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Abstract

We study Langenscheidt’s German-English English-German Dictionary. We draw the natural log-

arithm of the number of the German language entries, normalised, starting with a letter vs the

natural logarithm of the rank of the letter, normalised. We find that the words underlie a magneti-

sation curve of a Spin-Glass in the presence of little external magnetic field. Moreover, we compare

the German language with two Romance languages, the Basque and the Romanian, respectively,

with respect to Spin-Glass magnetisation.
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I. INTRODUCTION

Germany is a country in the center of Europe. The Germans are the people. The German

is the language. To study the language we consult a dictionary of the German. This is

Langenscheidt’s German-English English-German Dictionary, [1]. Here, we introduce the

German language by reproducing few entries from the dictionary,[1], in the following.

Adel in the German language means aristrocacy, All means the Universe, ’Ansatz means

start, Appell means roll-call, ’Arbeiter means worker, auf means on, Bau means building,

’Aufbau means building up, Auge means eye, Aula means hall, Bach means brook, Backe

means cheek, Bagger means excavator, Bahn means course, Baum means tree, Becken means

basin, be’denken means to consider, beharren means to persist, Berg means mountain, Bern-

stein means amber, be’vor means before, Blase means bubble, Blatt means leaf (of a book),

Bohle means thick plank, Bonbón means sweet, braten means in oven, Braut means bride,

breit means broad, Buch means book, Bündel means bundle, der or, die or, das means the,

dir means (to) you, Dorf means village, Druck means pressure, egal means equal, eigen

means own, ein means one, Eisen means iron, Endung means ending, Enge means narrow-

ness, Enkel means grandchild, Ensemble means company, Ernst means seriousness, Er’satz

means replacement, Falke means falcon, faul means fruit, Feder means feather, fidel means

jolly, flügge means fledged, Freude means joy, Freund means friend, Friede(n) means peace,

Fuchs means fox, ’Führer means leader, Funk means radio, Gärung means fermentation,

ganz means all, gleich means equal, Göttin means goddess, Graf means earl, Gros means

main body, Haar means hair, Halde means slope, ’hassen means hate, Hecht means pike,

Heck means stern, Heirat means marraige, Helmat means home, Haus means house, Herr

means lord, Henkel means handle, Herzog means duke, herz means heart, Huhn means

fowl, Hund means dog, Januar means January, Juli means July, Kahn means boat, Kaiser

means emperor, kalb means calf, Kampf means combat, Kante means edge, Kanu means

canoe, kauf means purchase, Kaufmann means buisnessman, keck means bold, Kittel means

overall, klein means little, Knorren means knot, Köch means cook, Köcher means quiver,

Kohl means cabbage, König means king, kraus means curly, Kreuz means cross, Kübel

means bucket, krug means jug, Kummer means grief, Kürbis means pumpkin, Kutte means

cowl, Kur means course of treatment, Kür means sports, lang means long, Läange means

length, ’Lehrer means teacher, leib means body, Lenz means spring, lieb means nice, Luft
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means air, Mache means make believe, Magie means magic, Mahl means meal, Mai maens

May, Mal means mark or, time, Mandel means almond, Mann means man, Matinee means

morning prformance, mehr means more, mir means (to) me, mit means with, Möhre means

carrot, Mond means moon, Montag means Monday,Morgen means morning, Müller means

miller, Mund means mouth, Nadel means needle, nahm or, nehmen means to take, paar

means pair, Passah fest means Passover, Pfund means pound, Perle means pearl, Puder

means powder, ragen means tower, Rahe means yard, Radau means row, Rarität means rar-

ity, Rauch means smoke, Regen means rain, Reif means white, ’Richter means judge, ringen

means to wrestle or, struggle, Ritz means crack, Rolle means roll or, coil, Rubin means ruby,

