SunQM-5s2: Using {N,n//6} QM to Explore Elementary Particles and the Possible Sub-quark Particles

Yi Cao

e-mail: yicaojob@yahoo.com. ORCID: 0000-0002-4425-039X © All rights reserved. Submitted to viXra.org on 7/18/2021.

Abstract

A {N,n//6} QM structure periodic table with n = 1..12, and N \leq -15 was built for the elementary particles (based on their mass, not on their sizes). The analyzed result suggested that: 1) All the down-type quarks have {N,2//6}o QM structures, while all the up-type quarks have {N,1//6}o QM structures; 2) The 1st generation of quarks may belong to {-17,n//6} QM structures, the 2nd generation of quarks may belong to {-16,n//6} QM structures, and the 3rd generation of quarks may belong to {-15,n//6} QM structures. 3) A proton (at size of {-15,1//6}) may be the ground state of both Charm quark and Bottom quark, Charm quark {-15,1//6}o may be the first excited state of proton {-15,1//6}, and the Bottom quark {-15,2//6}o may be the second excited state of proton {-15,1//6}. If it is correct, then based on this new elementary particle {N,n//6} QM structure, we may need to make some modification in the current Standard Model: Charm quark may be the 3rd (instead of the 2nd) generation of up-type quark; Top quark may be the 4th generation, although can be up-quark, but its mass fits to the down-quark much better. A new method to expand {N,n//6} QM structure periodic table from n=1..12 to n=1..36, (or even to n=1..6^3, n=1..6^4, etc.) has been proposed. This method seamlessly bridged the {N,n} QM to the classical physics.

Introduction

The SunQM studies have demonstrated that not only the formation of the Solar system was governed by its {N,n} QM ^{[1]~[19]}, but the formation of all force fields was also governed by the {N,n} QM ^{[20]~[21]}. In previous papers (including the SunQM-5 series ^{[22]~[23]}), a {N,n//6} QM structure periodic table with n = 1..12, and N \geq -15 has been built. In the current paper, we tried to build the rest of {N,n} QM structure periodic table for N \leq -15 with n = 1..12, mainly for the elementary particles and the sub-quark particles. Note: for {N,n} QM nomenclature as well as the general notes for {N,n} QM model, please see SunQM-1 section VII. Note: Microsoft Excel's number format is often used in this paper, for example: x^2 = x², 3.4E+12 = 3.4*10¹², 5.6E-9 = 5.6*10⁻⁹. Note: The reading sequence for SunQM series papers is: SunQM-1, 1s1, 1s2, 1s3, 2, 3, 3s1, 3s2, 3s6, 3s7, 3s8, 3s3, 3s9, 3s4, 3s10, 3s11, 4, 4s1, 4s2, 5, 5s1, 5s2, 6 and 6s1. Note: For all SunQM series papers, reader should check "SunQM-9s1: Updates and Q/A for SunQM series papers" for the most recent updates and corrections. Note: I am a {N,n} QM scientist, not an particle physicist. All I did here is to use {N,n//6} QM (including some citizen-scientist-leveled guesses) to explore part of the particle physics.

I. To build a {N,n//6} QM structure periodic table for the elementary particle

In SunQM-1s2's Table 1 and SunQM-5's Table 1, we have showed the result of $\{N,n//6\}$ QM structural analysis scanning from size of sub-quark (at N= -25) to universe (at N= 25), although only with the size of n = 1. In SunQM-1's Table

4, and SunQM-3s8's Table 4, we have showed the Solar system $\{N,n//6\}$ QM structure periodic table from N = -5 to N = +5, with (orbital) n = 1 through 12. In SunQM-5's Table 3, we have showed the atom's nucleus-electron system based on $\{N,n//6\}$ QM structure from N = -11 to N = -16, with (orbital) n = 1 through 12. Thus, the first step to analyze the elementary particles using $\{N,n//6\}$ QM is to build up its $\{N,n//6\}$ QM structural periodic table with (orbital) n = 1 through 12, and with N from sub-atom size (N ≤ -13) to sub-quark size (N < -17). Then, the future goal is to build a "master $\{N,n//6\}$ QM structural table" with the spanning of -25 < N < +25, and (orbital) n = 1 ... 12, to cover the whole universe (i.e., SunQM-7's Table 1).

From the text books, all elementary particles are listed as the (rest) mass (e.g., MeV/c^2), rather than the size. So we have to build an elementary particle's {N,n/6} QM structural table base on their mass, not on their sizes, (even though all previous {N,n} QM structural tables were built based on size (or the orbital r), not on mass). We have no idea what is the relationship between the size and the mass for particles. We had tried to tread a particle as a solid ball with evenly distributed mass density (so that we can have the r vs. mass relationship), but it didn't work well (the calculation is not shown here). In SunQM-1s2's Table 2, we had discovered that the mass ratio between proton, down quark and up quark is $36 : 2.5 : 1.6 \approx 36 : 3 : 2$, and we had assumed that these are the (relative) n quantum numbers of $n_{proton}' = 36$, $n_{down-qk}' = 3$, and $n_{up-qk}' = 2$. After that, (while building the master table in SunQM-7), I realized that the size of a proton is at {-15,1//6}, which means its orbital n is {-16,5//6}o orbital shell space. (Note: it follows the rule that all mass between r_n and r_{n+1} belongs to orbit n, and for ~100% mass occupancy, its size is n+1. See SunQM-3s2). Therefore, the previous (relative) $n_{proton}' = 36 = 6 * 6^{1}$ is the size, and the proton's true (relative) orbital n is $n_{proton} = (6-1)* 6^{1} = 5* 6^{1} = 30$. Then, the up quark's true (relative) orbital n is $n_{up-qk} = 1$, and the down quark's true (relative) orbital n is $n_{down-qk} = 2$. That is why in Table 1, we have proton at {-16,5//6}o, up quark at {-17,1//6}o, down quark at {-17,2//6}o.

Then, how to fill in the {N,n//6} QM states between proton $\{-16,5//6\}o = \{-17,30//6\}o$ and up-quark $\{-17,1//6\}o$ for $n = 2 \dots 29$? For the Solar system, galaxy, or nucleus, we used r_n with $r_n / r_1 = n^2$. However, for particles we have to use their mass. In SunQM-1s2 we had assumed that it has the similar r vs. mass linear relationship as the Schwarzschild's formula for the black hole: $r_{BlackHole} = 2.95 * M_{BlackHole} / M_{sun}$, (unit = km, see wiki "black hole"). By doing so, it assumed that all particle mass (M_n) has the same relationship to n(s) as that of r to n:

$M_n / M_1 = r_n / r_1 = n^2$	(the orbital shell version)	eq-1a
$M_{n+1} \ / \ M_1 = r_{n+1} \ / \ r_1 = (n\!+\!1)^2$	(the size version)	eq-1b

where in eq-1a, M_n is the mass of the particle at n orbit QM state (from the surface to the point center of the mass ball), and M_1 is the mass of the particle at size n=1 (the reference, equivalent to r_1) QM state. Notice that eq-1a and eq-1b are equivalent. Because we used proton's mass as the reference point $M_1 = M_{proton}$, the eq-1 is straightforward for $M_n > M_{proton}$. For $M_n < M_{proton}$, we need to use the interior {N,n} QM to calculate (with n < 1). Thus, in Table 1, eq-1 was used to calculate all mass of particles from N = -16 down to N = -24. For example, a {-16,5//6}o orbital shell's mass is calculated as 1351 * (5/6)^2 = 938 MeV/c^2 (where 1351 MeV/c^2 comes from: $x^*(5/6)^2 = 938$, $x = 1351 MeV/c^2$); a {-17,2//6}o orbital shell's mass is calculated as 1351 * (2/6/6)^2 = 4.17 MeV/c^2; a {-18,5//6}o orbital shell's mass is calculated as 1351 * (5/6/6/6)^2 = 0.724 MeV/c^2; etc.

