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Abstract

Lorentz transformation plays a key role in Special Relativity by relating the space-
time distance between events being observed in a pair of inertial frames of reference.
Depending on the relative velocity of the inertial frames, the magnitude of Lorentz
transformation varies between the limits 0 and 1. The upper limit 1 represents a case
where the pair of inertial frames of reference are stationary relative to each other.
The lower limit 0 represents the other extreme case where the relative velocity of the
frames is at the speed of light c. Similar numerical limits, on the other hand, appear
in Quantum Mechanics but in the context of the summation of the probability density
distribution of a particle over a region of space. The upper limit 1 represents a case
where the probability of finding a particle in a region of space is certain. The lower
limit, represents the opposite case where the probability of finding a particle in a region
of space is not likely. The range of the limits being between 0 and 1 in both theories
is not a numerical coincidence. In this paper, a combined theory is introduced which
relates the Lorentz transformation of Special Relativity to the wavefunction of Quan-
tum Mechanics. The combined theory offers a new insight to the physical reality. For
instance, it is found that the inherent quantum uncertainties in the spacetime coordi-
nate of a quantum particle in vacuum constitute a timelike four-vector whose length
A is invariant. It is also found that local acceleration, like velocity itself, has an upper
limit; such that no physical object can undergo a local acceleration higher than c2/A.
The latter, in turn, constrains the mass of the smallest possible black hole - called Unit
Black Hole (UBH) - to Ac2/4G and its event horizon diameter to the invariant A. The
diameter of the event horizon, the mass and the Hawking temperature of more massive
black holes are subsequently quantized starting from those of the UBH.

Keywords — Special relativity, Quantum mechanics, Black hole, Acceleration limit

1 Introduction

Quantum Mechanics (QM) and Special Relativity (SR) are the two most triumphant theories in
physics. The theories of SR and QM, however, have a fundamentally incompatible approach in
describing the physical reality. For instance, while QM provides an inherently probabilistic and
quantized picture of the natural world, SR is based on the deterministic and continuous description
of the physical particles position in space and time. In this paper an attempt is made to combine
these theories through establishing a relationship between the time dilations of SR and the spatial
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probability density distributions of QM. The time dilation of SR is associated with the kinematics
of a particle; such that the faster the velocity of a particle relative to an inertial frame of reference,
the higher its coordinate time dilation in that frame. More specifically, the time dilation of SR
relates the proper time interval in the rest frame of a particle to that of any inertial frame in which
the particle is found to be in motion.

Since SR is a deterministic and continuous theory, the definition of the rest frame in which both
the position and momentum of a particle are known with certainty is compatible with the basic
assumptions of the theory. Unlike SR, in the theory of QM, the rest condition is not permitted in
its absolute sense. Therefore, in the combined SR-QM theory, the notion of rest frame of SR is
revised into a frame in which a quantum particle has a minimum inherent uncertainty in its position
and momentum. The quantum particle in such frame is at the nearest state to being stationary,
as such the classical rest frame in the combined theory is called the nearest frame; or equivalently
textitnear-rest frame. The higher the relative velocity between the nearest frame and a given inertial
frame of reference, the higher the spacetime coordinate uncertainties of the particle in that frame.

The spatial probability density distribution of QM quantifies the probability of presence of a
quantum particle over a span of space in which the distribution assumes a non-zero value. Accord-
ing to the revised definition given before, the probability density distribution in the nearest frame
of a quantum particle is therefore expected to have the shortest span. In any other given inertial
frame of reference, while the probability density distribution still integrates to the probability of
1, the distribution, nonetheless, covers a wider length interval compared to that of the nearest frame.

In this paper, we begin with the abstract motion of a quantum particle in vacuum and show
that the seemingly irreconcilable theories of SR and QM are fundamentally interconnected through
a relationship between the coordinate time dilation and the spatial probability density distribution.
From the combined SR-QM theory, we then learn that the uncertainties in the relativistic spacetime
coordinates of a quantum particle constitute a time-like four-vector whose length interval is invari-
ant. The latter leads to the invariant cosmological time interval which the age of universe is always
an integer multiple of. This invariant time interval plus the invariancy of speed of light necessitates
an upper limit in the local acceleration. The necessity arises from the realization that if a particle
could accelerate any higher than the acceleration limit it would have attained a velocity higher than
that of a light beam. The local acceleration limit, then allows to define the smallest black hole in
nature and subsequently arrive at the quantized equations for the mass, size and temperature of
black holes.

