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Abstract
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1 Introduction
We start from the familiar six dimensional phase space M of Hamiltonian me-
chanics and linearize a square form of x and p which have Born’s reciprocity
symmetry. We end up to isospin and hypercharge for particles. The eigenvalues
of hypercharge turn out to be (1

3 ,
1
3 ,

1
3). We give these classical states a label:

1, 2, and 3.
The above results lead us to a three cell gear of the deterministic Cellular

Automaton Theory (CAT) of ´t Hooft. Adopting Hilbert space methods in
CAT leads to quantum mechanics and supersymmetry, like the Wess-Zumino
supersymmetric model. Hence cells provide physical meaning to CAT. We will
see also how quantum mechanics emerges from cells. Last, we adopt axion like
particles (ALP) from string theory.

In our opinion, this cell scenario has properties required of a candidate for a
model beyond the standard model (BSM), and it suggests a deterministic origin
for quantum mechanics, long sought for by a few. We discuss whether our model
is a candidate for ontological basis for the standard model and beyond. The key
math points in favor of our scenario are available in the literature by various
authors, but are consequently rather untethered. We collect them up into our
scenario in a novel way into a model of visible and dark matter.

Unlike in Grand Unified Theories (GUT), unification is accomplished here
in terms of small number of basic cells. Unification of gravity and electro-
magnetism may be done in 5D à la Kaluza-Klein but it is not discussed here.
Strong and weak interactions are emergent and operate between SM particles
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only below a threshold value Λcr, which is near the GUT energy. As a bonus
for cosmology, our scenario makes it possible to directly create the asymmetric
visible universe from C-symmetric cells.

The article is organized as follows. In sections 2 we summarize briefly the
concepts used to derive the main properties of our scenario: classical phase
space, Born’s reciprocity symmetry, Clifford algebra, deterministic quantum
cells, emergent supersymmetry and very minimum of bosonic strings. Onto-
logical questions are briefly touched. The structure of visible matter in terms
of cells is presented in section 3. In section 4 candidates for dark matter are
discussed. Gravitationally mediated supersymmetry breaking for SM particles
is proposed in section 5. Delicate comments on black holes are made in section
6. Conclusions are given in section 7.

2 Theoretical Concepts
In this section we present a brief description of various, apparently unrelated
theoretical concepts and methods, found in our exploration of literature. We
go from Hamiltonian phase space M through cellular automata to Wess-Zumino
supergravity. We end up in a simple CAT model. We do not give numerical
predictions. Instead, our goal is finding a new kind of unity in physics. Namely
constructing all matter from very few fundamental particles, or cells. We also
present a derivation of quantum mechanics from deterministic cells.

2.1 Clifford Algebra, Hypercharge and Color
We start from non-relativistic phase space considerations and end up to spin
and a formula for charge.1 Born [1] studied the symmetrization of the roles
of momenta and positions by the transformation x → p,p → −x. The sym-
metry holds in the zero mass limit. There are eight different orderings for the
canonical positions and momenta. To us the interesting cases are the four even
permutations shown in Table 1.

Position Momentum
(x1, x2, x3) (p1, p2, p3)
(x1, p2, p3) (p1, x2, x3)
(p1, x2, p3) (x1, p2, x3)
(p1, p2, x3) (x1, x2, p3)

Table 1: Position-momentum even permutations.

Sixty years later Żenczykowski [2] (see also [3]) proposed the nimble con-
jecture that the four possibilities shown in Table 1 correspond to the first gen-

1We discuss spin and internal quantum numbers, which are valid concepts also non-relativistically.
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eration leptons and three other states, which we call cells (see (2.6)). Let us
see how this step was done. One may try the linearization of the 3D invariant
p2 = (p·σ)(p·σ). Linearization of the x↔ p symmetric expression A·p+B·x,
where A and B are anticommuting objects, yields the result

A · p + B · x = p2 + x2 +R, (2.1)

where the term R appears because x and p do not commute. A and B are
eight-dimensional matrices

Ak = σk ⊗ σ0 ⊗ σ1

Bj = σ0 ⊗ σj ⊗ σ2
(2.2)

R is the commutator of these matrices R = − i
2Σk[Ak, Bk] = Σkσk ⊗ σk ⊗ σ3.