Rudel means troop, rund means round, Saul means hall, Saat means sowing, sagen means

to say, sägen means to saw, Saison means season, Saite means string, Sakko means lounge

coat, Salve means volley, Sänger means singer, Satz means sentence, Schaum means foam,

schäumen means foam, Schiff means ship, Schild means shield, Schnee means snow, ’Schnei-

der means tailor, Schreck means fright, shroff means rugged, Schule means school, Schuster

means shoemaker, Schutz means protection, Schwager means brother-in-law, schwarz means

black, Schwinge wing, Sule means soul, Segen means blessing, Sitte means custom, Sommer

frische means summer-holidays, Sommer zeit means summer tiem, Span means chip, Spiegel

means mirror, stark means strong, stärke means strength, Stein means stone, Stelle means

place, Steven means stem, Strom means stream, Tal means valley, taub means deaf, Taube

means pigeon, Teller means plate, töten means to destroy, über means over, Unruh means

balance(wheel), ’Urkunde means document, Vati means dad(dy), Verlag means publishing

house, Vogel means bird, Volk means people, Wald means wood, Wahl means choice, ’Weber

means weaver, Wein means wine, Weinberg means vineyard, Weiner means Viennese, wiegen

means rock, wittern means to suspect, Zauber means spell, Zeit means time, Zimmer means

room, Ziffer means figure or, digit, Zinn means tin, Zittern means tremble, Zucker means

sugar, Zügel means bridle, Zweig means branch and so on.

In this article, we study magnetic field pattern behind this dictionary of the German,[1].

We have started considering magnetic field pattern in [2], in the languages we converse

with. We have studied there, a set of natural languages, [2] and have found existence of a

magnetisation curve under each language. We have termed this phenomenon as graphical

law.

Then, we moved on to investigate into, [3], dictionaries of five disciplines of knowledge

3



and found existence of a curve magnetisation under each discipline. This was followed by

finding of the graphical law behind the bengali language,[4] and the basque language[5].

This was pursued by finding of the graphical law behind the Romanian language, [6], five

more disciplines of knowledge, [7], Onsager core of Abor-Miri, Mising languages,[8], Onsager

Core of Romanised Bengali language,[9], the graphical law behind the Little Oxford English

Dictionary, [10], the Oxford Dictionary of Social Work and Social Care, [11], the Visayan-

English Dictionary, [12], Garo to English School Dictionary, [13], Mursi-English-Amharic

Dictionary, [14] and Names of Minor Planets, [15], A Dictionary of Tibetan and English,

[16], Khasi English Dictionary, [17], Turkmen-English Dictionary, [18], Websters Universal

Spanish-English Dictionary, [19], A Dictionary of Modern Italian, [20], respectively.

The planning of the paper is as follows. We give an introduction to the standard curves

of magnetisation of Ising model in the section II. In the section III, we describe analysis of

the entries of the German language, [1]. The section IV is comparisons with other Romance

languages. Sections V and VI are Acknowledgment and Bibliography respectively.

II. MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is

half i.e. we will get head and tale equal number of times. If we attach value one to head,

minus one to tale, the average value we obtain, after many tossing is zero. Instead let us

consider a one-sided loaded coin, say on the head side. The probability of getting head is

more than one half, getting tale is less than one-half. Average value, in this case, after many

tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin

is like ferromagnet, the unloaded coin is like para magnet, at zero external magnetic field.

Average value we obtain is like magnetisation, loading is like coupling among the spins of

the ferromagnetic units. Outcome of single coin toss is random, but average value we get

after long sequence of tossing is fixed. This is long-range order. But if we take a small

sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed,

can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up
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or, down. Assume there is a long-range order with probability to get a spin up is two third.

That would mean when we consider a long sequence of spins, two third of those are with

spin up. Moreover, assign with each up spin a value one and a down spin a value minus

one. Then total spin we obtain is one third. This value is referred to as the value of long-

range order parameter. Now consider a short-range order existing which is identical with

the long-range order. That would mean if we pick up any three consecutive spins, two will

be up, one down. Bragg-Williams approximation means short-range order is identical with

long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one

dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down

spin a value minus one, with an unspecified long-range order parameter defined as above by

L = 1
N
Σiσi, where σi is i-th spin, N being total number of spins. L can vary from minus one

to one. N = N++N−, where N+ is the number of up spins, N− is the number of down spins.