2 Lorentz transformation

Consider a quantum particle with mass m and the nearest frame I(x, t), moving undisturbed in
empty space on a rectilinear path under a constant momentum p′. From undisturbed we mean the
particle trajectory or momentum is not influenced by any external factors, such as gravity, radiation
or interaction with other particles. The particle is assumed to be in a non-stationary state along
the x′-axis of another inertial frame of reference, I ′(x′, t′). To limit ourselves to one a dimensional
analysis, we further assume the spatial axes x and x′ of the frames I and I ′ are parallel. From
Special Relativity, the spacetime coordinates of an event registered in these two inertial frames of
reference, I and I ′, are related to each other through the Lorentz transformation [1]. One such
event is when the origins of the frames of reference I and I ′ are both simultaneous and coincident.
As shown in the Lorentz diagram, Fig 1, the spacetime coordinate of this event is marked by the
event E0 where the spatial and time coordinates of both frames are set at zero, hence, meeting the
simultaneity and coincidence condition of the event. Another event is when the particle might be at
a distance x′ from the origin of I ′, when the coordinate clock in I ′ reads time t′. This corresponds
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Figure 1: Lorentz diagram between two inertial frames of reference I and I’

to the coordinate clock in the nearest frame I reading the particle’s proper time τ . The spacetime
coordinate of that event is marked by the event E1 in Fig 1. The spatial distance between the
events E0 and E1 in the frame I ′ is ∆x′ = x′; while in the particle’s nearest frame I, the same
distance is obviously ∆x ≈ 0. The angle β between the inertial frames of reference I and I ′ is given
by sin(β) = v′

c = x′

ct′ , where c is the speed of light in vacuum. From the relationship, it is evident
that as v′ → c the angle β → π

2 . At the other extreme, when the objects are relatively station-
ary to each other, i.e. as v′ → 0 the angle β → 0, which results in overlapping the coordinate frames.

Since Special Relativity is a deterministic theory, there are no uncertainties δx′ and cδt′ associ-
ated with the spacetime coordinate of the event E1. Moreover, Special Relativity being a continuous
theory, the particle velocity v′ (or its momentum p′) are considered as non-quantized and continu-
ous variables. In the following sections, we attempt to introduce the quantum uncertainties in the
context of Special Relativity.

3 Quantum Wavefunction

Limiting ourselves to a special case in which the particle’s momentum is constant, next we define
the wavefunction ψ(x) of the particle such that the square of its magnitude |ψ(x)|2 to have the
following character:

|ψ(x′)|2 =

{
1/ε |x′| < ε/2

0 otherwise
(1)

By definition, the function |ψ(x′)|2 could be interpreted as the probability density distribution of
the particle’s position along x′-axis. The dimensionality of the probability density is that of the
inversed-length. Hence, by definition, the numeric 1 in the numerator of Eqn 1 must have no unit
and simply represent a probability. The parameter ε, in the denominator of the equation, on the
other hand, must have the length dimensionality and simply represent a length interval on x′ where
|ψ(x′)|2 is non-zero and constant. From Quantum Mechanics, the latter condition corresponds to
a case that the particle has a definite momentum and hence has a uniform probability of being
anywhere on that interval. The length interval ε, therefore, could be interpreted as the uncertainty
in the spatial coordinate of the particle on x′.
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We begin with a postulation that, like any length interval in SR, the length interval corresponding
to the spacetime coordinate uncertainty of a quantum particle obey Lorentz transformation. On that
basis, it is postulated that the particle velocity v′ and its spatial uncertainty ε along the path x′ are
related as follows:

ε =
A√

c2/v′2 − 1
(2)

As will be shown later, the length interval A has two important features. First, it represents the
the invariant interval of the spacetime coordinate uncertainty four-vector in spacetime. Second, it
represents the diameter of the event horizon of the smallest possible black hole in nature.