The seventh anticommuting element of the Clifford algebra in question is
denoted as B = iA1A2A3B1B2B3 = σ0 ⊗ σ0 ⊗ σ3. We define now

I3 =
1

2
B, Y =

1

3
RB (2.3)

I3 and Y commute with the operators describing ordinary 3D rotations and
3D reflections in phase space. The eigenvalues of I3 and Y are

I3 = ±1

2
, Y = −1,+

1

3
,+

1

3
,+

1

3
(2.4)

I3 and Y are candidates for two new quantum numbers. A reasonable con-
jecture is that (2.4) are identified with the Gell-Mann–Nishijima formula for
charge Q

Q ≡ 1

6

[
(p2 + x2)vac +R

]
B = I3 +

Y

2
(2.5)

where the first term denotes its the lowest eigenvalue of p2 +x2, which is three.
I3 is the weak isospin and Y hypercharge. The eigenvalues of Q are therefore (0,
+2/3, +2/3, +2/3, -1, -1/3, -1/3, -1/3). They are the charges of the Standard
Model particles.

The correspondence between the phase space approach and the cell model
is obtained from (2.4)

Y =− 1↔ m0
1m

0
2m

0
3

YR = 1/3↔ m+
1 m

+
2 m

0
3

YG = 1/3↔ m+
2 m

0
3m

+
1

YB = 1/3↔ m0
3m

+
1 m

+
2

(2.6)

where m’s in (2.6) are classical particles, cells, with a label 1 for the first m+,
2 for the second, and 3 for the m0 (on lines 2-4). The subscript labels 1, 2,
and 3 are independent of the physical properties of the cells. The lines 2-4 are
distinguished by the position of the m0

3 cell, see also Table 2.
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There has been from time to time a hope to discover a deterministic theory
behind quantum mechanics. We discuss this question in the next subsection
2.2. Deterministic cell behavior would release us from the requirements of un-
certainty relations for almost pointlike particles (like perhaps r ∼ rCartan of the
electron or even lPl) implying high cell mass.

Finkelstein has given arguments, consistent with the ones in this subsection,
for the possible existence of cell-like preons based on the quantum group SLq(2)
[4].

2.2 Deterministic Cells and Quantum Mechanics
What kind of equations of motion do cells obey? We adopt here the Cellular
Automaton theory proposed by ´t Hooft [5, 6, 7] and use cells as the fundamental
states of an automaton and matter.

A cellular automaton is a D-dimensional lattice in (D+1)-dimensional space-
time. Each cell, a line crossing, carries a limited amount of information, one or
more numbers. The evolution law gives deterministically the values of the cells
at time t+1 given the values of nearby cells at time t.

Quantum behavior enters when some information from the system is lost,
of either position, momentum or due to a constraint. Referring to (2.4), we are
interested here in three state systems.

Discrete time case. A simple prototype case is the D = 2 three-state gear
system with a cyclic deterministic evolution of states |1〉 → |2〉 → |3〉 → |1〉,
as indicated in Figure 1 (taken from [7]). It can be treated eithet classically or
quantum mechanically without any modification of the physics.

This three gear system defines cell confinement inside quarks and leptons.
This cinfinement took place in the early hot universe, before the known non-
Abelian gauge interactions started to play a role.

3

21 2

1

0

E

Figure 1: Gear model with three states and three energy levels.

It is advantageous to describe the automaton in terms of a Hilbert space.
With this three state gear system the following Hilbert space is associated [7]

|ψ〉 = a1|1〉+ a2|2〉+ a3|3〉 (2.7)

The time evolution ti → ti+1 may be represented by the following unitary matrix
U

ψt+1 = U(t, t+ 1)ψt =

0 0 1
1 0 0
0 1 0

ψt (2.8)

5



The probability of the system being in state |i〉 is defined as usually Pi = |ai|2. It
is seen that conservation of probability corresponds to unitarity of the evolution
matrix U .

In a basis in which U is diagonal, it has for a single time step the form

U(t+ 1, t) = exp(−iH∆t) (2.9)

where

H =

1 0 0
0 −2π/3 0
0 0 2π/3

 (2.10)

The eigenstates of this matrix. are

|0〉 =
1√
3

(
|0〉+ |1〉+ |2〉

)
|1〉 =

1√
3

(
|0〉+ e2πi/3|1〉+ e−2πi/3|2〉

)
|2〉 =

1√
3

(
|0〉+ e−2πi/3|1〉+ e2πi/3|2〉

) (2.11)

and we have

U(∆(t))

|0〉|1〉
|2〉

 =

 |0〉
e−2πi/3|1〉
e−4πi/3|2〉

 (2.12)

In this basis, we can write this as

U = e−iH∆t (2.13)

where H = 2π
3∆t diag(0, 1, 2).

