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This document discovers an important coincidence between a
mathematical and a physical problem.
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1 Chapter II

The first chapter has analyzed the dispersion relation of light in
vacuum with the binoculars of the theory of deformed cross prod-
ucts.

1.1 The historical context.

1.1.1 The initial data problem in general relativity.

Einstein’s master work [01-a; see a translation for example in 01-
b] is published in 1916. In 1935, Einstein and Rosen propose in
[02] a very original concept for the description of particles within
a specific context which can be obtained in starting from the pre-
scriptions exposed in [01]. The proposition was presumably sup-
posed to allow a correct understanding of the atomic structures;
at least the ones which was known at this time. In 1944, A. Lich-
nerowicz writes his famous equations [03-a]; see also [04-c; §8.2.4,
pp. 130-131]. They are then reworked by J. York. Approximately
thirty years later, Bowen and all. proposes solutions for the York-
Lichnerowicz initial data problem (see [04-c; chapter 8; §8.2.6, pp.
136-139]).

1.1.2 Claim of the document.

The claim of this document is to prove the existence of a link
between these Bowen solutions and non-trivial decompositions for
deformed angular momentum obtained within a mathematical the-
ory studying deformed Lie products.
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1.2 Mathematical context.

1.2.1 Abbreviations and specificities.

The lecture will be easier if the following abbreviations are kept
in mind:

� DCP: deformed cross product

� BH: black hole

� TEQ: theory of the (E) question

The decompositions of DCPs1 have been extensively studied in [a],
[b], [c] and [d]. There always exists at least one trivial decomposi-
tion for any given DCP; it is the representation of some rotation.
Sometimes, there are also non-trivial ones. All of them (trivial or
not) can be associated with a polynomial form of degree at most
two which is nothing but the determinant of the difference between
these two kinds of decompositions. These generic considerations
apply in peculiar for DCPs of the following type (see explanation
below2):

[dx, ...][A] (1.1)

The main part of its most trivial decomposition:

[A]Φ(dx)

is not always in coincidence with the main part [P] of some non-
trivial decomposition; as consequence, the polynomial of interest
is the difference:

Λ(dx) = |[A]Φ(dx) − [P ]| (1.2)

1The central topic of the TEQ
2Here “d” denotes an ordinary derivation (see Descartes or Leibniz), x is

the spatial position for some event, ... is any spatial vector and [A] repre-
sents either an anti-symmetric or a reduced cube with elements in M(3,C) or
M(3,R).
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1.2.2 Proposition

Provided:

1. That difference can be identified with at least one Taylor
- Mac Laurin development until the second order for some
numerical function f depending on the three spatial compo-
nents of a given position (x, y, z) which I shall abusively
write f(x);

2. The spatial gradient of that function depends on the inverse
of the square of the Euclidean classical norm of the position:

Gradf(x) ∼ 1

r2
. e; r = ||x|| = (< x,x >Id3)

1/2, ||e|| = 1

then:

1. That difference is a non-degenerated polynomial of degree
two;

2. Its singular vector, Λs coincides with the spatial position x;

3. There exists a non-trivial decomposition of which the main
part [P] is such that the spatial vector just below can be
identified in a coherent way with a solution of [03-a], more
precisely of the “Bowen-York type” (for the initial data prob-
lem) [04-c; §8.2.6, p. 136, (8.69)]:

k . (3)[G]−1 . (3)[P ] . |(3)p >

Here: (i) k is some scalar of which I shall reveal the meaning
during the demonstration; (ii) the inverse metric is spatial,
local, conformally flat and degenerated; and (iii) p denotes
a very classical Euclidean kinetic momentum.

1.3 Demonstration

1.3.1 Realizing the prerequisites of the proposition.

Let start a discussion about DCPs of the type which has been
given with the Equ.(1.1). And let suppose a priori that they have
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non-trivial decompositions allowing:

|[dx, ...][A] >= [P ] . |... > + |z > (1.3)

As consequence of the so-called initial theorem -read [a]- we now
that this hypothesis gives a more precise visage to Equ.(1.2):

Λ(dx) = |[A]Φ(dx) − [P ]| = dij . dx
i . dxj + di . dx

i + d (1.4)

Whatever the values of the coefficients are, this formalism evo-
cates the one of a Taylor-Mac Laurin development. It is such a
development each time there exists a numerical function f(x) such
that:

f(x + dx) = Λ(dx) (1.5)

d = f(x)

di =
∂f(x)

∂xi

dij =
1

2
.
∂2f(x)

∂xj∂xi
+ 0(3)

Let a priori reduce the discussion to special situations such that:

di = −G .m
r3

. xi ⇐⇒ d∗ = −G.m
r3

.x (1.6)

r = ||x|| = (< x,x >Id3)
1/2

The Equ.(1.5) and (1.6) realize the prerequisites of proposition
1.2.2.

