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A. Abstracl
C. E. SHANNON - with his theory of communication - was the first one who developed a concept for capturing
information quantitatively. He found a measure for a kind of information relevant when rarity of events is
decisive. His approach aimed on character-sequences of equal lengths and composed of elements from a symbol-
set. Each symbol possesses its individual meaning and may appear differently often in a selected sequence. In
such an environment it's possible to specify a probability of any symbol found in an arbitrary sequence. In the
following a similar attempt is made in order to find an information-measure for attractors decoded or encoded by
Multi-Reduction-Copy-Machines (MRCMs). But in contrast to SHANNON's theory where the approach is
based on statistical considerations, the new measuring-method is guided by considering complexity of
structures.
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1 Introduction.
C. tr. SHANNON by his mathematical theory of communication [1] initially formulated a measure for
information strongly coupled to character-sequences. Sequences qualified by encoding of symbols with
individual meanings and different frequencies of occurrence. Another approach shall now be attempted in an area
of specific planar images decoded by and encoded through Multi-Reduction-Copy-Machines (MRCM's).
Both approaches shall next be compared to each other.

1.1 A mathematical Theory of Communication.

Character-sequences of lengtlts (N) are considered, each one consisting of numbers:

. Nr of points and

. Nz of strokes.

Tltus for each sequence (N = Nr+Nr) must be fulfilled. The question now comes up, what is the Information one
will get, if such a sequence is obtained by transmission? Before such a message has been obtained, the uncertainty
about what one will get is the greater, the longer the expected sequence is, and the gain of information rn ill be thc
grcater if the message finally has been received.

Following SHAIINON's information-theory, the total number of sequences with length (N) and composed of
(Nt) points and (N2) strokes can be calculatecl in the following way. Accorclingly to the possibilities (R) by which
(Nt) points and (N2) strokes can be distributed over a length of (N) is:

1. R:N!/(Nr!).(Nr!).

Before a message has been received, the infolmation according to (1.) may be called (Io) while after reception it
will change to (Ir). Thus one gets:

. [(Io:0) n (R.o:0)] 
^ [(I, * 

0) 
^ 

(Rr:1)].

Now a measure has to be find, which will merge (I) and (R). Because of additivity for (I) - in cases where e.g. two
possible realisations (R,1 A R2) exist - it is demancled:

. [R: Ri.Rz] 
^ 

[r(R1.R2) = I(Rr)+r(Rz).

These conditions can be fulfilled by:

2. I = const.hi{R.}.

(1.) and (2.) then will lead to:

3. I : const.(ln{N!}- lniN1!}-ln{I.{r!}).

By using STIR.LING's formula (which is allowed fbr Q > 100):

o in{Q!} = Q.ln{Q }-1.

(3.) can be frrrther evaluated into:

o I = const.[N.(ln{N}- 1)-Nr.(ln{Nr}-1) -N2.(ln{Nr}-t)] = const.[N.ln{N}-N1.ln{N1} -N2.1n{N2}]
o i = I/N : -const.[(Nr/N).lniN1/N]+(Nr/N).ln{lt{r/N)}l .

For (N = Nr*Nzf ...+ N,) this leads to:

4. i : -const.[(Nr/N).ln{N,/N}+(Nr/trI).ln{Nr/r,r}+...+ (N"/N).ln{N-/N}].

From (4.)and (p; = Nr/N) as the relative probability for a charactcr from the symbol-set one may write:

5. i - -const.Io=rr-,r[(po).lrr{p,}].
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This can be interpreted as the probability to hit a character from the symbol-set. The probability is identical
with the relative frequency of symbols to appear. Herewith it is important to note that information in current
sense is not a rating of any kind it is only relevant in connection with the rarity of events.

1.2 Encodins Imases bv s

Cauliflower is just a 'mutant' of a SItrRPINSKI-gasket in a similar se nse as a fern is a relative of a KOCH-curve.
In this context thc qtrestion comes up, is there a framework in which a natural stmcture such as the picture of a
cauliflower ancl an artificial stmcture such as a SIERPINSKI-gasket are just examples of one unifying approach.
This can be answered with a clear yes (please look into [2] , [3] , [4] , [5] ).

In orcler to come closer to the problems, whictr arise when one tries to answer tire abcive question finally, <tne
should consider first to steps required to builcl the proper framework.

One may start with the idea of a Multiple Reductiotr Copy Machine (MRCM). It takes an image as input. It has
several indepcndent lens-systems each one reduces the input-image and places it sornewhere into the output-
image. The assembly of all reduced copies in some pattern as final output of the MR.CM.
The dials of the machine are:

o Nurnber of lens-systems,
o Setting of recluction-factors for each lens-system individually,
o Configuration of lens-systems for the assembly of copies.