At times t = const×∆t we have, in every basis,

U(t) = e−iHt (2.14)

In terms of the original states |1〉, |2〉 and |3〉, the Hamiltonian (2.15) reads

H =
2π

3∆t

 1 κ κ∗

κ∗ 1 κ
κ κ∗ 1

 (2.15)

where κ = −1
2 + i

√
3

6 and κ∗ its complex conjugate.
Now we can conclude that a state (2.7) obeys the Schrödinger equation

d

dt
|ψ〉 = −iH|ψ〉 (2.16)

where H is defined by (2.15). It will be in the state described by the gear
model at all times t that are an integral multiple of ∆t. This is enough reason
to claim that the model obeying this Schrödinger equation is mathematically
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equivalent to the deterministic gear model. The present cell cell model is a
concrete implementation of the CAT program for the SM, and beyond.

The eigenvalues of the Hamiltonian are

En =
2π

3∆t
n, n = 0, 1, 2 (2.17)

as indicated in Figure 1. What are the energy states {E0, E1, E2}? In atomic
physics, an atom with spin one is subject to Zeeman splitting in a homogeneous
magnetic field. Analogously, two cells with total spin one may experience the
same splitting in the magnetic field of the third cell (like in a nucleon the quark-
diquark effect) or rather some more complicated CA phenomenon. This kind of
an effect may explain the three generations of the SM particles.

Terminology. At this point we have to clarify terminology. A quantum
theory in the Heisenberg picture is deterministic if a complete set of operators
Oi(t) (i = 1, .., N) exist, such that

[Oi(t), Oj(t
′)] = 0 for all t, t′; i, j = 1, ..,N (2.18)

These operators are called beables. The above three-state gear system is deter-
ministic in this sense [5].

On classical and quantum mechanics we quote Witten ‘... the symmetry
groups of classical mechanics and quantum mechanics are different.’ [8]. In the
former case the symmetry group is the group G of canonical transformations
of the phase space M. In quantum mechanics the the group is the group U of
unitary transformations of Hilbert space.

In [7] the deterministic gear system in Figure 1 is described by a Hilbert
space vector (2.7), which has unitary time evolution as indicated in (2.8). The
symmetry group of the {1, 2, 3} gear is the permutation group. Secondly, we
believe the arguments of subsection 2.1 are at least approximately valid for our
limited purposes.

Classical and quantum mechanics have an interesting cross section [7]: De-
terministic quantum mechanics is neither a modification of standard quantum
mechanics, nor a modification of classical theory. It is a cross section of the
two. This cross section is claimed to be much larger and promising than usually
thought.

Ontological system is defined as follows [7]: “A physical state |A〉, where A
may stand for any array of numbers, not necessarily integers or real numbers,
is called an ontological state if it is a state our deterministic system can be in.
These states themselves do not form a Hilbert space, since in a deterministic
theory we have no superpositions, but we can declare that they form a basis for
a Hilbert space ...”

The cell model of this subsection would seem to be a simple candidate for
the ontological basis for the standard models of particles and cosmology. Larger
systems are beyond the scope of this note.2

2It would be, however, interesting to contemplate of a connection to Cellular Neural Networks
[9] having the code for a mathematical solution.
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Free Cells. During cosmological early times the temperature was very high
and matter was in its most primitive form, which means cells in our scenario.
Why cells form composite states or gears of three cells is a physical process
but at present it is a postulate of the model. It may be considered as a phase
transition for which details have to be found. A few words more are indicated
in section 3.

Continuous time case. We follow in the rest of this subsection closely the
treatment presented by Blasone, Jizba, and Kleinert in [10]. Classical systems
of the form

H = paf
a(q) (2.19)

evolve deterministically even after quantization [6, 7, 10]. This happens since
in the Hamiltonian equations of motion

q̇a = {qa, H} = fa(q)

ṗa = {pa, H} = −pa∂fa(q)/∂qa
(2.20)

the equation for the qa does not contain pa, making the qa beables.
Now we have to stop because the Hamiltonian is not bounded from below.