L = 1
N
(N+ −N−). As a result, N+ = N

2
(1 + L) and N− = N

2
(1− L). Magnetisation or, net

magnetic moment , M is µΣiσi or, µ(N+ −N−) or, µNL, Mmax = µN . M
Mmax

= L. M
Mmax

is

referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,[21], for the lattice of

spins, setting µ to one, is −ϵΣn.nσiσj −HΣiσi, where n.n refers to nearest neighbour pairs.

The difference △E of energy if we flip an up spin to down spin is, [22], 2ϵγσ̄ + 2H, where

γ is the number of nearest neighbours of a spin. According to Boltzmann principle, N−
N+

equals exp(− △E
kBT

), [23]. In the Bragg-Williams approximation,[24], σ̄ = L, considered in the

thermal average sense. Consequently,

ln
1 + L

1− L
= 2

γϵL+H

kBT
= 2

L+ H
γϵ

T
γϵ/kB

= 2
L+ c

T
Tc

(1)

where, c = H
γϵ

, Tc = γϵ/kB, [25].
T
Tc

is referred to as reduced temperature.

Plot of L vs T
Tc

or, reduced magentisation vs. reduced temperature is used as reference curve.

In the presence of magnetic field, c ̸= 0, the curve bulges outward. Bragg-Williams is a Mean

Field approximation. This approximation holds when number of neighbours interacting with

a site is very large, reducing the importance of local fluctuation or, local order, making the

long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising

model prediction one can refer to FIG.12.12 of [22]. W. L. Bragg was a professor of Hans

Bethe. Rudolf Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudolf
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Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical

method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence

of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, [21],[22],[23],[24],[25],

due to Bethe-Peierls, [26], reduced magnetisation varies with reduced temperature, for γ

neighbours, in absence of external magnetic field, as

ln γ
γ−2

ln factor−1

factor
γ−1
γ −factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (2)

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For a snapshot of different

kind of magnetisation curves for magnetic materials the reader is urged to give a google

search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe

data s generated from the equation(1) and the equation(2) in the table, I, and curves of

magnetisation plotted on the basis of those data s. BW stands for reduced temperature in

Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced

temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed

from the equation(2). The data set is used to plot fig.1. Empty spaces in the table, I, mean

corresponding point pairs were not used for plotting a line.

C. Bethe-peierls approximation in presence of four nearest neighbours, in pres-

ence of external magnetic field

In the Bethe-Peierls approximation scheme , [26], reduced magnetisation varies with reduced

temperature, for γ neighbours, in presence of external magnetic field, as

ln γ
γ−2

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (3)

Derivation of this formula Ala [26] is given in the appendix of [7].

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For four neighbours,

0.693

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (4)
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BW BW(c=0.01) BP(4,βH = 0) reduced magnetisation

0 0 0 1

0.435 0.439 0.563 0.978

0.439 0.443 0.568 0.977

0.491 0.495 0.624 0.961

0.501 0.507 0.630 0.957

0.514 0.519 0.648 0.952

0.559 0.566 0.654 0.931

0.566 0.573 0.7 0.927

0.584 0.590 0.7 0.917

0.601 0.607 0.722 0.907

0.607 0.613 0.729 0.903

0.653 0.661 0.770 0.869

0.659 0.668 0.773 0.865

0.669 0.676 0.784 0.856

0.679 0.688 0.792 0.847

0.701 0.710 0.807 0.828

0.723 0.731 0.828 0.805

0.732 0.743 0.832 0.796

0.756 0.766 0.845 0.772

0.779 0.788 0.864 0.740

0.838 0.853 0.911 0.651

0.850 0.861 0.911 0.628

0.870 0.885 0.923 0.592

0.883 0.895 0.928 0.564

0.899 0.918 0.527

0.904 0.926 0.941 0.513

0.946 0.968 0.965 0.400

0.967 0.998 0.965 0.300

0.987 1 0.200

0.997 1 0.100

1 1 1 0

TABLE I. Reduced magnetisation vs reduced temperature data s for Bragg-Williams approxima-

tion, in absence of and in presence of magnetic field, c = H
γϵ = 0.01, and Bethe-Peierls approxima-

tion in absence of magnetic field, for four nearest neighbours .

