]
. (63)

After inserting eq. (63) into eq. (60), we get

(−∂2 +m2)ϕµν(x) + ∂µ∂
λϕλν(x) + ∂ν∂

λϕµλ(x) −

∂µ∂νϕ(x) + gµν
m2

2
ϕ(x) = Tµν(x)− 1

2
gµνT (x). (64)

Introducing
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Gµλν(x) = −Gνλµ(x) = ∂µϕλν(x)− ∂νϕλµ(x) (65)

we can write eq. (64) in the following form:

∂λGµνλ(x)− ∂νGλ
µλ(x) +m2

[
ϕmuν(x) +

1

2
gµνϕ(x)

]
=

Tµν(x)− 1

2
gµνT (x). (66)

Further relations concerning spin 2 fields can be found in monograph by Schwinger
(1970).

5 The massless limit of the spin 2 theory

It is evident that in order action (43) continue to exist in the limit m→ 0 it is natural to
put

∂νT
µν(x) =

m√
2
Jµ(x) (67)

and

∂µJ
µ(x) = m

[√
3K(x)− 1√

2
T (x)

]
, (68)

where Jµ(x) and K(x) are independent sources. The independence of them is expressed
by constants

√
3 and 1/

√
2 which are chosen to eliminate any coupling between sources

K(x) and T (x). After insertion of eqs. (67) and (68) into action (43), we get for m→ 0:

W (T ) =
1

2

∫
(dx)(dx′) {T µν(x)D+(x− x′)Tµν(x) −

1

2
T (x)D+(x− x′)T (x′) + Jµ(x)D+(x− x′)Jµ(x′) +

K(x)D+(x− x′)K(x′)} , (69)

where D+(x− x′) = ∆+(x− x′;m = 0) and for m = 0

∂µT
µν(x) = 0 (70)

∂µJ
µ(x) = 0. (71)

The formula (69) represents the invariant decomposition by means of sources of
massless particles with spin 2, 1 and 0. The massless particles of helicity ±2 is called
graviton and the action which corresponds to this particle follows from action (69) in the
form

W (T ) =
1

2

∫
(dx)(dx′) {T µν(x)D+(x− x′)Tµν(x) −
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1

2
T (x)D+(x− x′)T (x′)

}
(72)

with
∂µT

µν(x) = 0. (73)

The graviton is the particle which was not hitherto experimentally discovered. Neverthe-
less, we can suppose it is the mediate boson which initiates the gravitational phenomena,
just as the photon initiates the electromagnetic ones.

The source restriction ∂µT
µν(x) = 0 for the graviton source states the existence of a

conservation law of the vector

pν =
∫

dσµT
µν(x), (74)

where dσµ is an invariant element of area, which can be identified with the energy-
momentum vector. The connection between the mechanical tensor T µνmech and the
gravitational tensor T µνgrav is postulated by relation

T µνgrav = κ1/2T µνmech, (75)

where κ is the gravitational constant of the magnitude

κ = 8πG, (76)

where 6.67430(15)10−11m3.kg−1.s−2 (CODATA, 2018).
The action corresponding to the gravitational field initiated by the mechanical tensor

T µmech is now

W (T ) =
κ

2

∫
(dx)(dx′) {T µν(x)D+(x− x′)T µν(x) −

1

2
T (x)D+(x− x′)T (x′)

}
(77)

with
∂µT

µν(x) = 0. (78)

The corresponding gravitational field definition is

δW (T ) =
∫

(dx)δT µνhµν , (79)

which implies the field equation for hµν(x) in the following form:

−∂2hµν(x) + ∂µ∂
αhαν(x) + ∂ν∂

αhµα(x)− ∂µ∂νh(x) =

κ(Tµν(x)− 1

2
gµνT (x)) (80)

with

T (x) = gµνT
µν(x) (81)
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h(x) = gµνh
µν(x). (82)

Let us remark that action (77) was used by author to determination of the spectral form
of the emitted gravitons by the binary system and by the related systems (Pardy, 1983;
1994a; 1994b; 1994c; 1994d; 2011; 2018a; 2019). Action (77) enables also the derivation
of the Newton gravity potential and Einstein gravity field equations (Schwinger, 1970;
Pardy, 1984). After the verbal investigation of the Schwinger book involving theory of
gravity (Schwinger, 1970), we can honestly say that the words principle of equivalence are
not involved in his book.

6 Discussion

We have seen that the Einstein equivalence principle was not used in the Schwinger
spin 2 gravity. Einstein formulated this principle with two reference frames, K and K’
where K is a uniform gravitational field, whereas K’ has no gravitational field. It is
uniformly accelerated in such a way that objects in the two frames experience identical
forces. According to Einstein systems K and K’ are physically exactly equivalent. This
assumption of exact physical equivalence makes it impossible to speak of the absolute
acceleration of the system of reference, just as the usual theory of relativity forbids to
talk of the absolute velocity of a system. It makes the equal falling of all bodies in a
gravitational field (Einstein, 1911).

Or, Inertia and gravity are identical; hence and from the results of special relativity
theory it inevitably follows that the symmetric fundamental tensor gµν determines the
metric properties of space, of the motion of bodies due to inertia in it, and, also, the
influence of gravity (Einstein, 1918).

According to Fock (1964), principle of equivalence is understood to be the statement
that in some sense a field of acceleration is equivalent to a gravitational field. It means
that by introducing a suitable system of coordinates (which is usually interpreted as an
accelerated frame of reference) one can so transform the equations of motion of a mass
point in a gravitational field that in this new system they will have the appearance of
equations of motion of a free mass point. Thus a gravitational field can, so to speak, be
replaced, or rather imitated, by a field of acceleration. Owing to the equality of inertial
and gravitational mass such a transformation is the same for any value of the mass of
the particle. But it will succeed in its purpose only in an infinitesimal region of space,
i.e. it will be strictly local. In the general case the transformation described corresponds
mathematically to passing to a locally geodesic system of coordinates.

The principle of equivalence states that it is impossible to distinguish between the
action on a particle of matter of a constant acceleration, or, of static support in a
gravitational field (Lyle, 2008). We have seen that Schwinger theory does not use the
principle of equivalence.

The controversions between different opinions on the principle of equivalence can be
easily solved by the physical definition of gravity and inertia. Namely: gravity is the
specific form of matter, or, form of vacuum. And inertia is the interaction of the massive
body with vacuum which is the physical medium. So, Gravity is form of matter and
inertia is form of interaction.
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