Besides eq-1, there is an alternative way to calculate the relationship of a particle's mass to its n. This is based on the equation of $r_{nuc} = 1.25E-15 * (M\#)^{(1/3)}$, where M# is the atomic mass number (the number of protons Z, plus the number of neutrons N, see wiki "Atomic nucleus") of the atom's nucleus, and r_{nuc} is the radius of the atom's nucleus. Based on that, we can fit the nuclide's n_{nuc} (in SunQM-5's Table 2 column 11) to $(M_n / M_1)^{(2/3)}$ quite well. Using equation $(M_n / M_1)^{(2/3)} = n^x$, this fitting result gave $M_n / M_1 \approx n^{(3/2)} = n^{(1.5)}$ (instead of eq-1's $M_n / M_1 = n^2$, fitting data is not shown here). A more careful fitting gave $M_n / M_1 \approx n^{(3/1.87)} \approx n^{(1.6)}$ (also fitting data is not shown here). However, we decided not to use those fitting results for the calculation in Table 1, because they did not significantly improve the matching between the calculated (particle's) mass to the experimental data. Because that there are too many this kind of guesses and approximations in this study, it makes this part of the {N,n} master period table (from N = -16 to N = -24) to be a "citizen scientist leveled" estimation.

		n=											
{N	i,n//6}	1	2	3	4	5	6	7	8	9	10	11	12
	-23					0.012 eV/c^2, neutrino <0.12eV							
N=	-22	0.017 eV/c^2, neutr	r 0.069 eV/c^2, neutrino •	< 0.155 eV/c^2	0.276 eV/c^2	0.431 eV/c^2	0.621 eV/c^2	0.845 eV/c^2	1.103 eV/c^2	1.396 eV/c^2	1.724 eV/c^2	2.086 eV/c^2	2.483 eV/c^2
	-21	0.6 eV/c^2	2.5 eV/c^2	5.6 eV/c^2	9.9 eV/c^2	15.5 eV/c^2	22.3 eV/c^2	30.4 eV/c^2	39.7 eV/c^2	50.3 eV/c^2	62.1 eV/c^2	75.1 eV/c^2	89.4 eV/c^2
	-20	22 eV/c^2	89 eV/c^2	201 eV/c^2	357 eV/c^2	559 eV/c^2	804 eV/c^2	1095 eV/c^2	1430 eV/c^2	1810 eV/c^2	2234 eV/c^2	2704 eV/c^2	3217 eV/c^2
	-19	0.8 KeV/c^2	3.22 KeV/c^2	7.24 KeV/c^2	12.87 KeV/c^2	20.11 KeV/c^2	28.96 KeV/c^2	39.41 KeV/c^2	51.48 KeV/c^2	65.15 KeV/c^2	80.44 KeV/c^2	97.33 KeV/c^2	115.83 KeV/c^2
	-18	29 KeV/c^2	116 KeV/c^2	261 KeV/c^2	463 KeV/c^2	724 KeV/c^2, electron 511Kev	1042 KeV/c^2	1419 KeV/c^2	1853 KeV/c^2	2345 KeV/c^2	2896 KeV/c^2	3504 KeV/c^2	4170 KeV/c^2
	-17	1.04 MeV/c^2, up qk 1.9 MeV	4.17 MeV/c^2, down qk 4.4 MeV	9.38 MeV/c^2	16.68 MeV/c^2	26.06 MeV/c^2	37.53 MeV/c^2	51.08 MeV/c^2	66.72 MeV/c^2	84.44 MeV/c^2	104.24 MeV/c^2	126.14 MeV/c^2	150.11 MeV/c^2
	-16	38 MeV/c^2	150 MeV/c^2, strange qk 87 MeV	338 MeV/c^2	600 MeV/c^2	938 MeV, proton, size {-15,1}	1351 MeV/c^2	1839 MeV/c^2	2402 MeV/c^2	3040 MeV/c^2	3753 MeV/c^2	4541 MeV/c^2	5404 MeV/c^2
	-15	1.4 GeV/c^, charm qk 1.32 GeV	5.4 GeV/c^2, bottom qk 4.24 GeV	12.2 GeV/c^2	21.6 GeV/c^2	33.8 GeV/c^2	48.6 GeV/c^2	66.2 GeV/c^2	86.5 GeV/c^2	109.4 GeV/c^2	135.1 GeV/c^2	163.5 GeV/c^2	194.5 GeV/c^2
	-14	49 GeV/c^2, top qk 173 GeV	195 GeV/c^2	438 GeV/c^2	778 GeV/c^2	1216 GeV/c^2	1751 GeV/c^2	2383 GeV/c^2	3113 GeV/c^2	3940 GeV/c^2	4864 GeV/c^2	5885 GeV/c^2	7004 GeV/c^2
	-13	1751 GeV/c^2	7004 GeV/c^2	15758 GeV/c^2	28014 GeV/c^2	43772 GeV/c^2	63032 GeV/c^2	85794 GeV/c^2	112057 GeV/c^2	141823 GeV/c^2	175090 GeV/c^2	211858 GeV/c^2	252129 GeV/c^2

Table 1. Using $\{N,n//6\}$ QM and eq-1 to calculate the mass for all QM states, and to match up-type (in blue) and down-type (in green) quarks in the Standard Model.

Note: up-quark mass = 1.9 MeV/c^2, down-quark mass = 4.4 MeV/c^2, obtained from wiki "Elementary particle". Note: Yellow cells are the ground state of $\{N,n//6\}$ QM

II. Using the Standard Model to support the particle {N,n//6} QM structure table, and using particle {N,n//6} QM structure table to modify (or improve?) the Standard model

In Table 1, using eq-1 and based on the experimental mass data of proton (938 MeV/c^2), up quark (1.9 MeV/c^2) and down quark (4.4 MeV/c^2), other (possible) particles' mass are calculated based on {N,n//6} QM structure (from N = -13 to N = -23). It is hard to say how accurate (or even how correct) these calculated mass values are. However, by comparing to another set of (the completely independent) experimental data (see Table 3a), we do see some interesting results. According to the Standard Model ^[24], the experimental mass of down quark (4.4 MeV/c^2), strange quark (87 MeV/c^2), and bottom quark (4.24 GeV/c^2) fitted to the calculated mass of $\{-17,2\}$ o QM state (4.17 MeV/c^2), $\{-16,2\}$ o QM state (150 MeV/c^2), and $\{-15,2\}$ o QM state (5.4 GeV/c^2) quite well. Also, the experimental mass of up quark (1.9 MeV/c^2), and charm quark (1.32 GeV/c^2) fitted to the calculated mass of $\{-17,1\}$ o QM state (1.04 MeV/c^2), and $\{-15,1\}$ o QM state (1.4 GeV/c^2) quite well. This result led us to believe that all the down-type quarks have (orbital quantum number) n = 2, or {N,2//6}o QM structures, while all the up-type quarks have (orbital quantum number) n=1, or {N,1//6}o QM structures. The major result of this analysis led us to further propose that the 1st generation of quarks belong to N = -17, or have {-17,n//6} QM structures, the 2nd generation of quarks belong to N = -16, or have {-16,n//6} QM structures, and the 3rd generation of quarks belong to N = -15, or have {-15,n//6} QM structures. If this analysis is correct, then we have to re-organize the quark generations to that shown in either Table 3b, or Table 3c. It means, charm quark should be the 3rd (instead of the 2nd) generation of up-type quark. Top quark should be the 4th generation, although can be up-quark, but its mass fits to the down-quark much better.