The functions |ψ(x′)|2 and ε, as defined in Eqn’s 1 and 2, are shown in Fig 2. By examining Eqn

Figure 2: Probability density distribution |ψ(x′)|2 versus ε and ε versus c
v′

2, it clear that as the particle velocity v′ → 0, i.e. as it gets closer and closer to a stationary condition
in I ′, the uncertainty in the position of the particle in that frame also approaches to zero, i.e. ε→ 0;
and subsequently, its spatial probability density distribution in that frame approaches to infinity,
i.e. |ψ(x′)|2 → ∞ . Hence, as expected for a stationary particle, the positional probability density
distribution peaks where the particle is located and vanishes anywhere else on x′. This is represented
by the vertical axis in Fig 2a. Inversely, as the speed of the particle increases, the length interval ε,
representing the uncertainty in spatial coordinate of the particle increases progressively in length,
such that at the limit velocity v′ = c, the spatial uncertainty becomes infinite, i.e. ε → ∞, and
subsequently, |ψ(x′)|2 → 0. This condition is shown by the horizontal axis in Fig 3a, representing a
full uncertainty in the spacetime coordinate of a free photon prior to its observation by an inertial
observer in I ′ . For all other conditions, where velocity of the particle is between two extreme limits,
0 < v′ < c, the spatial uncertainty ε and the magnitude of the wavefunction |ψ(x′)|2 assume some
non-extreme values, as shown in Fig 3b. Finally, note that the area under the probability density
distribution defined in Eqn (1) integrates to the probability of 1:∫ ∞

−∞
dx′|ψ(x′)|2 =

∫
dx′

1

ε
= 1 (3)
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Figure 3: Spatial probability density distribution of a particle versus its velocity

4 Relativistic time dilation and quantum wavefunction

From Special Relativity, the intervals of proper-time dτ and coordinate-time dt′ are related by the
Lorentz transformation [1] as follows:

dτ

dt′
=

√
1− v′2

c2
(4)

where the proper time τ is measured at the origin of the particle’s nearest frame of reference I; and
the coordinate time t′ is measured at the origin of the inertial frame of reference I ′. The numerical
value of the time dilation from Eqn 4, when v′ is between two extreme cases of v′ = c and v′ = 0 is
always between 0 and 1, respectively. As the absolute probabilities associated with the uncertainty
in the spacetime coordinate of a particle also vary between 0 and 1, it would not be surprising to
show that the time dilations of SR and wavefunction of QM are physically related. To demonstrate
this, we now re-arrange Eqn 4 as follows:

dτ

dt′
=
v′

c

√
c2

v′2
− 1 (5)

substituting for
√
c2/v′2 − 1 from Eqn 2 we get:

dτ

dt′
=
v′

c

A

ε
(6)

and further by substituting for 1/ε from Eqn 1 we arrive at a fundamental relationship between the
time dilation of theory of Relativity and the wavefunction of Quantum Mechanics as follows:

dτ

dt′
=
v′

c
A|ψ(x′)|2 (7)

Eqn 7, in a sense, relates the relativistic time dilations corresponding to the kinematics of a particle
with the probability density distribution of its position in space. Multiplying both sides by c

v′ and
replacing cdτ = ds, and v′dt′ = dx′ we get:

A|ψ(x′)|2dx′ = ds (8)

By integrating Eqn 8 over coordinate space x′ we then arrive at:

A

∫
dx′|ψ(x′)|2 = δs (9)

In reference to Eqn 3, the integral of Eqn 9 is equal to the probability of 1, therefore we finally
arrive at the following relationship for the uncertainty interval invariant:

δs = A (10)

and subsequently;

δτ =
A

c
(11)
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5 Four-vector of spacetime coordinate uncertainties

The components of the four-vector of the spacetime coordinate uncertainties are the cδt′ plus three
spatial uncertainties δx′, δy′ and δz′. In this paper, however, without a loss in generality, we have
limited our analysis to the situation in which the spatial axes of the inertial frames of reference
I and I ′ are all parallel and their relative motion is along their x, x′-axes. As shown in Fig 4,
the invariant base of the uncertainty triangle in this case is always A, the hypotenuse is cδt′ and
perpendicular to the base is δx′. Therefore, the quantum uncertainties in spacetime coordinate of
a particle constitute a timelike four-vector with invariant length of δs = A. For an observer that
travels with the particle, the hypotenuse would be parallel to the base. For that case, the space-
like uncertainty δx′ = 0 (as the particle would look stationary to the observer), but the time-like
uncertainty of the particle would be the constant δt′ = δτ = A/c. The time interval agreeable by
all observers, could be used as the cosmological time interval. At any given epic, the age of the
universe is therefore an integer multiple of this constant time interval.