1.3.2 A criterion to know if the polynomial Λ is degenerated or
not.

The coefficients of degree two can be put inside a (3-3) matrix:

[D] = [dij] =
1

2
. [
∂2f(x)

∂xj∂xi
] + [0(3)]

In the case at hand, this matrix get a more precise visage because:

∂2f(x)

∂xj∂xi
=

∂di
∂xj

= −G.m.
∂(xi

r3
)

∂xj
= − G .m

r6
. (δij . r

3−xi . 3 . r2 .
∂r

∂xj
)
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Since:
∂r

∂xj
=

xj

r
(1.7)

It is easy to state that:

[Hess(x, 0)f(x)] = − G .m
r3

. {Id3 −
3

r2
. φ} (1.8)

with, per convention and for simplicity:

φ =

 x1 . x1 x2 . x1 x3 . x1

x1 . x2 x2 . x2 x3 . x2

x1 . x3 x2 . x3 x3 . x3

 = [xi . xj] = T2(⊗)(x,x) (1.9)

We also know that (see [a]):

[Hess(dx, 0)Λ(dx)] = [D] + [D]t

and we remark that the matrix [D] is symmetric as long as the
position is real; hence:

[Hess(dx, 0)Λ(dx)] = 2 . [D] = [Hess(x, 0)f(x)] (1.10)

The consequence of that relation is that the calculation of the
determinant of the Hessian of f furnishes a criterium to know if
the polynomial Λ is degenerated or not.

1.3.3 The polynomial is not degenerated.

Let now calculate the determinant of the Hessian of f and get:

|Hess(x, 0)f(x)| = − 2. (
G .m

r3
)3 (1.11)

Except for vanishing sources (m = 0) or at infinity (r → ∞),
this quantity never vanishes. The Hessian of the Λ polynomial at
hand is a non-degeneratd matrix and the singular vector can now
be discovered.
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1.3.4 The singular vector of the polynomial Λ.

The inverse of the Hessian is:

[Hess(dx, 0)Λ(dx)]−1 = − 2 . r3

G .m
. {Id3 −

3

2 . r2
. φ} (1.12)

As consequence, the singular vector is:

|Λs >

=

−[Hess(dx,0)Λ(dx)]−1 . |d∗ >
↓ Equ.(1.6)

=
G .m

r3
. [Hess(dx,0)Λ(dx)]−1 . |x >

↓ Equ.(1.12)

= −2 . {Id3 −
3

2 . r2
. φ} . |x >

Since:
φ . |x >= r2 . |x > (1.13)

This is in fact yielding the first important coincidence of this work:

|Λs >= −2 . |x > + 3 . |x >= |x > (1.14)

The prerequisites of that demonstration have an important conse-
quence: the polynomial at hand is not degenerated and the spatial
position coincides with a singular vector. Recall that a singular
vector is, per definition, minimizing the slopes.

1.3.5 The degree zero coefficient of the polynomial.

Recall the generic formula -see [a]:

−|P | = d =
|Hess(dx,0)Λ(dx)|

8
+ <Λ s, Λs >[D] (1.15)

Due to Equ.(1.8), (10), (11) and (1.14), it can be rewritten as:

−|P | = d =
− 2. (G .m

r3
)3

8
+

1

2
. < x, x >[Hess(x,0)Λ(x)]
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Let calculate the second term on the r.h.s. Since the Hessian is
not coinciding with the identity matrix Id3, that term is not the
square of the Euclidean distance; in fact:

< x, x >[Hess(x,0)Λ(x)]

=

− G .m
r3

. < x| . {{Id3 −
3

r2
. φ}.|x >}

=

2 . G .m

r

Hence:

−|P | = d =
G .m

r
− 1

4
.
G3 .m3

r9
(1.16)

The degree zero coefficient of the polynomial Λ is a modified ex-
pression of the newtonian gravitational potential.