This defect can be revised by a constraint [6, 7, 10]. Consider a function ρ(qa) >
0 with [ρ,H] = 0 and divide the Hamiltonian in two parts

H = H+ −H−

H+ =
1

4ρ
(ρ+H)2

H− =
1

4ρ
(ρ−H)2

(2.21)

where H+ and H− are positive definite operators satisfying

[H+, H−] = [ρ,H] = 0 (2.22)

We may now enforce the following constraint to the Hamiltonian to get rid
of the spectrum problem

H−|ψ〉 = 0 (2.23)

Then the eigenvalues of H in H|ψ〉 = H+|ψ〉 = ρ|ψ〉 are positive and the
equation of motion

d

dt
|ψ〉 = −iH|ψ〉 (2.24)

has only positive frequencies. If there are stable orbits with period T (ρ), then
|ψ〉 satisfies

e−iHT |ψ〉 = |ψ〉, ρT (ρ) = 2πn, n ∈ Z (2.25)

so that the associated eigenvalues are discrete. ’t Hooft motivated the constraint
(2.23) by information loss. More details of information loss and periodicity,
energy spectra, equivalence classes, limit cycles etc. are in [7].
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Path Integral Quantization. A powerful technique for quantization is
proposed by Faddeev and Jackiw in [11]. The authors start by observing that
a Lagrangian for ’t Hooft’s equations of motion (2.20) can be simply taken as
follows

L(q, q̇,p, ṗ) = p · q̇−H(p,q) (2.26)

with q and p being Lagrangian variables. Note that L does not depend on
ṗ. It is easily verified that the Euler-Lagrange equations for the Lagrangian
(2.26) indeed coincide with the Hamiltonian equations (2.20). Thus given ’t
Hooft’s Hamiltonian (2.19) one can always construct a first-order Lagrangian
(2.26) whose configuration space coincides with the Hamiltonian phase space.
By defining 2N configuration space coordinates as

ξa = pa, a = 1, ..., N ; ξa = qa, a = N + 1, ..., 2N (2.27)

the Lagrangian (2.26) can be cast into the more expedient form, namely

L(ξ, ξ̇) =
1

2
ξaωabξ̇

b −H(ξ) (2.28)

where ω is the 2N × 2N matrix

ωab =

(
0 I
−I 0

)
ab

(2.29)

which has an inverse ω−1
ab ≡ ω

ab. The equations of motion read

ξ̇a = ωab
∂H(ξ)

∂ξb
(2.30)

indicating that there are no constraints on ξ. Thus the procedure of [11] makes
the system unconstrained, so that the path integral quantization may proceed
in a standard way. The time evolution amplitude is [12]

〈ξ2, t2|ξ1, t1〉 = N
∫ ξ2

ξ1

Dξ exp
( i
~

∫ t2

t1

dtL(ξ, ξ̇)
)

(2.31)

where N is a normalization factor. Since the Lagrangian (2.26) is linear in p,
we may integrate these variables out and obtain

〈q2, t2|q1, t1〉 = N
∫ q2

q1

Dq
∏
a

δ[q̇a − fa(q)] (2.32)

where δ[f ] ≡ Πtδ(f(t)) is the functional version of Dirac’s δ-function. Hence the
system described by the Hamiltonian (2.19) retains its deterministic character
even after quantization. The paths are squeezed onto the classical trajectories
determined by the differential equations q̇ = f(q). The time evolution ampli-
tude (2.37) contains a sum over only the classical trajectories. There are no
quantum fluctuations driving the system away from the classical paths.
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The equation (2.32) can be brought into more intuitive form by utilizing the
identity

δ[f(q)− q̇] = δ[q − qcl](det(M)−1 (2.33)

where where M is a functional matrix formed by the second functional deriva-
tives of the action A[ξ] ≡

∫
dtL(ξ, ξ̇)

Ma,b(t, t
′) =

δ2

δξa(t)δξb(t′)
|q=qcl

(2.34)

Morse index theorem [13] ensures that for sufficiently short time intervals
t2−t1 (before the system reaches its first focal point), the classical solution with
the initial condition q(t1) = q1 is unique. In such a case (2.32) can be brought
in the form

〈q2, t2|q1, t1〉 =
N

detM

∫ q2

q1

Dδ(q − qcl) (2.35)

indicating transparently the classical behavior.

2.3 Emergent Supersymmetry
We now turn to an interesting implication of the result (2.35) [10]. If we had
started in (2.32) with an external current

L̃(ξ, ξ̇) = L(ξ, ξ̇) + i~J · q (2.36)

integrated again over p, and took the trace over q, we would end up with a
generating functional

Z[J] =
N

detM

∫
Dδ(q − qcl) exp

(∫ t2

t1

dt J · q

)
(2.37)

The path integral (2.37) has an interesting mathematical structure. One
may rewrite it as

Z[J] =
N

detM

∫
Dqδ

[
δA
δq

] ∣∣∣∣ δ2A
δqa(t)δqa(t′)

∣∣∣∣× exp

[∫ t2

t1

dtJ · q

]
(2.38)