The cntcial idea is that thc machine runs in a feedback-loop, its own output is fed back as its new input again and
again. Moreover, other transformations besides ordinary recluctions are allowed. R,unning the machine olfce on an
arbitrary image one copy reveals all geometric features of the machine in its so called blueprint.

No matter which initial image one takes and nrns the MRCM with, one will obtain a seqllence of images whicir
always tends towards one and the same final image (the attractor of the rnachine). Mot'eover, the machine if
started with its attractor, nothing will happen, the attractor kecps invariant under the process. Ttre MRCM is like
a bowl witlt one dish. If a iittle iron-ball is put in arbitrary initial position wlthin the bowl and then released, it
will always come to rest at the bottom of the bowl.

Objects are similar if they have the same shape. Regardless of their size, correspcinding angles must be equal and
corresponding line-segments must all have the same factor of proportionality. The enlargement-factor betwccn
similar objects is called scaling-factor and a transformation between them is called similarity-transformation.
In cases where copies of the whole appear at all scaling-stages and are exact and not distorted in anv way, one
speaks aborrt self-similaritv.

Contractions clescribed by a lens-system may be similarity-transfbrmation-q even if they recluce bv different
factors in different directions, but they must maintain angles unchanged, while more general contractions rnay
not. In addition to ptrre similarity-transfbrmations (which are scaling-operations), affine transfbrmations like
rotations, shear-operations and reflections are allowed a"s admissible operations for a MR.CM-process.

NNü
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The lens-systems of the MRCM can be described by affine linear trarrsformations of the plane. Talking aborrt a
plane means here, a coordinate-system has to be defined with x- and y-axis perpendicular to each other.

A linear rnapping is a transformation which associates with every point (P(x,y)) in tlie plane a point (F(P))
such that:

o r'(P1+P2) = F(P1)+F(P2),
r F(sP) = sF(P) for any real number (s).

A linear transformation (F) can be represented with respect to the given coordinate-system by the following
equation (with [P: (x y)] A [F(P) : (u v)] A lF+-- Matrix: {a b}{c d}l):

frrl (a b] fxl I ',.l = [o.*+r,.'ul.l!=l l.ll-l ll "l
L"J L. .rJ LrJ L'J = [..*+a.yJ .

This means a linear transformation is determined by (4) coefTicient (a b c d). Affine linear transformations are
simply a composition of a linear mapping ancl a translation (Qr(u y) <-+Q2(u+p, y+q)):

;l {:} -{:}:{"..:;.;}
[".l fa b

't,J: L. d

Already the first application of the MRCM to a given image will reveal its internal affine linear contractions in
the blueprint of the MRCM.

1.2.3 Processine of a MRCM fu lqted bv ün lterüted Functi

The feedback-mode of MRCM can be understood mathematically by an Iterated Function Sirt"- (IFS), where
the affine transformations (r,.r1 k z -.. tdN) of the lens-systems acting upon the initial image (A) produce small
copies of it. All these copies ane overlaid into the new image tW(A)] as output:

1 W(A): or(A)Uor(A)u...uo* (A).

The operator (W) is called the HUTCHINSON-operator [2] within the IFS-formalism. Running the MRCM in
feedback-mode thus corresponds to iterating the operator (.W). Starting with an initial image (A6) one gets:

. Ar : W(Ao) , Az= W(Ar) ---+ ... ---+ Arq = W(A*-,) - ... .

Already the first application (Ar : W(A6)) will reveal a MRCM's internal contractions, called the blueprint of
the machine. In the following for an initial image a unit-square ([0.1]x[0,1]) is used with an inscribed (L) in the
top left corner to unfold the blueprint:

:

1

I

t

I
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IFS with 3 similarity-
transformations with
scaling-factor (a/r).

SIERPII\SKI-Gasket

l-

l-

IFS with 3 similarity-
transformations with
scaling-factor (tlr).

CANTOR-Maze
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The attractor of IFS
with
five transformations can
even resemble the image
ofatree. The attractor is
twice as large as the
blueprint indicates.

Underlined means negative value.

A Tree

The importance of last example in the recent table (the development of the image of a tree) is, this image looks
very natural, but lies in the same mathematical category of constructions as the SIERPINSKI-gasket or the
CANTOR-maze.In other words this category not only contains extreme mathematical monsters which seem
very distant from nature, but also includes structures which are related to natural formations and which are
obtained by only slight modifications of the monsters. Another example to be mentioned within context is
BARNSLEY's -fern [3]:

Something as complicated and structurecl seelns to have a lot of information content, but the figure abovc
demonstrates, the information from IFS's point of view is extrernely small. The apparent complexity of tlie
picture is compressed into a very sirnple plan. This means many complex structures are relatively simple anci
compact when they are discussed from an IFS- or MRCM-point-of-view. This amazing conclusiorr may become
appropriate when thinking about another measure of inforrnation now in the context of a specific category of
planar images.