In the following, we describe data s in the table, II, generated from the equation(4) and

curves of magnetisation plotted on the basis of those data s. BP(m=0.03) stands for re-

duced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence

of a variable external magnetic field, H, such that βH = 0.06. calculated from the equa-

tion(4). BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for

four nearest neighbours, in presence of a variable external magnetic field, H, such that

βH = 0.05. calculated from the equation(4). BP(m=0.02) stands for reduced temperature

in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable exter-

nal magnetic field, H, such that βH = 0.04. calculated from the equation(4). BP(m=0.01)

stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours,

in presence of a variable external magnetic field, H, such that βH = 0.02. calculated from
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FIG. 1. Reduced magnetisation vs reduced temperature curves for Bragg-Williams approximation,

in absence(dark) of and presence(inner in the top) of magnetic field, c = H
γϵ = 0.01, and Bethe-

Peierls approximation in absence of magnetic field, for four nearest neighbours (outer in the top).

the equation(4). BP(m=0.005) stands for reduced temperature in Bethe-Peierls approxi-

mation, for four nearest neighbours, in presence of a variable external magnetic field, H,

such that βH = 0.01. calculated from the equation(4). The data set is used to plot fig.2.

Similarly, we plot fig.3. Empty spaces in the table, II, mean corresponding point pairs were

not used for plotting a line.
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BP(m=0.03) BP(m=0.025) BP(m=0.02) BP(m=0.01) BP(m=0.005) reduced magnetisation

0 0 0 0 0 1

0.583 0.580 0.577 0.572 0.569 0.978

0.587 0.584 0.581 0.575 0.572 0.977

0.647 0.643 0.639 0.632 0.628 0.961

0.657 0.653 0.649 0.641 0.637 0.957

0.671 0.667 0.654 0.650 0.952

0.716 0.696 0.931

0.723 0.718 0.713 0.702 0.697 0.927

0.743 0.737 0.731 0.720 0.714 0.917

0.762 0.756 0.749 0.737 0.731 0.907

0.770 0.764 0.757 0.745 0.738 0.903

0.816 0.808 0.800 0.785 0.778 0.869

0.821 0.813 0.805 0.789 0.782 0.865

0.832 0.823 0.815 0.799 0.791 0.856

0.841 0.833 0.824 0.807 0.799 0.847

0.863 0.853 0.844 0.826 0.817 0.828

0.887 0.876 0.866 0.846 0.836 0.805

0.895 0.884 0.873 0.852 0.842 0.796

0.916 0.904 0.892 0.869 0.858 0.772

0.940 0.926 0.914 0.888 0.876 0.740

0.929 0.877 0.735

0.936 0.883 0.730

0.944 0.889 0.720

0.945 0.710

0.955 0.897 0.700

0.963 0.903 0.690

0.973 0.910 0.680

0.909 0.670

0.993 0.925 0.650

0.976 0.942 0.651

1.00 0.640

0.983 0.946 0.928 0.628

1.00 0.963 0.943 0.592

0.972 0.951 0.564

0.990 0.967 0.527

0.964 0.513

1.00 0.500

1.00 0.400

0.300

0.200

0.100

0

TABLE II. Bethe-Peierls approx. in presence of little external magnetic fields
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FIG. 2. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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FIG. 3. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, Tc,

for the two dimensional Ising model in absence of external magnetic field i.e. for H equal to

zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function

of reduced temperature as, [27], [28], [29], [26],

M

Mmax

= [1− (sinh
0.8813736

T
Tc

)−4]1/8.