Introduce two real time dependent Grassman ghost variables ca(t) and c̄a(t),
fermion field λa, and two anticommuting coordinates θ and θ̄. The latter pair
of variables extends the configuration space of q variables into superspace. The
superfield is defined

Φa(t, θ, θ̄) = qa(t) + iθca(t)− iθ̄c̄a(t) + iθ̄θλa(t) (2.39)

Together with the identity DΦ = DqDcDc̄Dλ we may therefore express the
classical partition functions (2.37) and (2.38) as a supersymmetric path integral
with fully fluctuating paths in superspace

ZCM [J] =

∫
DΦ exp

{
−
∫
dθθ̄A[Φ](θ, θ̄)

}
×exp

{∫
dtdθdθ̄ Γ(t, θ, θ̄)Φ(t, θ, θ̄)

}
(2.40)
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where the supercurrent is Γ(t, θ, θ̄) = θ̄θJ(t). A specific case of supersymmetry,
namely Wess-Zumino supergravity, is discussed in the next section 2.4. There
we consider the kinetic Lagrangians for our scenario.

2.4 Supergravity
We discuss tentatively a relativistic case for cells. Our previous preon scenario
[14, 15] turned out to have close resemblance to the simplest N=1 globally
supersymmetric 4D model, namely the free, massless Wess-Zumino model [16,
17] with the kinetic Lagrangian including three neutral fields m, s, and p with
JP = 1

2

+
, 0+, and 0−, respectively

LWZ = −1

2
m̄�∂m−

1

2
(∂s)2 − 1

2
(∂p)2 (2.41)

where m is a Majorana spinor, s and p are real fields (metric is mostly plus).
We assume that the pseudoscalar p is the axion [18], and denote it below

as a. It has a fermionic superparther, the axino n, and a bosonic superpartner,
the saxion s0.

In order to have visible matter we assume the following charged chiral field
Lagrangian

L− = −1

2
m−�∂m

− − 1

2
(∂s−i )2, i = 1, 2 (2.42)

The R-parity of cells is simply PR = (−1)2×spin.

2.5 Bosonic String
Torsion of spacetime originates from General Relativity. Here we use a shorter
introduction for it, as well as for the axion, from bosonic string theory. A point
particle has one dimensional world line with a tangent vector dxµ(τ)/dτ , where
τ is the world line parameter [19]. The tangent vector and the Maxwell field
can be multiplied to form a Lorentz scalar. The interaction of a point particle
of charge e with the Maxwell gauge field is written as e

∫ dxµ(τ)
dτ Aµ(x(τ))dτ .

The endpoints of open strings may carry electric charge. But having two
Lorentz indexes we hope to discover a new kind of charge that could be con-
tracted with the string indexes. Such a field is the Kalb-Ramond antisymmetric
tensor Bµν = −Bνµ. It is a massless closed string. The obvious way to write a
Lorentz scalar with two string tangent vectors of the form ∂Xλ/dρ is

−
∫
∂Xµ

dτ

∂Xν

dσ
Bµν

(
X(τ, σ)

)
dτdσ (2.43)

This describes how a string carrying electric Kalb-Ramond charge couples to
the antisymmetric Kalb-Ramond field. The new field strength associated to
Bµν is Hµνρ is defined by

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν (2.44)
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The Hµνρ plays the same role as torsion in General Relativity providing an
anti-symmetric component to the affine connection.

The total action, analogous to the corresponding Maxwell action, is

S = Sstr−
1

2

∫
∂X [µ

dτ

∂Xν]

dσ
Bµν

(
X(τ, σ)

)
dτdσ+

∫
dDx

(
− 1

6
HµνρH

µνρ
)

(2.45)

where x[µyν] ≡ xµyν − xνyµ. Sstr includes General Relativity. In summary, the
bosonic string oscillation include these (26D) quantum fields: the symmetric
metric tensor Gµν(X), the antisymmetric Bµν(X), and the scalar φ(X).

In 4D the equations of motion imply that the dual of H field strength,
εµνρσHµνρ can be represented as ∂σb(x), where b(x) is a pseudoscalar, the Kalb-
Ramond axion. It is a generalization of Peccei-Quinn axion. We will discuss
axions and torsion in later sections.

3 Visible Matter
Visible, or the SM matter, has been discussed in detail in [14, 15], when ‘preon’
is interpreted as a ‘cell’. The first generation standard model fermions are
formed combinatorially (mod 3) of three cells, which are the charged m±, with
charge ±1

3 , and the neutral m0, as composite states below an energy scale Λcr
[15]. The new substance of this note is that the old ‘preons’ are now cells and
obey the laws of CAT.