Without answering the questions:

o How images can be compared or
e What is the distance between two images

one will not be able to precisely verify the conditions under which an IFS will produce a limiting imagc. Here will
help an approach from F. HAUSDORFF. He proposed a method for determining the distance which is now call
the HAUSDORI'F-distance (h(A B)) between images (A) and (B), which has two consequences:

o One can talk about the sequence of images (A^)liaving the limit (A*). if (A*) is the limit of the sequence
(Ao A, ... AK ... A-) with ([K--+m] +[h(A-AK) - 0l).

But even more important:

r HUTCHINSON showed afterwards that an operator (W) wliich described a collage of irnages (please look at
equation [1.]) contracts with respect to the HAUSDORFF-distance:
([W(A).,-+W(B)] < {[0 < 

" 
< 1].h(A,B)]) for all compact set (A) and (B) in a plane.

Irr addition HUTCHINSON was able to irr.iect into his consideration the contraction-mapping-principle finally

Unlined means negative value.

Note transformation (4) contracts a
rectangle to a mere line-segment.
The attractor in mathematically precise
sense is not self-similar.

BARNSLEY's Fern
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formulated by S. BANACH. This principle is nowaclays a theorem in metric topologv. In essence it says, in a space
wherein sequences of contracted images rvill converge, where this behaviour of convergencc crucially depends on
the rnetric in the relevant space. Current discussions are mainly concentrated on Euclidean metric.

In order to make use of IFSs for irnage encoding, one first has to solve another crucial problem, narnely to
construct a sttitable MRCM for a given image. Encoding is the inverse of decoding. Of coruse one cannot expect to
be universally able to build an MFCM wtrich produces any given image. Flowever approximatiorr.s str.ould bc
possible as close to original as one desires.

Assurning one has given a black and white picture, cligitized at a resolution of (n) by (-) pixels. This image can
be exactly reprodrrces bv a MRCM simply by rcqr.riring that for every black pixel of the image, there exists a lens
which contracts the whole image to that particular pixel. R.unning the machine.iust once, starting out with any
image will produce the prescribed black and white pixel image. Natrrally, this not an efficient way to code an
image (for every black pixel one needs onc affine transforrnation to store it), howeyer it demonstrates that in
principle it is possible to achieve approximations of any desired accul'acy. Thus, the problem is to find ways to
constntct a better MRCM whiclr does not need as many transformations. but still produces a good approximation.
Sevcral difficult questions are to be solved in this context:

o How can the quality of an approxirnation be assessecl?

o How one can quantify differerrces between images?

o How one can identif'y suitable transformations?
o How one can minimize the necessary number of affine transformations?
o Wltat is the appropriate class of images suitable for this approach?

Let's assume a given original image has been approximated by a MRCM. Oue may recall that the blueprint of a
MRCM is already determined by the first copy it produces, this copv is a collage of transformed irnages. Applving
the MRCM to the original image, called target-image, one also determines the qualitv of the approximation.
When the copv is identical to the original then the corresponding IFS codes the target image perfectlv. When the
distance of the copv to the target is small, then one knows from the contraction-mapping-principle, that the
attractor of the IFS (whicli is equal to the target image) is not far from the initial image.

These properties will orre enable to find the code for a given target-image, in particular for target-images
which contain apparent self-similarities such as the fern. With some practise it is relatively easy to identify
portions of the picture which are affine copies of the whole; for instance in BAR.NSLEY's-fern:

In general one needs a procedure to generate a set of transformations such that the union of the transformed
target-images cover the target-image as closely as possible. By the example of the fern-leaf above it has been
hinted at, how this works.

Creating an image with a MRCM quite naturally leads to a structure which has repetition to smaller and
smaller scales. In cases, where each contraction involved in the corresponding IFS is a similarity with the same
reduction-factors, the resulting attractor is called strictly self-similar. Even if different reduction-factors occur,
the resulting attractor is said to be self-similar. When the contractions are not similarities, but a"ffine linear
transformations, the resulting attractor is called self-af,fine. But IFSs can also be used to approximate images
that are not self-similar or self-affine. In these cases the approximations can be made as accurate as desired.
tlowever, the very small features of the corresponding attractor must reveal self-similar structures. The concept
of IFSs can be generalized in such a way, that this restriction can be removed (additional references [6] and [7]).