If the calculation in Table 1 is correct, then a proton (at size of $\{-15,1//6\}$) is the ground state of the Charm quark, and it is also the ground state of the Bottom quark. In other words, Charm quark $\{-15,1//6\}$ is the first excited state of proton $\{-15,1//6\}$, and the Bottom quark $\{-15,2//6\}$ is the second excited state of proton $\{-15,1//6\}$. Similarly, there should be a ground state at size of $\{-17,1//6\}$ for the up-quark (which is at the first excited state of $\{-17,1//6\}$), and for the down-quark (which is at the second excited state of $\{-17,1//6\}$ o). According to $\{N,n//6\}$ QM, this $\{-17,1//6\}$ sized particle (with mass ≈ 724 KeV/c²) is expect to be the true "fundamental particle" of up-quark and down-quark. (Note: also see section III for an alternative explanation).

Table 2a (left). Generations and mass of quarks based on the Standard Model (according to wiki "Elementary particle"). Table 2b (middle). Modification of the quark generation in the Standard Model based on the $\{N,n//6\}$ QM (in Table 1). Table 2c (right). Modification of the quark generation in the Standard Model based on the $\{N,n//6\}$ QM (in Table 1), with the least deviation of the top quark's mass to that of $\{N,n//6\}$ QM.

			generation		up-type qk	down-type qk		generation		up-type qk	down-type qk
				{N,n//6}	n=1	n=2			{N,n//6}	n=1	n=2
					1.04 MeV/c^2,	4.17 MeV/c^2,	ΙΓ			1.04 MeV/c^2,	4.17 MeV/c^2,
					up qk,	down qk,				up qk,	down qk,
			1st	N=-17	1.9 MeV/c^2	4.4 MeV/c^2		1st	N=-17	1.9 MeV/c^2	4.4 MeV/c^2
						150 MeV/c^2,					150 MeV/c^2,
					38 MeV/c^2,	strange qk 87				38 MeV/c^2,	strange qk 87
generation	up-type qk	down-type qk	2nd	N=-16	missing	MeV/c^2		2nd	N=-16	missing	MeV/c^2
	up qk,	down qk,			1.4 GeV,	5.4 GeV/c^2,				1.4 GeV,	5.4 GeV/c^2,
1st	1.9 MeV/c^2	4.4 MeV/c^2			charm qk,	bottom qk,				charm qk,	bottom qk,
	charm qk	strange qk	3rd	N=-15	1.32 GeV/c^2	4.24 GeV/c^2		3rd	N=-15	1.32 GeV/c^2	4.24 GeV/c^2
2nd	1.32 GeV/c^2	87 MeV/c^2			49 GeV/c^2						195 GeV/c^2,
	top qk	bottom qk			top qk,	195 GeV/c^2,				49 GeV/c^2	top qk,
3rd	173 GeV/c^2	4.24 GeV/c^2	4th	N=-14	173 GeV/c^2	missing		4th	N=-14	missing	173 GeV/c^2

III. A ground state {N,1//6} sized structure is often "accompanied" by a first excited state {N,1//6} o QM structure, and its application in the elementary particle QM structural analysis

In the {N,n//6} QM structure (master) periodic table (see SunQM-7's Table 1, also copied in the Appendix of current paper), we see that a ground state {N,1//6} sized QM structure is quite often "accompanied" by a first excited state {N,1//6} o QM structure. (Note: The definition of an orbital electron's ground state is different between {N,n} QM and Bohr-QM. The orbital n=1 is the ground state in Bohr-QM, but it is the first excited state in {N,n} QM. See SunQM-7's section I-f for detailed explanation). For example, Virgo Super Cluster at {10,1//6} size is "accompanied" by a Halo structure at {8,1//6} orbital shell space with a size of {10,2//6}, Milky Way galaxy at {8,1//6} size is "accompanied" by a Sun ball at {0,1//6} orbital shell space with a size of {8,2//6}, Sun core at {0,1//6} size is "accompanied" by a Sun ball at {0,1//6} orbital shell space with a size of {0,2//6}, A Sun-massed black hole at {-3,1//6} size is "accompanied" by a Sun-massed neutron star at {-3,1//6} orbital shell space with a size of {0,2//6}, For the nuclides, a hydrogen nucleus has size of {-15,1//6}, it is "accompanied" by a helium nucleus at {-15,1//6} orbital shell space with a size of {-3,2//6}. According to wiki "chemical element", the abundance of element in our galaxy is H ~73.9%, He ~24%. For the nuclides, a hydrogen nucleus has size of {-15,2//6}. Also for the nuclides, an oxygen nucleus (with n_{nuc} = 5.5 \approx 1 * 6^1, see SunQM-5 Table 2) has size of {-14,1//6}, it is "accompanied" by a Fe nucleus (with n_{nuc} = 12.2 \approx 2 * 6^1, see SunQM-5 Table 2) at {-14,1//6} orbital shell space with a size of {-14,2//6}, (also see SunQM-5 section II-b discussion-2).

Here, the word "accompanied" has two meanings: 1) the $\{N,2//6\}$ sized QM state has a solid (or at least an obvious) structure in comparison with the $\{N,1//6\}$ sized QM structure, while the other $\{N,n=3..6//6\}$ sized QM states may not have an obvious structure (for example, Sun's $\{0,1//6\}$ o orbital shell has an obvious structure end at $\{0,2//6\}$, while Sun's corona $\{0,n=2..5//6\}$ o orbital shells do not have any obvious structure); 2) the $\{N,2//6\}$ sized QM structure has a relative high abundancy among $\{N,n=1..6//6\}$ sized QM structures, just like the helium has the abundancy of 24% (relative to hydrogen's 73.9%), and the rest elements (add together) have the abundancy of only 2.1%.

The above analysis revealed that, in the {N,n//6} QM, the ground state (in size of {N,1//6}) is the most stable QM state, so it has the very stable physical structure; the first excited state (at {N,1//6}o orbital shell space, or in size of {N,2//6}) is the second most stable QM state, so it also has a (relative) stable physical structure; the rest higher excited states (in sizes of {N,n=3..6//6}) have much less stability, so they have a much less stable physical structure (or short-life) in the micro-or macro-world; In the celestial-world, the stabilities of some higher excited states (in sizes of {N,n=3..6//6}) are so low that their physical structures are often not being observed (because of their short-life, e.g., only exist during the process of a celestial body's quantum collapsing or quantum explosion, see SunQM-1s1's Table 7b). According to this analysis, we guessed that there may be a {-1,2//6} sized (celestial) structure to "accompany" the "ground state" {-1,1//6} QM structure of white dwarf, and that there may be a {-2,2//6} sized (celestial) structure to "accompany" the "ground state" {-2,1//6} QM structure of the undiscovered celestial body.