What happens at high temperatures at t & TPl in the early universe? Most
likely, the density of energy is so high that structure formation is not yet pos-
sible. The classical cell permutation is the simplest event, or interaction, which
may form states obeying the laws of cellular automatons in discrete time. So,
during the next phase, on logarithmic time scale, two cell and cell-anticell per-
mutation pairs are formed. Two state automatons are not interesting unless
they form a scalar or vector particle. Three cell permutation systems are im-
portant since they form quarks, leptons and dark fermions. These particles are
behaving like quantum objects in continuous time, as described in subsection
2.2. Systems of more cells may form, leading to introduction of (local gauge)
equivalence classes [7]. These questions are beyond the scope of this note. The
deconfinement temperature of cells making composite states, T = Λcr, is for the
moment a free parameter. Numerically Λcr ∼ 1010−16 GeV, somewhat above
the reheating temperature since at reheating there must be SM particles, i.e.
visible matter.

We clarify our earlier notation for cells, towards what is used in subsection
2.1, as indicated in Table 2. There we see that for the three u quarks, uR,G,B,
the m0 is permuted on line two from position three to two and on the next
line from position two to one. Similarly for the d quark the m− is rotated
through the same positions. Leptons consist of three like cells which can be
identity rotated (|1〉 → |1〉) as labeled cells. In summary, quarks, leptons and
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the corresponding dark fermions o are considered in this model as consisting of
cells obeying deterministic equation of motion discussed in subsection 2.2.

SM Matter Cell state
νe m0m0m0

uR m+m+m0

uG m+m0m+

uB m0m+m+

e− m−m−m−

dR m0m0m−

dG m0m−m0

dB m−m0m0

Dark Matter Particle
boson(system) axion(s), s0, p
o (3 n composite) n
black hole any cell

Table 2: Visible and Dark Matter, and corresponding particles.

4 Dark Matter
Literature on dark matter, dark energy, and axions is extensive, see e.g. [20,
21, 22, 23, 24]. In this section we also patch our shortage in [15] to consider the
pseudoscalar of (2.41). So we start from the Lagrangian (2.41).

As stated in the previous section 2.4, the superpartners of the axion a are
the fermionic axino n, and the scalar saxion s0, also indicated in Table 1.3

Particle dark matter consists of all these three particles. The axino n may
appear physically as single particle dust or three n composite o dust, gas, or a
large astronomical object. The fermionic DM behaves naturally very differently
from bosonic DM, which may form Bose-Einstein condensates.

Other candidate forms of DM include primordial black holes (PBH). They
can be produced by gravitational instabilities induced from scalar fields such as
axion-like particles or multi-field inflation. It is shown in [25] that PBH DM can
be produced only in two limited ranges of 10−15 or 10−12 Solar masses (2×1030

kg). Dark photons open a rich phenomenology described [26]. We also mention
another supergravity (the graviton-gravitino supermultiplet) based model [27],
which may help to relieve the observed Hubble tension [28].

The axion was originally introduced to solve the strong CP problem in quan-
tum chromodynamics (QCD) [18], see also [29, 30]. The Peccei-Quinn axion has
a mass in the range 10−5 eV to 10−3 eV. Axions, or axion-like particles (ALP),

3In this note we mostly talk about all spin zero particles freely as scalars.
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occur also in string theory in large numbers (in the hundreds), they form the
axiverse.

The axion-like particle masses extend over many orders of magnitude making
them distinct candidate components of dark matter. Ultra-light axions (ULA),
with masses 10−33 eV < Ma < 10−20 eV, roll slowly during inflation and behave
like dark energy before beginning to oscillate (as we see below). The lightest
ULAs withMa / 10−32 eV are indistinguishable from dark energy. Higher mass
ALPs, Ma ' 10−25 eV behave like cold dark matter [24]. Quantum mechan-
ically, an axion of mass of, say 10−22 eV, has a Compton wavelength of 1016

m.
Ultra-light bosons with masses � eV can form macroscopic Bose-Einstein

condensates, such as axion stars [31, 32]. Due to the small mass the occupation
numbers of these objects are large, and consequently, they can be described
classically.

The fermionic axino n is supposed to appear, like the m cells, as free particle
if T > Λcr and when T . Λcr in composite states, gears. If the mass of the
axino composite state o is closer to the electron mass rather than the neutrino
mass it may form ’lifeless’ dark stars in a wide mass range. In general, dark
matter forms haloes with galaxies residing within.