ffi

The part (Rtr)) is a slightly smaller
and rotated copy of the whole fern.
This leads to the numerical compu-
tation to (1.) affine transformation
(ul1). The same procedure applies to
the copies (R,t2) n R(3))in the figure.
Even the bottom-part of the stem
1Rt4)) is a copy of the whole,
however its transformation is
degenerated by scaling-factor (0) in
one direction.
The resulting (4) transformations
cover the te fern-system.
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In pictules below two ferns are shown which almost look like the fämiliar BAR.NSLEY-fern . but they are
different from it. Upon close examination of the two ferns, one will observe that the phyllotaxis has changed. The
plzrcement of the major leaves on the stem is different fi'om that of the small leaves on the major ones. This means,
that the major leaves are no longer scaled down copies of the entire fcrn. In other worcls, these fcrns are neither
self-similar nor self-affinc. Nevertheless, one could say that they have some features of self-similarity. But
what are these featut'es and how are these particular ferns encodecl? The answers to these questions rn ill leacl to
networked MR.CMs or hierarchical IFSs.

To see some of the hierarchical structures one may look at a blow-up of one of the rnajor leaves from each of
the ferns below. The placements of the sub-sub-leaves are different. For the (Type-A)- fern:

e Sub-leavcs of all stages are always placed opposing each other,

while on the (Type-B)-fern:

o This placcment alternates from stage to stage. In one stage sub-leaves are placed opposing each other and in
the next stage sub-leaves are placed with an ofTset.

This reveals the different hierarchies in their encodings. One has to realize now that self-similarity-structures
are intermixed. Being prepared for further steps, one has to expand the concept of one MR.CM to include several
MRCMs operating in a netwot'k. How two non-self-similar ferns can be obtained by two network-MR,CMs, will
be clemonstrated next. To keep things as simple as possible stems of the ferns are disregardeil frorn further
considerations.

The hierarchy of the (Type-A)-fern is considered first.
One will identify two basic structures, the entire fern and one of its major leaves. In this case the leaf is a self-
affine structure, all sub-leaves are copies of the whole leaf and vice versa. The complete fern is made up of copies
of this leaf, but it is not simply a copy of the leaf. This is due to the different placement of the leaf and sub-leaves.
This is the crucial difference between BARNSLEY's self-affine fern and this one, where the self-a.ffinity is
broken. Due to this breaking of self-affinity the fern cannot be generated with an ordinary MRCM. However
one may join two different machines to form a network-MRCM which will accomplish the task.
In this case the network-MRCM will be represented by the graph below:

.---*---\
1{)

l\__Jl*l
l%ultl
\tr-\
,ar__,

l1'.ut-uU'-4to

Type-A
Fern:
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One machine - named (2) in the graph above * is used to produce the main-leaf alone. This machine works as
the one for BARNSLEY's-fern (disregarding the stem for simplicity reasons). Thus, it has three transformations
(oaUrr.r5Uo6):

t r,.:4i maps the entire leaf to the lower right sub-leaf,,
o ü)5: maps in the upper left sub*leaf and
o (d6: finally maps to all sub-leaves except for the two bottom sub-leaves which are already covered by the

two other transformations.

The other machine - called (1) in the graph above - produces the whole fern. It has two inputs (r,:rU[r,r2Uro3]) and
one output:

. üJ1i is served by its own output.
o üJzUua: fs served Lry the machine (2).

Thus, there are three compound transformations in the machine. However each transformation is applied to only
one particular input-image. The two transformations (u;2Uo3) operate on the results produced by MRCM (2),
These produce the left and right bottom main-leaves at the proper places on the fern. The other transformation
(ro1) operates on the results from MRCM (1). The results of all transformations are merged when they are
transferred to the output of MRCM (1). Transformation (u.r1) maps the entire fern to its upper part (i.e. the part
without the two bottom-leaves). tfris was also the case in the plain MRCM for BARNSLEY's-fern. In this way
the fern with the prescribed pattern for the leaf-placement from hierarchy (Type-A) will be generated.

In order to produce fern as mentioned for hierarchy (Type-B), one needs to go just a small step further,
interconnecting the two MRCMs both ways:

This fern is characterized bv the fact that:

r The entire fern reappears in the main-leaves as sub-leaves,
o while the main-leaves themselves are not copies of the entire fern.

The only change relative to the network for the hierarchy (Type-A)-fern is given by the extra-input in the
appropriate MRCM (2). This input-image ensures (in the limit it is the entire fern) will be transformed to make
the two lowest sub-leaves of the main-lea,f.