1.3.6 The polynomial.

Assembling all parts of the discussion, we get:

Λ(dx) (1.17)

=

|[A]Φ(dx) − [P ]|

=

−G .m
r3

. {δij −
3

r2
. xi . xj} . dxi . dxj

− G .m
r3

. xi . dxi

+
G .m

r
− 1

4
.
G3 .m3

r9
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1.3.7 The main part of the decomposition.

In that context, the generic results which have been obtained in
[a] have a peculiar visage:

[P ]|A| = |A| . {[A]t . [J ]} . {−G .m
2 . r3

. {Id3−
3

r2
. T2(⊗)(x, x)}+ [J ]Φ(x)}

(1.18)
Remark that the DCPs

[x, ...][A]

have in general extrinsic decompositions of which the main part is
-see [b]:

[Q]|A| = [A]Φ(x) +

And remark also that all DCPs are antisymmetric operations:

[x, ...][A] = −[..., x][A]

This statement is true for deformed angular momentum too:

[x, dx][A] = −[dx, x][A]

Anyway, the Equ.(1.18) can be detailled as:

|A|pij = |A| . {[A]t . [J ]}ik . {− G .m
2 . r3

. {δkj −
3

r2
. xk . xj} + εklj . x

l}

1.3.8 Forming the Bowen solutions.

Let now form:
r2

6 . G .m
. |A|pij . p

j

=

r2

6 . G .m
. {[A]t . [J ]}ik . {− G .m . |A|

2.r3
. {δkj −

3

r2
. xk . xj}+ εk lj . x

l} . pj

=

− |A|
12.r

. {[A]t . [J ]}ik . {δkj −
3

r2
. xk . xj} . pj

+
r2

6 . G .m
. {[A]t . [J ]}ik . εk lj.x

l . pj
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=

− |A|
12 . r

. {[A]t . [J ]}ij . pj

+
|A|

4 . r3
. {[A]t . [J ]}ik . xk . xj . pj

+
r2

6 . G .m
. {[A]t . [J ]}ik . εk lj . x

l . pj

Let now consider the Bowen-York solutions for Einstein’s initial
data problem - see for example [[04]; (b) §8.2.6, p.136, (8.69)],
[[04]; (c) p. 23, (69)] and [[05]; p.3, (28) and (29)]:

Xi = − 7

4 . r
. f ij . pj − 1

4 . r3
. xi . xj . pj − 1

r3
. εi lj . x

l . J j

And state that both relations are identic:

r2

6 . G .m
. |A|pij . p

j = Xi (1.19)

If, simultaneously:

− |A|
12 . r

. {[A]t . [J ]}ij . pj = − 7

4 . r
. f ij . pj (1.20)

|A| . {[A]t . [J ]}ik . xk . xj . pj = −xi . xj . pj

r2

6 . G .m
. {[A]t . [J ]}ik . εklj . xl . pj = − 1

r3
. εi lj . x

l . J j

1.4 Studying the coherence.

1.4.1 Whatever the pair (x, dx) is.

Let examine if these relations are coherent; in fact, they are in
peculiar realized when:

r2

6 . G .m
. |A|pij . p

j = Xi

∀p : |A| . {[A]t . [J ]}ij = 21 . f ij



12

∀x,p : |A| . {[A]t . [J ]}ik . xk = −xi

∀x : {[A]t . [J ]}ik . εklj . pj = − 6 . G .m

r5
. εi lj . J

j

The coincidence:

|Bowen−York >=
r2

6 . G .m
. [P ]−1 . |p >

between:

� (i) the Bowen solutions and

� (ii) the vectors that can be built with the solutions of the
(E) question studying the non-trivial decompositions of dx
∧ ... when the prerequisites exposed in the proposition 1.2.2
are realized:

is effective for any pair (x, dx) when:

∀p : [A]t . [J ] = −21 . [f ij]

∀x,p : {[A]t . [J ] − Id3} . |x >= |0 >

∀x : {[A]t . [J ]} . [J ]Φ(p) = − 6.G.m

r5
. [J ]Φ(J)

This means that:

1. The product between the transposed of the deforming matrix
and the generator of the cyclic group C6 is a peculiar rep-
resentation of some metric; precisely here, the spatial, local,
conformally flat and degenerated metric which is forming the
geometric background for the Bowen solutions:

(3)[A]t . [J ] = (3)[G]−1 = −21 . [f ]−1

2. An important characteristic of that peculiar metric can be
proved in writing the second relation of coherence with the
first one:

∀x,p : {[G]−1 − Id3} . |x >= |0 >
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Recall that the analysis yielding the Bowen solutions is done
within an ADM context. In that context, p is the constant
ADM kinetic momentum and J is the constant ADM angu-
lar momentum of the source.