To obtain a feeling of the possible roles of axions let us go briefly into the
early universe. Axions, as well as the whole dark sector, are treated as spectator
fields during and after inflation [20, 21, 22].4 The axion is massless as long as
non-perturbative effects are absent. When these effects are turned on the PQ
symmetry is broken and the axion acquires a mass. A minimally coupled scalar
field φ in General Relativity has an action

S =

∫
d4x
√
−g
[
− 1

2
(∂φ)2 − V (φ)

]
(4.1)

The cells m+,m−,m0 form gears, i.e. quarks and leptons, during inflation.
Unlike dark particles, the SM particles couple to the inflaton. When the inflaton
potential reaches its minimum the high mass inflaton condensate oscillations
cause reheating. So only the visible matter bangs due to coupling to the inflaton.
The visible and dark matter are somewhat differently distributed in the universe
because the latter interact only weakly.

In the Friedmann-Lemaitre-Robertson-Walker metric with potential V =
1
2M

2
aφ

2 5 the axion equation of motion is

φ̈0 + 2Hφ̇0 +M2
aa

2φ0 = 0 (4.2)

where φ0 is the homogeneous value of the scalar field as a function of the confor-
mal time τ , a is here the cosmological scale factor, and dots denote derivatives
with respect to conformal time.

4On the other hand, the axion can be modeled as causing the inflation [23].
5This is an adequate approximation over most of the parameter space observationally allowed

provided fa < MPl. The potential is anyway unknown away from the minimum without a model for
nonperturbative effects.
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At an early time ti & 10−36s, Ma � H and the axion rolls slowly. If the
initial velocity is zero it has equation of state wa ≡ Pa/ρa ' −1. Consequently,
the axion is a component of dark energy. With t > ti the temperature and H
decrease and the axion field begins to oscillate coherently at the bottom of the
potential. This happens when

Ma = 3H(aosc) (4.3)

which defines the scale factor aosc. Now the number of axions is roughly constant
and the axion energy density redshifts like matter with ρa ∝ a−3. The relic
density parameter Ωa is

Ωa =

[
1

2a2
φ̇2

0 +
M2a

2
φ2

0

]
M2
a=3H

a3
osc/ρcrit (4.4)

where ρcrit is the cosmological critical density today. Explicit estimates for the
relic density are given in [24]. This applies to all axion-like particles, if there
are many like in string theory.

When radiation and matter match in ΛCDM model the Hubble rate is
H(aeq) ∼ 10−28 eV. Axions with mass larger than 10−28 eV begin to oscillate
in the radiation era and may provide for even all of dark matter. The upper
limit of the ultralight axion mass fraction Ωa/ΩDM , where Ωa is the axion relic
density and ΩDM is the total DM energy density parameter, varies from 0.6 in
the low mas end 10−33 eV to 1.0 in the high mass limit 10−24 eV. In the middle
region Ωa/ΩDM is constrained to be below about 0.05 [24].

In [33] it is proposed that the matter-antimatter asymmetry was manifested
by direct production of asymmetric visible matter from C-symmetric cells.

5 Supersymmetry Breaking
There are several ways supersymmetry may get broken, and they are described
extensively in a number of articles, reviews and textbooks [34, 35, 36]. To us
an obvious method is the gravitationally mediated scenario. Supersymmetry is
unbroken in the cell sector and is mediated by gravitational interaction to the
visible minimal supersymmetric standard model (MSSM sector by soft term
contributions, which means that the Lagrangian has two terms: symmetric and
symmetry breaking

L = Lsusy + Lsoft (5.1)

where Lsoft violates supersymmetry but only by mass terms and coupling con-
stants having positive mass dimension.

The brief description is that if supersymmetry is broken in the cell sector by a
vev 〈F 〉 then the soft terms in the visible sector are expected to be approximately
Msoft ∼ 〈F 〉/MPl. For Msoft ∼ 200 GeV one would estimate that the scale
associated with supersymmetry breaking in the cell sector is about

√
〈F 〉 ∼ 1010
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or 1011 GeV, which must be below Λcr for consistency. This way the MSSM
soft terms arise indirectly or radiatively, instead of tree-level renormalizable
couplings to the supersymmetry breaking parameters. The gravitino mass is of
the order of the masses of the MSSM sparticles. The gravitino in turn mediates
the symmetry breaking with gravitational coupling to the MSSM. A gravitino
mass of the order of TeV gives a lifetime 105 s, long enough not to disturb
nucleosynthesis by decay products.