To run these networks one just takes an initial image (Iike a square for instance) and puts it on the two
MRCMs. The machines take these input-images following the connections of the input-lines and produce two
outputs, one for the main-leaf and one for the fern. These outputs are now used as new inputs as indicated by the
feedback-connections. During iterations one can observe how the leaf-MRCM creates the major lower right
hand leaf and the fern-MRCM generates the complete fern.

fn conclusion it turns out that the networking-machine has exactly one limit-image (its attractor) and this
attractor is independent of the initial images. The networking-machines are encodings of non-self-similar ferns,
and their hierarchies decipher the self-similarity features of these ferns. In fact, the hierarchy of the network
deciphers the self-similaritv of an entire class of attractors.

, /---=...=\t
o

/ §t-- *-/

/ \ "'
li ir I lll , t!'' \l / ' {'

l/

\ / ----\V \
zo,. i* \__2,

Type-B
Fern:
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2.Comolexitv-Measures of Attractors coded bv one or a Network of MRCM's.
The lens*systems of one MRCM are described by set of transformations (ul1 tr,2 ...-. r^1.). For a given initial image
(A) small affine copies (,r.(A) r,:z(A) ..... @*(A)) are produced. Finally the machine overlaps all these copies into
one new image, the output (W(A)) of the machine:

1. W(A) : u;r(A)Uor(A)u .....Uu;*(A).

The output (W(A)) is obtained by acting the HUTCHINSON-operator (W) of the MRCM on the image (A).
Thus running the MRCM in feedback-mode corresponds to an iterative application of the operator (W). This is
in essence what is meant by a deterministic iterated function system (IFS). The first application of the IFS to a
give initial image (As) will result in the image (A1), called the blueprint of the MRCM:

2. Ar: w(Ao) = ur(Ao)uu:2(As)u .....ut:*(As).

Already the production of its blueprint will reveal the full complexity of an attractor finally coded by the
complete IFS.

In addition to the provisional results (1.) and (2.) above (valid for a 1-MRCM-system so far), further aspects
will come to the fore. For instance the message of the two ferns from (1.2.5) is very impressive. Representations
for these pictures - structured in such a relatively complicated way - must obviously have a higher level of
complexity a,s one will expect for any picture represented by a I-MRCM. Thus by subsequent considerations an
approach must be found, where the whole gallery of attractors from above mentioned iterative reduction-
processes can be ordered in one and the same complexity-scheme.

There is an extension of the concept of a HUTCHINSON-operator for a network of MRCMs. A hierarchical
HUTCHING-operator (corresponding to a network of (M) MRCMs) is given by a (MxM)-matrix:

3. W:

(W)is now a matrix with a finite nurnber of linear transformations (w*=1r-r1^r=1,-r,1). For some transfbrmations
(*"^"(@)) may be allowed, in which case it will be transformed to an emptv set only. The operator (W) acts on a
M-vector (V) of input-images:

o V = {v1Uv2U ...,. Uvn }

and generates a M-vector (U) of output-images:

o {J = {u1Uu2U ..... Uun } = 1*=,11J(*:*)[*.l^,.(r,,)] .

A network of MRCMs corresponds to a graph of nodes and directed edges (similar to those from (1.2.5)). Exactly
one node exists for the output of each MRCM in the nctwork and one directed edge for any output-input
connection in the network.

o An edge clirected from node (J) to node (K) svmbolizes - after HLITCHINSON-operator having produced
output fbr input (J) - this output is fed into (K).

In both cases ((1) MRCM or a network of MRCMs) it's easy to get a close idea of any attractor's complexity
during its blueprint-processing. Tliis means, in any case one has to measure how far image (A1) has removed
from the initial image (As) under one action of the appropriate HUTCHINSON-operator.

2.1 Comolexitv-Measurine for Attractors coded, bv one MRCM.

Any step (N) in the feedback-processing of IFS starts with an initial image (A"), which then is acted on by the
HUTCHINSON-operator W(Aon) in order to form the output-image (Ar*r) of the step:

t Aw*.: W(r=rU'=Nu;r(A") ) + üJr:

In the following the feedback-process is limited to produce the blueprint only.

fu.,,

Wtz+Wr.J+*,rt-)
J * J - Jl

wU: wV; + wtß/

;lt.:
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Tirus:

. Ar = W(Ao) .

(A6) is reduced to one of its points only:

. Ao *- (xf+yy) <= {\[i' :"i' : ixi : \-jxi)= 1] A li."i :ol) A (rny< 1)].

Thus:

. Ar : W(xi*yy ) : ,=rLJ'=*r., (xf +yy ).