In a classical three-dimensional Euclidean geometry, the an-
gular momentum is orthogonal to the kinetic momentum
since, per definition:

J = x ∧ p

This unavoidable necessity suggests that the classical Eu-
clidean three-dimensional geometry characterized by [G] =
Id3 cannot belong to the Bowen solutions; indeed:

[G] = Id3 ⇒ [G]−1 = Id3

In injecting this relation into the third condition, we get:

∀x,p : [J ]Φ(p) =
6 . G .m

r5
. [J ]Φ(J)

And, since [J ]Φ is an isomorphism:

p =
6 . G .m

r5
.J =

6 . G .m

r5
.x ∧ p

This obviously is a mathematical non-sense, the consequences
of which are:

[G]−1 = (3)[A]t . [J ] 6= Id3

and:
∀x,p : |[G]−1 − Id3| = 0

This constraint is equivalent to:

(g11 . g22 . g33 + g12 . g31 . g23 + g13 . g21 . g32)

− (g11 . g32 . g23 + g22 . g31 . g13 + g33 . g21 . g12)

+ (g12 . g21 + g23 . g32 + g13 . g21)

− (g11 . g22 + g22 . g33 + g33 . g11)

+ (g11 + g22 + g33) − 1 = 0
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3. The components of the angular momentum can be isolated:

εikr . g
im . εmjk . p

j =
6 . G .m

r5
. Jr

Starting from this equation, the quantified norm of the an-
gular momentum can be calculated if the ADM metric is not
degenerated (|G| 6= 0):

grt . J
r . J t = n . (n + 1) . h̄2; grt 6= δrt, n = 0, 1, 2, 3...

4. Supposing that the induced metric is not degenerated (|G|
6= 0), it is possible to rewrite the ADM kinetic momentum
as:

[J ]Φ(p) = − 6.G.m

r5
. [G] . [J ]Φ(J)

From which:

[J ]Φ
t(p) = − 6.G.m

r5
. [J ]Φ

t(J) . [G]t

But:

[J ]Φ
t(p) = − [J ]Φ(p)

As consequences:

[G] . [J ]Φ(J) − [J ]Φ(J) . [G]t = (3)[0]

[J ]Φ(p) = − 3 . G .m

r5
. {[G] . [J ]Φ(J) + [J ]Φ(J) . [G]t}

� When the admissible induced metrics [G] are symmet-
ric, they commute with the rotations related to the
ADM angular momentum J:

∀ r, m, J, [G] = [G]t : [[G] , [J ]Φ(J)] = (3)[0]

and:

∀ r, m, J, [G] = [G]t : [J ]Φ(p) = − 3 . G .m

r5
. {[G], [J ]Φ(J)}
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� When the admissible induced metrics [G] are anti-symmetric,
they anti-commute with the rotations related to the
ADM angular momentum J:

∀ r, m, J, [G] = [G]t : {[G] , [J ]Φ(J)} = (3)[0]

and:

∀ r, m, J, [G] = −[G]t : [J ]Φ(p) = − 3.G.m

r5
. [[G] . [J ]Φ(J)]

These relations and their formalism suggest a possible link
with two important concepts: (i) the one of spinor which has
been introduced by E. Cartan in [06]; and (ii) the other one
of propagator which has been developed by A. Lichnerowicz
too, e.g. in [[03]-b] a long time ago (1964).

1.4.2 The case of the classical cross product.

The cross product corresponds to the matrix [A] = [J] and, be-
cause of that, to: |A| = -1. This is the situation we should con-
centrate on and start with because it is the classical one in which
we live in. Previous results prove clearly that the classical Eu-
clidean three-dimensional configuration is never exactly realized
within the ADM context allowing the expected coincidence.
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