Furthermore, it is reasonable to guess that the up-type quarks are the "ground state" quarks that have sizes of $\{-17,1//6\}$, $\{-16,1//6\}$, and $\{-15,1//6\}$, and the down-type quarks are the "first excited" quarks that have sizes of $\{-17,2//6\}$, $\{-16,2//6\}$, and $\{-15,2//6\}$ that "accompany" the "ground state" quarks. However, if using eq-1 for this hypothesis, then the calculated mass values do not match the experimental data well (see Table 1). On the other hand, if we modify eq-1 by replacing the quantum number of orbit n by quantum number of size (= n+1, see eq-2)

then, the calculated mass values are not bad in matching to the experimental data (for both the up-type (in yellow) and downtype quarks (in blue), see Table 3). This result makes Table 3 to be an alternative possibility other than that of Table 1 (although we don't know how valid eq-2 is). However, by forcing up-type quarks to be the $\{N,1//6\}$ QM ground states, we are forcing proton (938 MeV/c^2) and Charm quark (1.32 GeV/c^2) to share the same $\{-16,5//6\}$ o QM state. Obviously, the possibility of the configuration shown in Table 3 is not high.

Table 3. Forcing up-type quarks as $\{N,1//6\}$ size (in yellow) and down-type quarks as $\{N,2//6\}$ size (in blue) by using eq-2 to calculate the mass of $\{N,n//6\}$ QM states.

		n =											
1}	N,n//6]	1	2	3	4	5	6	7	8	9	10	11	12
	-23					0.012 eV/c^2							
						0.431 eV/c^2,							
N =	-22	0.048 eV/c^2	0.108 eV/c^2	0.192 eV/c^2	0.299 eV/c^2	neutrino < 0.12eV	0.587 eV/c^2	0.766 eV/c^2	0.97 eV/c^2	1.197 eV/c^2	1.448 eV/c^2	1.724 eV/c^2	
	-21	1.72 eV/c^2	3.88 eV/c^2	6.89 eV/c^2	10.77 eV/c^2	15.51 eV/c^2	21.11 eV/c^2	27.58 eV/c^2	34.9 eV/c^2	43.09 eV/c^2	52.14 eV/c^2	62.05 eV/c^2	
	-20	62 eV/c^2	140 eV/c^2	248 eV/c^2	388 eV/c^2	558 eV/c^2	760 eV/c^2	993 eV/c^2	1257 eV/c^2	1551 eV/c^2	1877 eV/c^2	2234 eV/c^2	
	-19	2.2 KeV/c^2	5 KeV/c^2	8.9 KeV/c^2	14 KeV/c^2	20.1 KeV/c^2	27.4 KeV/c^2	35.7 KeV/c^2	45.2 KeV/c^2	55.8 KeV/c^2	67.6 KeV/c^2	80.4 KeV/c^2	
						724 KeV/c^2,							
	-18	80 KeV/c^2	181 KeV/c^2	322 KeV/c^2	503 KeV/c^2	up qk 1.9 MeV	985 KeV/c^2	1287 KeV/c^2	1628 KeV/c^2	2010 KeV/c^2	2433 KeV/c^2	2895 KeV/c^2	
		2.9 MeV/c^2,											
	-17	down qk 4.4 MeV	6.5 MeV/c^2	11.6 MeV/c^2	18.1 MeV/c^2	26.1 MeV/c^2	35.5 MeV/c^2	46.3 MeV/c^2	58.6 MeV/c^2	72.4 MeV/c^2	87.6 MeV/c^2	104.2 MeV/c^2	
						938 MeV/c^2,							
		104 MeV/c^2,				<mark>charm qk 1.32 GeV,</mark>							
	-16	strange qk 87 MeV	235 MeV/c^2	417 MeV/c^2	651 MeV/c^2	proton	1277 MeV/c^2	1668 MeV/c^2	2111 MeV/c^2	2606 MeV/c^2	3153 MeV/c^2	3752 MeV/c^2	
		3.8 GeV/c^2,											
		bottom qk											
	-15	4.24GeV	8.4 GeV/c^2	15 GeV/c^2	23.5 GeV/c^2	33.8 GeV/c^2	46 GeV/c^2	60 GeV/c^2	76 GeV/c^2	93.8 GeV/c^2	113.5 GeV/c^2	135.1 GeV/c^2	
		135 GeV/c^2,											
	-14	top qk 173GeV	304 GeV/c^2	540 GeV/c^2	844 GeV/c^2	1216 GeV/c^2	1655 GeV/c^2	2161 GeV/c^2	2735 GeV/c^2	3377 GeV/c^2	4086 GeV/c^2	4863 GeV/c^2	
	-13	1751 GeV/c^2	7004 GeV/c^2	15758 GeV/c^2	28014 GeV/c^2	43772 GeV/c^2	59567 GeV/c^2	77801 GeV/c^2	98467 GeV/c^2	121565 GeV/c^2	147093 GeV/c^2	175053 GeV/c^2	

IV. Expand $\{N,n//6\}$ QM structure periodic table from n = 1..12 to $n = 1..6^2$ (or even to 6^3, 6^4, ...) for each N

In Table 1, depends on what resolution ΔM (the difference of mass between two adjacent QM states) we want, we can add more sub-stable {N,n// 6^{i} } QM states (where integer i > 0) between the two existing (adjacent) QM states by decreasing the ΔM (i.e., by increasing the j integer value, see example in Table 4). For example, the N = 16 period (or super shell) $\{-16, n=1..5//6\}$ o in Table 1 contains 5 individual n states from n= 1 to n=5, each separated by ΔM around ~100 MeV/c^2 to ~300 MeV/c². This is using {-16,1//6} o as the unit (of the period or super shell). In Table 4, if we use the {-17,1/6 o as the unit (of the period or super shell), then $\{-16,n=1...5//6\}$ o can be written as $\{-16,n=1...35//6^2\}$ o, and it contains 35 individual QM states from n= 1 to n=35, each separated by ΔM around ~3 MeV/c² to ~100 MeV/c². If we use the $\{-18,1/6\}$ o as the unit (of the period or super shell), then $\{-16,n=1..5/6\}$ o can be written as $\{-16,n=1..215/6^{3}\}$ o, and it contains 215 individual QM states from n= 1 to n=215, each separated by ΔM around ~0.1 MeV/c² to ~10 MeV/c². If we use the $\{-19,1//6\}$ o as the unit (of the period or super shell), then $\{-16,n=1..5//6\}$ o can be written as $\{-16,n=1..1295//6^4\}$ o, and it contains 1295 individual QM states from n= 1 to n=1295, each separated by ΔM around ~0.002 MeV/c² to ~2 MeV/c², and so on so forth. We can interpret this as, for each N period, we can detect $6^{1} - 1 = 5$ of different energy leveled (relatively stable) particles, and we can also detect $6^{2} - 1 = 35$ of (smaller) different energy leveled (relatively unstable) particles, and we can even detect $6^{3} - 1 = 215$ of (much smaller) different energy leveled (highly unstable) particles, or even $6^4 - 1 = 1295$ of (tiny) different energy leveled (extremely unstable) particles, and so on so forth. All these QM states are available according to the {N,n/6} QM, although most of them are less stable as the ΔM decreases. This may be the reason that why more and more elementary particles are being found.

The general physics told us that the Solar system is made of atoms. Based on the {N,n} QM (master) periodic table, this sentence can be translated as that the {N=0.4,n=1..5//6} QM structure (i.e., the Solar system) is made of the "building blocks" of {-12,n=1..7//6} QM structures (i.e., the atoms). The general physics also told us that a galaxy is made of stars.