Due to the fact that (As) consists of one point onlv, (A1) will become the collection of transformed points ([rr.Ao
= At] Ulcoz.Ao = Arz]U.....U[u.r*.Ao = Ar*])'

, u, = (x.arter)+(v.br) : (a.,+x 1.e.,) bJ x
1. Ar : r=rLJ''=* l, . : er = . :, ,. - Ao

, v.,: (x.c.r)+(y.cl.r+fr) ' "., (clr* y-'.fr) y

By running from (As) to (Ar) the cardinality (tr(A1)) of set (Ar) increases and with it the cornplexitv of (A1)
relative to (As). Thercfore the primarily part of complexity of the blueprint-print can be givcn by:

[ { x.a.,+e, )+(.u. b.,)'l
2. f:[#(Ao)]+[#(Ar)] :l+,=,LJ'="] i

[ (x..,)+(r. d.,+1., ) _J

From (1.) and by setting (* : y = 1) simultaneously, one may derive a ftttlter expressiol:

f Ia.,+e.,+u.,1 [ a.,+e,+t,.,1). L,z : ,.,r,_n 
[1. *u *," I 1 .,+,r,+r, lJ

3. -FA: .,=r!r=* [ (,.r+"r+t .r)2+(c.,+d.r+f )r)rtr.
(3.) offers a fttrther part of blueprint-complexity, which reflects the complete influence of the MR.CM's linear-
affine transformations (contractions, rotations, rcflections ancl shear-operations). Therefore by pairs (f^A) one
has given a tool at ltand, which one enables to order blueprints fi'om applopriate MRCM's according to their
complexities.

2.2 Corulheyitv-MeasareJhr Attr{tctars code from NetwsI&:MRCM§,

How will a network of MRCMs operate during the feedback-process? Any directed edge (J ---+ K) between the
nodes (J € M) and (K € M) will change image (Aor) by acting transformation (w",) on it and the result is feed into
(Atr.),

1. 41* - wr.r.Ao.r + A1* = IL=llLltL=N(K)l(*r.".Au" ).

Limitation of index (L) in (f .) is due to a possibility of:

o :l[{w"y} C {w""}] --+{w"r-Ao": u}.

The transformations (w"r) themselfes are composed out of sets of linear-affine transformations:

2. wKr : In=rrLllH=w(r')1{r*rrr}

Therefore from (1.) and (2-) one will further obtain:

3. A1" : rr,=rtLlll-x(r)11,r=ugt"=*t*")1{r*""}.A0"} .

Normally the unit-square is selected for initial image (Ao"), but - for subsequent discussion - any unit-square is
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reduced to one of its points:

4. Ao":(x";f+yp) += {(li'=.i': ix"i:(jxil = 1ln li.i:01) A (t0(x" s 1lA [0<y" <1])].

Thus starting blueprirrt-processing from:

5. point-set 40 : {11=11L-Jtl=Mt(x,,ii+yL/ )}
with cardinality

o = #{r"=rrU tL=MI(xL,f +yilr )},

by heeding of (3.), one easy realizes that:

r Point-set A1* = {1"-r1lJ 
t"-*("n(e-rt U t'=N(Kt)luJH) . {x"r+y-f })}

has been enlarged against (O) to a cardirrality
E : #{p='rUIL-N(K)](rH .[JIH=N(KL)]urH).{xrf+y,7})} and

o' Point-set o' : 
f,,li,Hl;ä"!r,t,r.i"'.llr;:Y[, ]!""" "" "], ' {x"'r+vrrr})}

o = #{ru=rrUtu=rt(,,._,,Urr.-N(u)t(1g=rtLJlH=N(ur-)I6uL ,). {x,.,fl+yg})}.

Therefore by (Cl) from (6.) and (O) from (5.) the preliminary part (f) of blueprint-complexity leads to:

7. (()+O):f.

To get of blueprint*complexity on a more aclvanced level, another characteristics (A) has additionally to be
taken into consideration. To get familiar with (A) it's usefui to go back to (3.):

. A1* = {rr-rrLJI'-N(K)](t,-lrLJtH=N(xt')J6"",,)'A0"} .+ 41": {r"=rrLJt"=*(*)l (,r-r,Utt-*(KL)l,,.lxLH).{x",r'+yr-r}}.