Figure 4: Invariant length A of uncertainty four vector of two particles with different velocities

6 The locus of uncertainties

Since the spacetime uncertainty interval δs = A is invariant under the Lorentz transformation, it
could be used to define the uncertainties cδt′ and δx′ in the spacetime coordinate of the particle as
follows:

δs2 = (cδt′)2 − (δx′)2 = A2 (12)

Eqn 12 represents a north-opening hyperbola as shown in Fig 5. The higher the coordinate velocity
v′ relative to the inertial frame of reference I ′, the higher the inherent uncertainty in the spacetime
coordinates cδt′ and δx′ of it in that frame. Eqn 12 can be equivalently written as:

cosh2 α− sinh2 α = 1 (13)

where the hyperbola parameter α is twice the area under the locus and the intersecting ray from
the origin. In reference to Fig 5, for two particles with velocities of v′/c = 0.6 and v′/c = 0.83
for example, the difference in the inherent spacetime uncertainties are 0.75A (space-like) and 0.55A
(time-like). Alternatively, as shown in Fig 6, the spacetime coordinate uncertainty of the particle
can be determined by a complex number b as follows:

b = ρb e
iθ (14)

where ρb is the magnitude and θ is the phase angle of b . The real and imaginary components of
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Figure 5: Locus of uncertainties of a particle in state of definite momentum

the complex number b will represent the inherent coordinate uncertainties. As shown in Fig 6, as
the momentum of the particle varies due to its acceleration (or deceleration), the complex number b
traces the uncertainty locus up towards the asymptote (or down towards the ordinate). The phase
angle θ, represents the instantaneous slope the world line of the particle in spacetime and is given
by:

tan θ =
cdt′

dx′
=

c

v′
(15)

As shown in Fig 6, the phase angle θ varies between the limits π/4 < θ < π/2, where the upper limit
π/2 corresponds to the condition of a stationary particle where the complex number b is closely (but
not entirely) aligned with the lateral (imaginary) axis. As we shall see later, due to the inherent
quantum uncertainties, the phase angle θ of a stationary particle must always be less than π/2.
The lower limit π/4 corresponds to that of the light particle where the complex number b is closely
(but again not entirely) aligned with the asymptote θ = π/4.

Now it is worth to note that in Special Relativity the light-like (or null) interval has the invariant
interval c2δt′2− δx′2 = 0, i.e θ = π/4. In the combined SR-QM theory, however, the light-like signal
is only asymptotically tangent to the line of 45 degree; hence, according to Eqn 12, the invariant
interval in the case of a light particle is also c2δt′2 − δx′2 = A2, i.e. not zero.

The spacetime coordinate uncertainties, therefore, could be found by intersecting the uncertainty
locus with the ray cδt′ = (c/v′)δx′ passing through the origin of the coordinate system. From Eqn
15, the slope of this intersecting ray is the instantaneous slope θ of the world line of the particle.
Hence, the spacetime uncertainties cδt′ and δx′ can be obtained by solving the system of equations:

(cδt′)2 − (δx′)2 = A2 (16)

cδt′ − (c/v′)δx′ = 0
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Figure 6: The real and imaginary components of b are uncertainties in space and time

which results in:

δx′ = ρb cos(θ) = A sinh(α) =
Av′√
c2 − v′2

(17)

cδt′ = ρb sin(θ) = A cosh(α) =
Ac√
c2 − v′2

Using Eqn 17, we finally arrive at the following for the magnitude ρb of b :

ρb = A

√
c2 + v′2

c2 − v′2
(18)

The intersection of b with the unit circle on the complex plane is given by the coordinates:

cos(θ) =
v′√

c2 + v′2
(19)

sin(θ) =
c√

c2 + v′2

where θ, as discussed before, is the slope of particle’s world line. The relativistic equations developed
for the spacetime uncertainties will be quantized in the following section.