Based on the {N,n} QM (master) periodic table, this sentence can also be translated as that the {N=0..7,n=1..5//6} o QM structure (i.e., a galaxy) is made of the "building blocks" of {0,n=1..2//6} QM structures (i.e., the stars). Again, the general physics told us that all atoms are made of nucleus and electron shells. Based on the {N,n} QM (master) periodic table, this sentence can be translated as the {-12,n=1..7//6} o QM structures (i.e., the atoms) are made of the "building blocks" of {N=-15..-14,n=1..5//6} = {-15,n=1..35//6} o QM structures (i.e., the nuclides). Here we defined that {N=-15..-14,n=1..5//6} = {-15,n=1..35//6} o QM structures (i.e., the nuclides). Here we defined that {N=-15..-14,n=1..5//6} = {-15,n=1..35//6} o = {-14,n=1..35//6 o QM structures (i.e., the nuclides). Here we defined that {N=-15..-14,n=1..5//6} = {-15,n=1..35//6 o = { $-14,n=1..35//6^2$ } o. The meaning of { $-14,n=1..35//6^2$ } o is that we analyze the N = -14 period QM structures by using {-15,n//6} as the "building blocks", so that N = -14 period contains $6^2 - 1 = 35$ different QM states (most of them are sub-stable, or intermediate QM states). In general, we define {N,n//6^j} o (with integer j) to express that we analyze N super shell QM structures by using {N-j+1,n//6} o QM structures as the "building blocks" (or "fundamental particles"), so that in N period there are total $6^{-j} - 1$ different QM states (most of them are sub-stable, or intermediate QM states). In comparison, the original N period {N,n=1..5//6} o (with j=1) has $6^{-j} - 1 = 5$ different QM states from {N,1//6} o to {N,5//6} o, with {N,n=1..5//6} o as the "building blocks".

Here is a very important question: if (in an ideal situation) we found a complete set of $\{-16,n=1..35//6^2\}$ QM state particles, and found none of $\{-16,n=1..215//6^3\}$ QM state particles (except those 35 particles that already shown in $\{-16,n=1..35//6^2\}$), then can we say that $\{-17,n=1..5//6\}$ are the true "fundamental particles"? We believe the answer should be "yes". Furthermore, if (in above situation) we found a complete set of $\{-17,n=1..5//6\}$ QM state particles, then can we say that $\{-18,1//6\}$ sized (or mass) particle is the ultimate "fundamental particle"? Again, we believe the answer should be "yes".

When $\Delta M \rightarrow 0$, the number of intermediate states increases to infinity, the QM goes back to classical physics. This is equivalent to when r_1 moving inward to close to 0, the multiplier n' will go up to infinity, and the QM goes back to classical physics. This property can be used for the explanation of particle scattering, or photon propagation. In SunQM-6s1, the photon propagation was explained as it is excited from low n to high n (of the QM bound states nLL). When $r_1 \rightarrow 0$, n' $\rightarrow \infty$, the quantum process becomes a continues process (as that in the classical physics, because the difference between the two adjacent QM states closes to zero). So in the {N,n//q} QM, the quantum process of a particle scattering can also be described as a classical physics scattering (because {N,n//q} QM allows Simultaneous-Multi-Eigen-Description (SMED), so r_1 is allowed to move inward to close to 0, which causes the multiplier n' goes up to infinity).

This property can also be used to explain why the atomic world can be naturally described by (the Planck constant based) QM, and the celestial world is naturally described by the classical physics. This is because that atom is the building block of the atomic world, so its r_1 (which is Planck constant based) doesn't need to be move inward, and this r_1 produced r_n is naturally in quantum state. In contrast, the celestial world's building block is also atom, according to the Simultaneous-Multi-Eigen-Description (SMED), atom's r_1 is equivalent to a celestial world's r_1 that moved inward to close to 0, so that the corresponding multiplier n' increased to astronomically high, therefore the difference between the two adjacent quantum states close to 0, and it becomes a continues process (of the classical physics).

In the {N,n//6} QM periodic table (Table 1), we designed it as n = 1..12 for each N period, and with the number of n = 1..5 in bold fond. This is because the most {N,n//6} QM structural information is in n = 1..5, and the rest information is (almost all) in n = 6..11, and there is very little useful information in n > 12. According to Table 4, we can also present Table 1's each N period as n = 1..36, or n = 1..216, or even n = 1..1296, etc., QM states (from N = -24 to N = +15). Although most of these QM states are short-life (intermediate) QM states, with (practically) no useful information.

In many cases, the $\{N,n//q\}$ QM states provided us a series of "snap shot" pictures that revealed how a dynamic process (of the quantum number n increasing or decreasing) is roughly going. This is like a comic strip (连环画). Then, the $\{N,n//q^j\}$ QM allows us to add more intermediate QM states in between the original QM states, so that a quantum dynamic process (like reading a (discontinues) comic strip book) can be viewed as a classical dynamic process (like watching a (continues) comic strip movie, or a cartoon movie, or 动画片电影). See SunQM-7's section I-k for detailed examples.

Table 4. In {N,n//6} QM periodic table, we can add more and more sub-stable {N,n//6^j} QM states (where integer j > 0) between the two adjacent QM states (if needed).

			n=	=																																										
	{N,	n//6}, M	1eV	1	2	3	4	5	6	7	8	9	10	11	12	17	18 .	. 23	24 .	. 29	30 .	. 35	36	. 71	72	1	107 1	80.	143	144 .	. 179	180	21	5 216	43	43	2	447	448	. 863	864	4 3	1079	1080	1295	1296
Ν	-18	{-18,n//6	6} 0.	029 (0.116 ().261	0.463	0.724	1.042																																					
	-17	{-17,n//6	6} 1.	042	4.17	9.38	16.7	26.1	37.5																																					
	-17	{-17,n//6	6^2}						1.042	1.42	1.85	2.35	2.90	3.50	4.17	8.37	9.38 .	. 15.3	16.7 .	. 24.4	26.1 .	. 35.	5 37.5														П									
	-16	{-16,n//6	6} 3	37.5	150	338	600	938	1351																																					
	-16	{-16,n//6	6^2}						37.5	51.1	66.7	84.4	104	126	150	301	338 .	. 55:	600 .	. 877	938 .	. 127	7 1351																							
	-16	{-16,n//6	6^3}																				37.5 .	. 14	15	o :	332	338	592	600 .	928	938	133	9 1351												
	-16	{-16,n//6	6^4}																															37.5	149	4 150.	1	160.7	161.4	. 599.1	600.4	1 9	36.5	38.2	1349	1351
-											_																				-															

V. Some other (citizen scientist leveled) guesses based on the elementary particle {N,n//6} QM periodic table

1) Like that a proton (or a neutron) is made of three quarks, we guessed that a quark at size of $\{-17,1//6\}$ is made of (an unknown number of) $\{-20,1//6\}$ sized QM structures (see SunQM-5's Figure 7). Each $\{-20,1//6\}$ sized QM structure has the (rest) mass of $938E+6/36^{5} = 15.5 \text{ eV/c}^{2}$ (see Table 1). We also guessed that a $\{-20,1//6\}$ sized QM structure is made of (an unknown number of) $\{-25,1//6\}$ sized QM structures (see SunQM-5's Figure 8). Each $\{-25,1//6\}$ sized QM structure has the (rest) mass of $15.5/36^{5} = 2.6E-7 \text{ eV/c}^{2}$.