Herein the linear affine transformation (o""r) is given by:

(u*"n b*'*'
r (rJxr,rr : I

[.t*r*, d*, ;3
This will further lead to:

1 'J6ru.Ao,.=['axr.u*xr-''e*r, 
b*., ) [f*, I I f(xLaKlH+eKrr)+y"b*rnl

t cru-H d*,n+y,-,.r-,,J' t 1r,i:"'t 
:t 

-*,.**rr,o*"*,-,;i
Thus it can further be obtained from (3.):

a a [(x'axr-rr*e*rr)*y,.1,^,.n])). At^ : 
l_,r=,,Utt=*(*)r l-rn_,rUlr=N(KL) { *r.*rr+iy,.cl*rn+r*r,, ,l ) )

this finally will lead to:

a ( a [1x,,a*, r+.n,,)*.v, hn, u] ) ) -l
B. Ar : 

Iu 
,rUr" "r 

[r=,rUI'.=^,u,, l_,r=,,UtH=N(u,.)r { *r"n,,r+iyrtr*r,,+[*.r)l ) )
If condition in (a.) becomes generally restrictcd to (x, - 1 = y,.), one mav derive from (8.):

. a2 : ,u=,,I,, ,, [,, ,,I rr-=.rru, [, ,t [H=N(ur,)r {an'n*en"*b*''n 
] f aKLH+eKLH+o-''' I ) -l

(- l- [c*r,,+,rrdnr.u*tx, t 1 c*r,,+ttnrr+ ,.rrl ) )
9. +^ - tu=rr» t'-'l I p=rtl u,-N(u)] [ ,"=rI tH-N(uL)] [ (a*"n+e*r.,r*b""r)' + (c*",r+d*""+f^,.r), ]v,] J .

(9.) offcrs a part in blucprint-complexity, which reflects the complete influence of a network's linear-affine
transfbrmatiorrs (contractions, rotations, reflections and shear-operations) and thrts will contribute to the
complexity of its biueprint. Therefbre by pairs (I^A) one lns giveb a tool at hand, which enables to order
blueprint-complexities of appropriate network-MR.CMs.
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2.3 Wifu:Measures for ß{ßN§LEY-, {Tvp dlTtpe-B_):Eeru.

Due to \2.1^2.) and according with the appropriate values for (o. u)z et r,la) to be found in the facts-table of
BARNSLEY's-fern in (1.2.3), the appropriate (Ir***r) can be derived as follows:

| [{*..unr*.ozr)+(y..oszl [("..,e2+.400)+(y..226)'lo f,)ßunsrey: #l 1 lui f U
L [(x..oaz)+(y..84e+.183)J [(x..zzo)+(y..te7+.oao))

{ 
(". , bo+ s75)+(y. 2sa} 

, I 
.roo 

} I
[{*..rtr)*i y-.zsz+.os\) Lv..,uoJ J .

1. lB*o"t"y: 5 - 4+L.

Accordingly to (2.1^3.) one will further get for (Ae*o"r.,):

(11.aao+.075+.037)?+(.037+.84e+.183):l +) ({o.Sza+r.l4r3) +) (z.oat +)
.42s".n"1", :l(.197+.4+.226)2+(.226+.197+.019)2 +l=l1o.aru+o.zzt1 +l=lo.u +l

l1.r;+.szs+.283):+(.26+.2J7+.084)2 +l llr.oro+o.s:r; +l lr.rsa +l
f .s2+.re 2 -) f {o.zs+o.rrzo; ) [r.zzo )

: 4.597

. *ÄBr.."r"y : 2,741 .

Thus the complexity-measure for the bluepririt of BARNSLEY's-fern will come up with:

2. (l^A)oo.,",u, : (5^4.b97).

According to the graph of (Type-A)-fern in (1.2.5) and with (2^3.), a HUTCHINSON-operator is obtained:

l-wrr =,rrr wrz = (u2uu") -)

o W -l I

t 0 w., = (r,.r,Uco-,Uu-r6)J .

Based on(W) and rvith reference to (2.2^3.) set (Ao) will enabie a set (A1) for the blueprint of (Type-A)-fern:

Cardinality (#(A1rrn"-o_1*o)) shows the increase in complexity of set (Al**-e-re"o ) in relation to the initial set
(A"*.-o-r."o), means cardinality increases by (0.-*o-ro) in blueprint-proöessing. Taking the complexity of

"I

.l
.ll

[', 
: 

["'. "'.''"' .,.]' 
,.r,] ] ] {;: 

: "

[". ; ["'..: 
''", 

o.*1, ,,]]-l 
. ,,.,=^

[,, = 
[^ 

'. 
.: 

'"' 
.,...r, , ] ] _,J 

Lr,

a f'no+*,-'-,', ,,, 

, I ll['-l- c,

u 
div2'-tt) ) 

I

[", 
= 

["'.". 
''"- 

.,.;, .,.] ] I {;, 
-Ao,

UI
a fao+xr-'-,',, bo ) ) I

L'' 
: I cü o,*r,,.,,) ))

[*,, 
:

LU
t
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(Aorrr"-.r-r.,,,) in form of its cardinality (O 1rp.-,r-re..) into account. one will get clue to \2.2^7.):

. fr.yp"-.q. = (0.,.rn" a*O arp" e) = 6+3 = 9 .