Graphically, the Onsager solution appears as in fig.4.
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FIG. 4. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional

Ising model, due to Onsager, in absence of external magnetic field
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E. Spin-Glass

In the case coupling between( among) the spins, not necessarily n.n, for the Ising model is(

are) random, we get Spin-Glass. When a lattice of spins randomly coupled and in an exter-

nal magnetic field, goes over to the Spin-Glass phase, magnetisation increases steeply like

1
T−Tc

i.e. like the branch of rectangular hyperbola, up to the the phase transition tempera-

ture, followed by very little increase,[30–32], in magnetisation, as the ambient temperature

continues to drop.

Theoretical study of Spin Glass started with the paper by Edwards, Anderson,[33]. They

were trying to explain two experimental results concerning continuous disordered freez-

ing(phase transition) and sharp cusp in static magnetic susceptibility. This was followed by

a paper by Sherrington, Kickpatrick, [34], who dealt with Ising model with interactions being

present among all neighbours. The interaction is random, follows Gaussian distribution and

does not distinguish one pair of neighbours from another pair of neighbours, irrespective of

the distance between two neighbours. In presence of external magnetic field, they predicted

in their next paper, [35], below spin-glass transition temperature a spin-glass phase with

non-zero magnetisation. Almeida etal, [36], Gray and Moore, [37],finally Parisi, [38], [39]

improved and gave final touch, [40], to their line of work. Parisi and collaborators, [41]-[45],

wrote a series of papers in postscript, all revolving around a consistent assumption of con-

stant magnetisation in the spin-glass phase in presence of little constant external magnetic

field.

In another sequence of theoretical work, by Fisher etal,[46–48], concluded that for Ising

model with nearest neighbour or, short range interaction of random type spin-glass phase

does not exist in presence of external magnetic field.

For recent series of experiments on spin-glass, the references, [49, 50], are the places to look

into.

For an in depth account, accessible to a commoner, the series of articles by late P. W.

Anderson in Physics Today, [51]-[57], is probably the best place to look into. For a book to

enter into the subject of spin-glass, one may start at [58].

Here, in our work to follow, spin-glass refers to spin-glass phase of a system with infinite

range random interactions.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2066 1690 79 686 1332 1117 1547 1117 271 177 1286 811 991 597 288 845 71 894 2801 840 1199 1402 1004 7 1 842

TABLE III. German words

FIG. 5. Vertical axis is number of words of the German, [1], and horizontal axis is respective letters.

Letters are represented by the sequence number in the alphabet or, dictionary sequence,[1].

III. ANALYSIS OF WORDS OF THE GERMAN-ENGLISH DICTIONARY

The German language alphabet is composed of twenty six letters like English. We take

a German-English dictionary,[1]. Then we count all the entries, [1], one by one from the

beginning to the end, starting with different letters. The result is the table, III.

Highest number of entries, two thousand eight hundred one, starts with the letter S followed

by entries numbering two thousand sixty six beginning with A, one thousand six hundred

ninety with the letter B etc. To visualise we plot the number of words against respective

letters in the dictionary sequence, [1], in the figure fig.5.

For the purpose of exploring graphical law, we assort the letters according to the number

of words, in the descending order, denoted by f and the respective rank, denoted by k. k

is a positive integer starting from one. The lowest value of f is one, corresponding to the

letter Y. The respective rank, k, denoted as klim is twenty five. As a result both lnf
lnfmax

and

lnk
lnklim

varies from zero to one. Then we tabulate in the adjoining table, IV and plot lnf
lnfmax

against lnk
lnklim

in the figure fig.6. We then ignore the letter with the highest of words, tabulate

13



k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfn−max lnf/lnf2nmax lnf/lnf3nmax lnf/lnf4nmax lnf/lnf5nmax lnf/lnf6nmax lnf/lnf7nmax lnf/lnf8nmax lnf/lnf9nmax lnf/lnf10nmax