2) Other scientists have proposed the possible mass and structures of tetraquark, pentaquark, hexaquark, or even haptaquark (see wiki "tetraquark", wiki "Pentaquark", wiki "Hexaquark", wiki "Haptaquark"). We guessed that these kind of multi-quark structures may correlate to the $\{-16,n=7..12//6\}$ sized QM structures as shown in Table 1. For example, a $\{-16,7//6\}$ sized QM structure with mass of 1351 MeV/c² may correlates to a tetraquark, a $\{-16,8//6\}$ sized QM structure with mass of 1839 MeV/c² may correlates to a pentaquark, a $\{-16,9//6\}$ sized QM structure with mass of 2402 MeV/c² may correlates to a hexaquark, and a $\{-16,10//6\}$ sized QM structure with mass of 3040 MeV/c² may correlates to a haptaquark.

3) Gamma decay comes from a nucleus that changes from a higher energy nuclear state to a lower energy nuclear state. For example, an excited state of ${}^{12}_{6}C^*$ decays to its ground state ${}^{12}_{6}C$ by emitting a 4.4 MeV gamma ray [25]. Now we try to use Table 4 kind of analysis to explain it. First, we need to know the (rest) mass of the nuclear ground state of ${}^{12}_{6}$ C. According to SunQM-5's Table 3, we found the nucleus of ${}^{12}_{4}$ C has a {-15,4//6} OM structure. Then according to Table 1 (of current paper), we found that a $\{-15, 4//6\}$ o QM structure correlates to a particle with the (rest) mass of 21.6 GeV/c², and we assumed that this 21.6 GeV/c² correlates to the (rest) mass of the ground state ${}^{12}_{6}$ C nucleus, or, in other words, the ground state ${}^{12}_{6}$ C nucleus correlates a rest energy of 21616.0 MeV (≈ 21.6 GeV). Next, according to the Einstein's equation E = mc², and $m = E/c^2$, and $\Delta E = (\Delta m)(c^2)$ (see Giancoli's physics text book page 975), we assumed that a 4.4 MeV gamma ray is emitted from an excited state of ${}^{12}C^*$ nucleus that has a (rest) mass of 4.4 MeV/c² higher than the ground state (of 21.616 GeV/c^2, or at {-15,4//6}o QM state). This means, we need to use the method in Table 4 to find a sub-stable (or intermediate) QM state between {-15,4//6} o QM state and {-15,5//6} o QM state. After a search in Table 5, we found that after moving r_1 inward to $\{-15,4//6\}o = \{-15,4//6^{\circ}6\}o$, or at the n=4 's multiplier n' = 4*6^{\circ}5 = 31104 (note: this is still the same ground state, with rest mass = 21616.0 MeV/c^2), a $\Delta n' = 3$ higher excited state (with the multiplier n' = 4*6^5 + 3 = 31107) has the resting mass = 21620.2 MeV/c^2 , or 4.2 MeV/c^2 higher than that the ground state. Therefore, we believed that an excited state of ${}^{12}_{6}C^*$ decays to its ground state ${}^{12}_{6}C$ by emitting a 4.4 MeV gamma ray can be (approximately) described by a nuclear {N,n} QM structural de-excitation transition from a $\Delta n' = 3$ higher excited state (with the multiplier n' $= 4*6^{5}+3=31107$, correlates to the rest mass of 21616.0 MeV/c², or correlates to a rest energy of 21616.0 MeV) to a {-15,4//6 o = $\{-15,4//6^{6}\}$ o QM ground state (with the multiplier n' = $4*6^{5}$ = 31104, correlates to the rest mass of 21620.2 MeV/c², or correlates to a rest energy of 21620.2 MeV), with a transitional energy of 4.2 MeV. Of course, if we use even higher-frequency multiplier n' (e.g., $n' = 4*6^{6}$), we will get more accurate description for a 4.4 MeV gamma emission transition.

Table 5. Searching for a $\{N,n//6^{j}\}$ QM state that has ~ 4.4 MeV/c^2 higher mass value than the $\{-15,4//6\}$ o QM state's mass value (at 21616.0 MeV/c^2).

		n=																																													
{!	N,n//6}, MeV	1	2	3	4	5	6	7	8	9	10	11 12	2	17	18	23	24	29	30	35	36	71	72	107	108	143	144	179	180	21	5 21	6	1295	1296	777	5 7776	1555	1 15552	2332	23328	3110	3 31104	31107	3887	38880 -	46655	46656
N= -	17 {-17,n//6}	1.042	2 4.1	9.3	8 16.	7 26.	1 37.	5																																							
-	16 {-16,n//6}	37.5	5 15	33	8 60	0 93	8 135	1																																							
-	16 {-16,n//6^2}						37.	5 51.:	1 66.7	84.4	104	126 1	50	301	338	551	600	87	938	127	1351																										
-	15 {-15,n//6}	1353	1 540	4 1215	9 2161	6 <u>3377</u>	<mark>5</mark> 4863	6																																							
	15 {-15,n//6^2}						135	1 183	9 2402	3040	3753 4	541 54	04 1	0846 1	2159	19852	21616	3156	33775	4597	48636																										
	15 {-15,n//6^3}																				1351	525	5404	1193	12159	2131	7 21616	3340	33775	4818	4863	6															
	15 {-15,n//6^4}																														135	1	48561	48636													
	15 {-15,n//6^5}																																	1351	4863	3 48636											
	15 {-15,n//6^6}																																			1351	540	3 5404	1215	12159	21614.	6 21616.0	21620.2	3377	33775	48634	48636

Conclusion

A {N,n//6} QM structure periodic table with n = 1..12, and N \leq -13 was built for the elementary particles (based on their mass). If it is correct, then we may need to rearrange the generation of some quarks in the Standard Model based on the {N,n//6} QM.

References

[1] Yi Cao, SunQM-1: Quantum mechanics of the Solar system in a {N,n//6} QM structure. http://vixra.org/pdf/1805.0102v2.pdf (original submitted on 2018-05-03)

[2] Yi Cao, SunQM-1s1: The dynamics of the quantum collapse (and quantum expansion) of Solar QM {N,n} structure. http://vixra.org/pdf/1805.0117v1.pdf (submitted on 2018-05-04)

[3] Yi Cao, SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n//6} QM structure. http://vixra.org/pdf/1805.0118v1.pdf (submitted on 2018-05-04)

[4] Yi Cao, SunQM-1s3: Applying {N,n} QM structure analysis to planets using exterior and interior {N,n} QM. http://vixra.org/pdf/1805.0123v1.pdf (submitted on 2018-05-06)

[5] Yi Cao, SunQM-2: Expanding QM from micro-world to macro-world: general Planck constant, H-C unit, H-quasiconstant, and the meaning of QM. http://vixra.org/pdf/1805.0141v1.pdf (submitted on 2018-05-07)

[6] Yi Cao, SunQM-3: Solving Schrodinger equation for Solar quantum mechanics {N,n} structure. http://vixra.org/pdf/1805.0160v1.pdf (submitted on 2018-05-06)

[7] Yi Cao, SunQM-3s1: Using 1st order spin-perturbation to solve Schrodinger equation for nLL effect and pre-Sun ball's disk-lyzation. http://vixra.org/pdf/1805.0078v1.pdf (submitted on 2018-05-02)

[8] Yi Cao, SunQM-3s2: Using {N,n} QM model to calculate out the snapshot pictures of a gradually disk-lyzing pre-Sun ball. http://vixra.org/pdf/1804.0491v1.pdf (submitted on 2018-04-30)