According to \2.2^9.) one will further obtain frorn (4.):

( (a,*e,tb1)r+1cr+d,+1,)l
I

I f(a2+e 2+br):+ic"+dr+lr)2 )I I +l
[- l-1n.+".*b")2+(cr+dr+lr;: )

fiar+er+b.,):+(c.,+d,+l", ): )| +l
| {or+e.+b.)2+(cr+dr+lr)r 

II +l
!ia6+e,r+b,;)r+(co+dr+ln): )

' Aryp. A :

The final complexity-measure of the appropriate blueprint is represented by:

3. (f^A)rrn"_o = (9^(,.-rI"-6[(a"+e"+br)2+(cr+cl"+fr)'])").

From thc graph of (Type-B)-fern in (1.2.5) a HUTCHINSON-operator can be derived in the forrn:

(' wrr =.or w," = (u-r,Uo3)-)
o W -l I

[-*r, = (u;Uro6) w22 = ujq )

)) )
,1Typ"-B-r"",, ) in relation to
r increase (0 rypn_e_r".n) of
cardinality (O ryp"_n r"., )

"r+

o"r)

""+

Orr)

L
Type-B

r increr
cardin

t (l*,, = I fa'+x' ''e' b'| -ll-l 
. {*' =I I[*",[":l-c d*v'"))) 'L'=

Jo,, = J I f ,. = f-o,+*, 
''e', r';" )) )

I'=1i l- uIc' o'*"-"))ll"
I Il*'"=' (-a'+x'-''e" l" -))I'1"=

) tt- ['' = t- c u,*r,,.,)))
. AIt,ro"g ={ U 

\\

\ (, I f-a,+x,-'-,', h. l-l -l

I rl L''=l- c., ,r,,*r;,.r.)) I r,.,

I ll*", = U 1.1 =

lo"=li l- f''o+*'-''c' rr' ))lL"'
| 

=1t- 
,[.:'=t- cL u"*r,'',)))

t la*,,=a G'+*"-''e' b'| lll .{"'=
\ \.r. ['' = l- c, a,+r,-'+) ) ) |.r,

Cardinality (#(A'rro" a r".o)) clescribes the complexity-increase of image-point-set (Al
thc initial image-point-set (Ao,.rp.-n r.,.) during the creation of blueprint, this means an
complexity in blueprint-processing. Taking a crimplexity of (Aorr,,"_s rern) in form of its c

into consideration, then - due to <2.2^7.) - one will get:

Due to the above (W) and with referenceto (2.2^3.) the image-set (Ao) will enable an appropriate point-set
(A1) of the blueprint for the (Type-B)-fern as shown below:

. Iryo"*u-r* : (0 trp"_e*r.**@ Type_e_rm) = 6+4 = 10 .
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According to (2.2^9.1one will further obtain from (4.):

o Arype B-Iern :

a 
(a,+e,+b,)2+(c,+d,+1,)2

| (ur**r*br)2+icr+dr+fr)2l-
(- (ar+e3+b, )r+( cr+dr+1, )2

f ft "r+",,+b. )2+( c.+cl.+1,, ):

| [-1.r*"0*b6)2+(co+do*fu)'

t (a.,+er+b., )2+(c-,+ri.,+t'.)2

.r ! l

.l l.l.) 
)

Thc final cclmplexity-measure of the appropriate blueprint is represented by:

4. (l^A)rrr. o = (10^("-rI"-6[(a"+er+br)2+(cr+clr+fr)'])").

3 Approach for an Information-Measure for MRCM-Attractors.
Considering ((I^A)r*"r"r), ((f^A)rrp.-r) and ((I^A)r-"-r) from \2.3^2.), (2.3^3.) and (2-3^4-) respectively,
where the position of each element in a pair decides about its priority (its importance for the specification), one
can order the complexity-measures in the following way:

o (5^4.597) < (9^"=rIL=5'[ (al+e,,+b')2+(cr+cl ,*f ,)']'/') < (10^"-rIL-6[ (ar+e"+b.)2+(cr+d,.-tf ,)21rtz.,

This offers a possibility to order attractors - coded from single MRCMs or MRCM-networks - via the
appropriate blueprints in a sequence of increasing complexity. Moreover, this will also give one a measure at hand
(on account of such a complexity-specification) for the information gained by a specific attractor relative to
others.

This concept of information-measure may be referred to complexities of planar structures only. It is to be
understood in a similar way as information-measure (1.1^4.) is used in SHANNON's mathematical theory of
communication - here as pure measure for rarity of events -.
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