1 0 0 2801 7.938 1 Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank

2 0.69 0.214 2066 7.633 0.962 1 Blank Blank Blank Blank Blank Blank Blank Blank Blank

3 1.10 0.342 1690 7.432 0.936 0.974 1 Blank Blank Blank Blank Blank Blank Blank Blank

4 1.39 0.432 1547 7.344 0.925 0.962 0.988 1 Blank Blank Blank Blank Blank Blank Blank

5 1.61 0.500 1402 7.246 0.913 0.949 0.975 0.987 1 Blank Blank Blank Blank Blank Blank

6 1.79 0.556 1332 7.194 0.906 0.942 0.968 0.980 0.993 1 Blank Blank Blank Blank Blank

7 1.95 0.606 1286 7.159 0.902 0.938 0.963 0.975 0.988 0.995 1 Blank Blank Blank Blank

8 2.08 0.646 1199 7.089 0.893 0.929 0.954 0.965 0.978 0.985 0.990 1 Blank Blank Blank

9 2.20 0.683 1117 7.018 0.884 0.919 0.944 0.956 0.969 0.976 0.980 0.990 1 Blank Blank

10 2.30 0.714 1004 6.912 0.871 0.906 0.930 0.941 0.954 0.961 0.965 0.975 0.985 1 Blank

11 2.40 0.745 991 6.899 0.869 0.904 0.928 0.939 0.952 0.959 0.964 0.973 0.983 0.998 1

12 2.48 0.770 894 6.796 0.856 0.890 0.914 0.925 0.938 0.945 0.949 0.959 0.968 0.983 0.985

13 2.56 0.795 845 6.739 0.849 0.883 0.907 0.918 0.930 0.937 0.941 0.951 0.960 0.975 0.977

14 2.64 0.820 842 6.736 0.849 0.882 0.906 0.917 0.930 0.936 0.941 0.950 0.960 0.975 0.976

15 2.71 0.842 840 6.733 0.848 0.882 0.906 0.917 0.929 0.936 0.940 0.950 0.959 0.974 0.976

16 2.77 0.860 811 6.698 0.844 0.878 0.901 0.912 0.924 0.931 0.936 0.945 0.954 0.969 0.971

17 2.83 0.879 686 6.531 0.823 0.856 0.879 0.889 0.901 0.908 0.912 0.921 0.931 0.945 0.947

18 2.89 0.898 597 6.392 0.805 0.837 0.860 0.870 0.882 0.889 0.893 0.902 0.911 0.925 0.927

19 2.94 0.913 288 5.663 0.713 0.742 0.762 0.771 0.782 0.787 0.791 0.799 0.807 0.819 0.821

20 3.00 0.932 271 5.602 0.706 0.734 0.754 0.763 0.773 0.779 0.783 0.790 0.798 0.810 0.812

21 3.04 0.944 177 5.176 0.652 0.678 0.696 0.705 0.714 0.719 0.723 0.730 0.738 0.749 0.750

22 3.09 0.960 79 4.369 0.550 0.572 0.588 0.595 0.603 0.607 0.610 0.616 0.623 0.632 0.633

23 3.14 0.975 71 4.263 0.537 0.558 0.574 0.580 0.588 0.593 0.595 0.601 0.607 0.617 0.618

24 3.18 0.988 7 1.946 0.245 0.255 0.262 0.265 0.269 0.271 0.272 0.275 0.277 0.282 0.282

25 3.22 1 1 0 0 0 0 0 0 0 0 0 0 0 0

TABLE IV. German language words: ranking,natural logarithm, normalisations

in the adjoining table, IV and redo the plot, normalising the lnfs with next-to-maximum

lnfnextmax, and starting from k = 2 in the figure fig.7. This program then we repeat up to

k = 11, resulting in figures up to fig.16.
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FIG. 6. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in the absence of external magnetic field. The uppermost curve is the Onsager solution.