6 Black Holes
Here we make a brief remark concerning the quantum numbers of holes and
cells. The quantum numbers of cells were chosen to be the same as those of
black hole, namely mass, spin and charge. This has two consequences. In the
early universe black holes were created just like cells or gears, depending on the
energy and volume. Secondly, black holes can emit nearly massless cell pairs by
the Hawking mechanism. If the hole is light enough the radiation is intensive
producing clouds of cells which may combine into SM particles. Maybe cells are
the nearly massless remnants of black holes.

Let us make a Gedanken experiment. A not too large amount of visible (or
dark matter as well) matter has fallen into a black hole. The temperature of the
matter increases substantially, above Λcr near the horizon. Consequently matter
fallen in makes a phase transition into cell matter and looses all SM internal
quantum numbers. Fermions at high density do not collapse into singularity
because they form gears. Alternatively, torsion of spacetime causes a repulsive
four fermion contact interaction, or some quantum effect takes place. The hole
starts emitting massless cell-anticell pairs from near the horizon. The Hawking
radiated cells will combine later into SM particles and form again visible and
dark matter. Has there been information loss? If the particles fell into a classical
singularity all information of them is obviously lost. On the other hand, if the
singularity is smoothed out by some effect the situation is more interesting. The
matter fallen in the hole cannot disappear. The radiated cells need not make
quite the same celestial matter as fell in but it is matter of the same type. This
would be in accordance with the common principle of cyclic processes of nature
- like the cyclic universe.

The second Gedanken experiment is the following. A particle is Hawking ra-
diated from a hole and its antiparticle falls into it. If the singularity is smoothed
out the antiparticle does not disappear. If it would happen that the antiparticle
of the antiparticle, i.e. the same type of particle, would happen to fall from the
other side of the black hole into it and meet the antiparticle the situation would
look like particle going through the black hole. It is deep elastic scattering off
a black hole. If this would happen the singularity of the hole would be proven
not to exist. Unfortunately, this may be impossible to verify experimentally,
except perhaps in condensed matter physics or other analog experiments.

In our modest approach the question of quantum gravity is, at the moment
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at least, limited to the existence and nature of the black hole singularity. Our
opinion is that there may not be such a physical singularity, though rigorously
proven by general relativists. It may be that cells and black holes are on the
same ’trajectory’ but with the slope varying between zero and the overspinnig
value of Kerr holes J = M2, and a wholly radiated black hole may, if not must,
leave a cell remnant.

7 Conclusions

By defining the fundamental fields as deterministic cells in Table 2 it has been
possible to develop a model for visible matter as well as for the dark sector and
sketch briefly how they behave during inflation. Theoretical arguments, if not
partial proof, for the scenario were given in section 2. Further, we loft the idea
whether the present model is a simple candidate for the ontological basis for
the standard models of particles (and beyond) and cosmology.

The scenario is compatible with visible matter-antimatter asymmetry. The
symmetric dark sector includes both fermionic and bosonic fields, which may
conglomerate into objects of various sizes. The bosonic sector of (2.41) contains
axion-like particles, a string theory concept. They are obvious candidates for
bosonic dark matter are axions when Ma ' 10−25 eV and dark energy when
Ma / 10−32 eV.

The deterministic nature of cells provides insight to the origin of the universe
and nature of quantum mechanics. Cells had in the early universe, T � Λcr,
no interactions (except what may be related to torsion). When T / Λcr dur-
ing early inflation quarks and leptons are formed of cells by CAT gear form-
ing mechanism, yet to be studied. Quantum nature of matter is mainly re-
lated to the standard model particles which obey the non-Abelian SU(3)C and
SU(2)W ×U(1)Y gauge symmetries. The non-Abelian interactions are essential
for nuclear- and astrophysics, chemistry and biology. The two Abelian interac-
tions are able to form a universe with less nuances.

We anticipate that the gear system, as a part of CAT, and unification require
more work. In this scenario, unification takes place by all matter consisting of
very few supersymmetric cells in 4D. Not by introducing unified gauge groups
with large number of states, extra dimensions or multiverse. However, a com-
mon problem is the proton life time in p→ e+π0.

To build this scenario to a community deliberate level, or disprove it, simu-
lations have to be done, more detailed Lagrangians be written and calculated.
Phenomenological work is to be carried out with current data for many de-
tails like supersymmetry breaking and particle masses while waiting for future
accelerator and celestial precision experiments to be carried out in the years,
and a decade, to come. Machine learning and quantum computing may provide
powerful methods for new type of quantitative studies.
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