[9] Yi Cao, SunQM-3s3: Using QM calculation to explain the atmosphere band pattern on Jupiter (and Earth, Saturn, Sun)'s surface. http://vixra.org/pdf/1805.0040v1.pdf (submitted on 2018-05-01)

[10] Yi Cao, SunQM-3s6: Predict mass density r-distribution for Earth and other rocky planets based on {N,n} QM probability distribution. http://vixra.org/pdf/1808.0639v1.pdf (submitted on 2018-08-29)

[11] Yi Cao, SunQM-3s7: Predict mass density r-distribution for gas/ice planets, and the superposition of $\{N,n//q\}$ or |qnlm>QM| states for planet/star. http://vixra.org/pdf/1812.0302v2.pdf (submitted on 2019-03-08)

[12] Yi Cao, SunQM-3s8: Using {N,n} QM to study Sun's internal structure, convective zone formation, planetary differentiation and temperature r-distribution. http://vixra.org/pdf/1808.0637v1.pdf (submitted on 2018-08-29)

[13] Yi Cao, SunQM-3s9: Using {N,n} QM to explain the sunspot drift, the continental drift, and Sun's and Earth's magnetic dynamo. http://vixra.org/pdf/1812.0318v2.pdf (submitted on 2019-01-10)

[14] Yi Cao, SunQM-3s4: Using {N,n} QM structure and multiplier n' to analyze Saturn's (and other planets') ring structure. http://vixra.org/pdf/1903.0211v1.pdf (submitted on 2019-03-11)

[15] Yi Cao, SunQM-3s10: Using {N,n} QM's Eigen n to constitute Asteroid/Kuiper belts, and Solar {N=1..4,n} region's mass density r-distribution and evolution. http://vixra.org/pdf/1909.0267v1.pdf (submitted on 2019-09-12)

[16] Yi Cao, SunQM-3s11: Using {N,n} QM's probability density 3D map to build a complete Solar system with time-dependent orbital movement. https://vixra.org/pdf/1912.0212v1.pdf (original submitted on 2019-12-11)

[17] Yi Cao, SunQM-4: Using full-QM deduction and {N,n} QM's non-Born probability density 3D map to build a complete Solar system with orbital movement. https://vixra.org/pdf/2003.0556v1.pdf (submitted on 2020-03-25)

[18] Yi Cao, SunQM-4s1: Is Born probability merely a special case of (the more generalized) non-Born probability (NBP)? https://vixra.org/pdf/2005.0093v1.pdf (submitted on 2020-05-07)

[19] Yi Cao, SunQM-4s2: Using {N,n} QM and non-Born probability to analyze Earth atmosphere's global pattern and the local weather. https://vixra.org/pdf/2007.0007v1.pdf (submitted on 2020-07-01)

[20] Yi Cao, SunQM-6: Magnetic force is the rotation-diffusion (RF) force of the electric force, Weak force is the RF-force of the Strong force, Dark Matter may be the RF-force of the gravity force, according to a newly designed $\{N,n\}$ QM field theory. https://vixra.org/pdf/2010.0167v1.pdf (submitted on 2020-10-21)

[21] Yi Cao, SunQM-6s1: Using Bohr atom, {N,n} QM field theory, and non-Born probability to describe a photon's emission and propagation. https://vixra.org/pdf/ 2102.0060v1.pdf (submitted on 2021-02-11)

[22] Yi Cao, SunQM-5: Using the Interior {N,n//6} QM to Describe an Atom's Nucleus-Electron System, and to Scan from Sub-quark to Universe (Drafted in April 2018). https://vixra.org/pdf/2107.0048v1.pdf (submitted on 2021-07-06)

[23] Yi Cao, SunQM-5s1: White Dwarf, Neutron Star, and Black Hole Explained by Using {N,n//6} QM (Drafted in Apr. 2018). https://vixra.org/pdf/2107.0084v1.pdf (submitted on 2021-07-13)

[24] See wiki "Standard Model", and the mass values were obtained from wiki "Elementary particle".

[25] Douglas C. Giancoli, Physics for Scientists & Engineers with Modern Physics, 4th ed. 2009. p1116, Figure 41-9.

[26] A series of my papers that to be published (together with current paper):

SunQM-4s3: Schrodinger equation and {N,n} QM ... (drafted in January 2020).

SunQM-4s4: More explanations on non-Born probability (NBP)'s positive precession in {N,n}QM.

SunQM-6s2: Using Bohr atom, {N,n} QM field theory, and non-Born probability to describe a photon's emission and propagation (part 2).

SunQM-7: Using {N,n} QM and Simultaneous-Multi-Eigen-Description (SMED) to describe our universe.

SunQM-7s1: Relativity and {N,n} QM

SunQM-9s1: Addendums, Updates and Q/A for SunQM series papers.

[27] Major QM books, data sources, software I used for this study:

Douglas C. Giancoli, Physics for Scientists & Engineers with Modern Physics, 4th ed. 2009.

David J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., 2015.

John S. Townsed, A Modern Approach to Quantum Mechanics, 2nd ed., 2012.

Stephen T. Thornton & Andrew Rex, Modern Physics for scientists and engineers, 3rd ed. 2006.

James Binney & David Skinner, The Physics of Quantum Mechanics, 1st ed. 2014.

Wikipedia at: https://en.wikipedia.org/wiki/

(Free) online math calculation software: WolframAlpha (https://www.wolframalpha.com/)

(Free) online spherical 3D plot software: MathStudio (http://mathstud.io/)
(Free) offline math calculation software: R
Microsoft Excel, Power Point, Word.
Public TV's space science related programs: PBS-NOVA, BBC-documentary, National Geographic-documentary, etc.
Journal: Scientific American.

Appendix: {N,n//6} QM structure (master) Periodic Table (from sub-quark to universe), copied from SunQM-7's Table 1.