FIG. 7. The vertical axis is lnf
lnfnext−max

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.005 or, βH = 0.01. The uppermost curve is

the Onsager solution.
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FIG. 8. The vertical axis is lnf
lnfnextnext−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.02 or, βH = 0.04. The uppermost curve is

the Onsager solution.

FIG. 9. The vertical axis is lnf
lnfnextnextnext−max

and the horizontal axis is lnk
lnklim

. The + points

represent the words of the German language with the fit curve being the Bethe-Peierls curve

with four nearest neighbours, in presence of little magnetic field, m=0.025 or, βH = 0.05. The

uppermost curve is the Onsager solution.
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FIG. 10. The vertical axis is lnf
lnfnextnextnextnext−max

and the horizontal axis is lnk
lnklim

. The + points

represent the words of the German language with the fit curve being the Bethe-Peierls curve with

four nearest neighbours, in presence of little magnetic field, m=0.04 or, βH = 0.08. The uppermost

curve is the Onsager solution.

FIG. 11. The vertical axis is lnf
lnfnnnnn−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution.
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FIG. 12. The vertical axis is lnf
lnf6n−max

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution.

FIG. 13. The vertical axis is lnf
lnf7n−max

and the horizontal axis is lnk
lnklim

. The + points represent the

words of the German language with the fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution.
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FIG. 14. The vertical axis is lnf
lnf8n−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language with fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution.

FIG. 15. The vertical axis is lnf
lnf9n−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language with fit curve being the Bethe-Peierls curve with four nearest

neighbours, in presence of little magnetic field, m=0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution.
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FIG. 16. The vertical axis is lnf
lnf10n−max

and the horizontal axis is lnk
lnklim

. The + points represent

the words of the German language. The reference curve is the Onsager solution.
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FIG. 17. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk. The + points represent the

entries of the German language.

Matching of the plots in the figures fig.(6-16), with comparator curves i.e. the magneti-

sation curves of Bethe-Peierls approximations, is with dispersion and dispersion does not

reduce to zero over higher orders of normalisations. On the top of it, on successive higher

normalisations, entries of the German language,[1], do not go over to Onsager solution in

the normalised lnf vs lnk
lnklim

graphs.

To explore for possible existence of spin-glass transition, in presence of little external mag-

netic field, lnf
lnfmax

, lnf
lnfnext−max

and lnf
lnfnn−max

are drawn against lnk in the figures fig.17-fig.19.

A. conclusion

In the figures Fig.17-Fig.19, the points has a clear-cut transition. Above the transition

point(s), the lines are almost horizontal and below the transition point(s), points-line rises

like the branch of a rectangular hyperbola. Hence, the words of the German, [1], is well-

suited to be described by a Spin-Glass magnetisation curve, [30], in the presence of little

magnetic field.
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FIG. 18. The vertical axis is lnf
lnfnext−max

and the horizontal axis is lnk. The + points represent the

entries of the German language.

FIG. 19. The vertical axis is lnf
lnfnn−max

and the horizontal axis is lnk. The + points represent the

entries of the German language.
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FIG. 20. The vertical axis is lnf
lnfmax

and the horizontal axis is lnk. The + points represent the

entries of the Basque language, [5]. The × points represent the entries of the German language,

[1].

IV. GERMAN AND ROMANCE LANGUAGES

We have studied two Romance languages Romanian, [6] and Basque, [5], in detail before.

Those were better fit by spin-glass magnetisation curves in presence of little external mag-

netic field. We compare the spin-glass magnetisation curve nature of the Romanian and the

Basque languages with the German in the figures 20 to 21. We conclude from the figures

fig.20 and fig.21, that the German language is closest to the spin-glass behaviour when the

Romanian language and the Basque language comes are closer.
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FIG. 21. The vertical axis is lnf
lnfnext−max

and the horizontal axis is lnk. The + points represent the

entries of the Romanian language, [6]. The × points represent the entries of the German language,

[1].
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