			n= "n state" or '	'n shell" or "n orbit space	e"									
	۱}	l,n//6}	1	2	3	4	5	6	7	8	9	10	11	12
N=		-24												
"N period" or "N super-shell"	particle	- 22					0.012 eV/c^2, neutrino <0.12eV							
" 1" Corro	eV/c^2	-23	0.017 eV/c^2	0.069 eV/c^2	0.155 eV/c^2	0.276 eV/c^2	0.431 eV/c^2	0.621 eV/c^2	0.845 eV/c^2	1.103 eV/c^2	1.396 eV/c^2	1.724 eV/c^2	2.086 eV/c^2	2.483 eV/c^2
-1 10100	a anti al a	-22	0.6 eV/c^2	2.5 eV/c^2	5.6 eV/c^2	9.9 eV/c^2	15.5 eV/c^2	22.3 eV/c^2	30.4 eV/c^2	39.7 eV/c^2	50.3 eV/c^2	62.1 eV/c^2	75.1 eV/c^2	89.4 eV/c^2
	eV/c^2	-21	22 eV/c^2	89 eV/c^2	201 eV/c^2	357 eV/c^2	559 eV/c^2	804 eV/c^2	1095 eV/c^2	1430 eV/c^2	1810 eV/c^2	2234 eV/c^2	2704 eV/c^2	3217 eV/c^2
		-20	0.8 KeV/c^2	3.22 KeV/c^2	7.24 KeV/c^2	12.87 KeV/c^2	20.11 KeV/c^2	28.96 KeV/c^2	39.41 KeV/c^2	51.48 KeV/c^2	65.15 KeV/c^2	80.44 KeV/c^2	97.33 KeV/c^2	115.83 KeV/c^2
	particle KeV/c^2	-19	29 KeV/c^2	116 KeV/c^2	261 KeV/c^2	463 KeV/c^2	724 KeV/c^2,	1042 KeV/c^2	1419 KeV/c^2	1853 KeV/c^2	2345 KeV/c^2	2896 KeV/c^2	3504 KeV/c^2	4170 KeV/c^2
		-18	1.04 MoV/642	4 17 1001/002	0.28 MoV/eA2	16 69 May//a02	electron 511Kev	27 52 5401//042	E1.09.MoV//cA2	66 73 MoV//003	84 44 May//ch2	104 24 MoV//cA2	126 14 MoV//002	150 11 MoV//c42
S/RFs force	particle MeV/c^2	-17	up quark 1.9 MeV	down quark 4.4 MeV	5.56 IVIE V/C-2	10.06 IVIE V/C··2	20.00 WIE V/C·2	57.55 IVIE V/C-2	31.08 IVIEV/C-2	00.72 IVIE V/C··2	04.44 IVIE V/C-Z	104.24 IVIE V/C-2	120.14 IVIE V/C-2	130.11 Wev/C-2
			38 MeV/c^2	150 MeV/c^2, strange ok 87 MeV/c^2	338 MeV/c^2	600 MeV/c^2	938 MeV/c^2,	1351 MeV/c^2	1839 MeV/c^2	2402 MeV/c^2	3040 MeV/c^2	3753 MeV/c^2	4541 MeV/c^2	5404 MeV/c^2
		-16					15,1}							
	Atom's		He nucleus	Li nucleus n =3	Be, B nucleus	C, N, nucleus	O, F,Ne nucleus	Na, Mg, nucleus	Al, Si, nucleus	P, S, Cl, nucleus	Ar, K, Ca, nucleus	Sc, Ti, V, nucleus	Cr,Mn,Fe, nucleus	
	nuciues,		orbit {-15,1}o	orbit {-15,2}o	orbit {-15,3}o	orbit {-15,4}o	orbit {-15,5}o	orbit {-15,6}o	orbit {-15,7}o	orbit {-15,8}o	orbit {-15,9}o	orbit {-15,10}o	orbit {-15,11}o,	
	particle GeV/c^2	-15	size {-15,2}	size {-15,3}	size {-15,4}	size {-15,5}	size {-15,6//6} ={-14,1}	size {-15,7//6}	size {-15,8//6}	size {-15,9//6}	size {-15,10//6}	size {-15,11//6}	size {-15,12//6}= {-14,2}	
			orbit {-14,1}o, size {-14.2}	orbit {-14,2}o, size {-14.3}	orbit {-14,3}o, size {-14.4}.	orbit {-14,4}o, size {-14.5}.	orbit {-14,5}o, size {-14.6}	Og118 nucleus size {-13.1}						
			n _{nuc} =712,	n _{nuc} =1318,	n _{nuc} =1924,	n _{nuc} =2530,	={-13,1},							
			Z=1126 nuclides Na,Mg,Al,Si,P,S,Cl,	Z=2747 nuclides Co,Ni,Cu,Zn,Ga,Ge,As,	Z=4870 nuclides	Z=7196 nuclides	n _{nuc} =3136, Z=97118 nuclides							
		14	Ar,K,Ca,Sc,Ti,V,Cr,	Se,Br,Kr,Rb,Sr,Y,Zr,Nb										
		-14		,, re,na,nii,ru,Ag				H-atom size						
		-13	H, He, electron	period 2 atom's	period 3 atom's	period 4 atom's	period 5 atom's	period 6 atom's	period 7 atom's					
			shell orbit	electron outer shell (unshrunk) orbit.	electron outer shell unshrunk	electron outer shell unshrunk	electron outer shell unshrunk	electron outer shell unshrunk	electron outer shell unshrunk					
E/PEc form	atom	13		maximum actual size of	orbit	orbit	orbit	orbit	orbit					
E/RFe force	atom	-12		atom {-12,3}			{-10,1} max atom							
	-	-11					theoretical size							
		-9												
		-8												
		-6					black hole stable size {-5.1}							
		-5												
	collapsed						black hole orbit {-4,5}o,							
G/RFg force	Sun size	-4					size {-3,1}							
			neutron star orbit {-3,1}o,				size {-2,1}							
		-3	size {-3,2}					Sun's Ag Au Ph	Sun's Ee shell	Sun's Ea shall	Sun's Ee shell	Sun's Ea shall	Sun's Ee shell	
							orbit {-2,5}o,	core size {-1,1}	Juli 3 le sileli	50113163161	Juli s l'e shen	Julis re shen	Sunsneshen	
							size {-1,1} Farth size ~ /-1 1							
		-2					Lai (II Size ~ (-1,1)							
	Sun size, Sun		Sun's Fe shell {- 1.1}o	Sun's C, O, Ne, Si, S shell {-1.2}o.	Sun's He shell {- 1.3}o.	Sun's He shell {- 1.4}o	Sun's H-fusion shell {-1.5}o. Sun	Sun's Radiative zone {-1.6}o	Sun's Radiative zone {-1.7}o	Sun's Radiative zone {-1.8}o	Sun's Radiative zone {-1.9}o	Sun's Convective zone {-1.10}o	Sun's Convective zone {-1.11}o	Sun surface size {0.2}
	internal			Uranus, Neptune	Jupiter, Saturn		core size {0,1}							
	Planet size	-1	Sun	corona shell {0,2}o	corona shell	corona shell	corona shell							
			{0,1}o orbit,		{0,3}o	{0,4}o	{0,5}o, size {1,1}, initial rock-evap-							
		0	size {0,2}				line {1,1}							
				{2,1}o, current rock-	Mercury	Venus	Earth, initial ice-evap-	Mars		Asteroid belt. Ceres	current ice-evap- line {1,9}		Jupiter, {1,11}o merged	Jupiter, {1,12}o merged
	Solar system,	1		evap-line {1,3}			line {2,1}						with {1,12}o	with {1,11}o
	Planet			Jupiter	Saturn	Uranus	Neptune,	Pluto,	SDO	SDO	SDO	SDO	SDO	
	orbit						Solar wind stop, Methane-evap-	Kuiper belt						
		2		(2.2)	(2.2)	(2.4)	line {3,1}	inner Oort	inner Oort	inner Oort	inner Oort	inner Oort	inner Oort	inner Oort
				planet/Belt	lanet/Belt	13,47 planet/Belt	planet/Belt,							
		3					nLL-force stop							
			inner Oort	inner Oort	inner	outer	outer Oort,							
					Oort	Oort	Solar system size {5,1}, Sun bound G							
	hotucon	4					force stop {5,1}							
	stars	5					force stop {6,1}							
		6					Milky way galaxy							
"+1" force	Galaxy	7					orbit {7,5}o, size {8,1} r=5~9E+4 lu							
1 ione	Juruny	,	Halo of a galaxy,				(0,1) I-0 '0E7419							
		8	orbit {8,1}o, size {8,2}, r=2E+5 ly											
	Super						Virgo SupClst orbit {9,5}o, size {10,1}							
	Cluster	9	Lastelias 12				r=5.5E+7 ly							
			Laniakea orbit {10,1}o, size {10,2}											
	<u> </u>	10	r=2.6E+8ly			observ Univ	{12,1} sized							
	observable					r=4.4E+26 m,	universe?							
	Universe	11 12				312e up t0 {11,5}								
		13					{15,1} sized							
		14					universe?							
L	I	15	l	I										