7 Quantization of spatial uncertainties

Having |ψ(x′)|2 as defined in Eqn 1 in the previous section, we are now ready to write for the
wavefunction of a particle under a definite momentum p as follows:

ψ(x′) =

√
1

ε
eipx

′/h̄ (20)

where h̄ = h/2π is the reduced Planck constant with h = 6.626E − 34 (Jule.sec). Since the
function |ψ(x′)|2 has to be single valued function on domain x′, we demand for the periodicity of
the wavefunction for any spatial uncertainty ε, i.e ψ(x′) = ψ(x′ + ε), hence:√

1

ε
eipx

′/h̄ =

√
1

ε
eipx

′/h̄eipε/h̄ (21)
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Figure 7: Complex number b tracing uncertainty locus in spacetime

From the last equation, we then have eipε/h̄ = 1, hence:

pnεn
h̄

= 2πn2 (22)

The reason for choosing a square of the quantum index n in the RHS is because each parameter in
the product pnεn in the LHS contributes one quantum index n. Isolating pn in Eqn 22 we have:

pn =
h

εn
n2 (23)

From the theory of Special Relativity, however, for the momentum of the particle we have:

p =
mv′√
1− v′2

c2

(24)

multiplying both the numerator and denominator by c/v′ we get:

p =
mc√
c2

v′2 − 1
(25)

substituting for
√
c2/v′2 − 1 by ε/A in the previous equation we get:

pn = mc
εn
A

(26)

and now by substituting for pn from Eqn 23 and solving for εn we get:

εn
2 = A

h

mc
n2 (27)
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By definition, Compton wavelength [2] of a given particle represents the wavelength of a photon
whose energy is equal to the rest energy of the particle; therefore, for a particle with rest mass m
we have:

mc2 =
hc

λ̂
(28)

which in turn gives the following for the Compton wavelength of a particle with rest mass m:

λ̂ =
h

mc
(29)

Now, let’s define a reference mass m̄ whose Compton wavelength λ̂ = A as follows:

m̄ =
h

Ac
(30)

Note that m̄ represents a particle whose rest mass is the smallest none-zero mass physically possible;
therefore, any particle with rest mass less than m̄ is considered as a massless particle. Substituting
for the term h/Ac in Eqn 27 from Eqn 30, gives an explicit equation for the spatial uncertainty εn
in terms of particle mass m and reference mass m̄ as follows:

εn = A

√
m̄

m
n n = 1, 2, ... (31)

Accordingly, the spatial uncertainty of a particle is inversely proportional to square root of its rest
mass m. It is also evident that the minimum spatial uncertainty corresponds to that of a stationary
particle with the minimum quantum index n = 1. The higher the quantum index n the higher the
particle velocity and therefore the spatial uncertainty.

8 Quantization of momentum

The quantized form of momentum pn, could simply obtained from Eqn 26 by substituting for εn
from Eqn 31 as follows:

pn = mc

√
m̄

m
n n = 1, 2, ... (32)

According to Eqn 32 the momentum of a particle is directly proportional to the square root of its
rest mass m.

9 Quantization of timelike uncertainties

The equation of the coordinate time uncertainty δt′ will be obtained from Eqn 12 by substituting
for δx′ from Eqn 31 as follows:

δt′n =
A

c

√
1 +

m̄

m
n2 n = 1, 2, ... (33)

10 Quantization of particle velocity

The relativistic coordinate velocity v′ can be obtained from Eqn 25 by substituting for momentum
p from Eqn 32 and solving for c/v′ as follows:

c

v′n
=

√
1 +

m

m̄n2
n = 1, 2, ... (34)
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From Eqn 34, the coordinate velocity of a particle with rest mass m at the quantum index n = 1 is
given by:

v′1 = c

√
m̄

m+ m̄
(35)

Coordinate velocity v′1 represents the particle velocity at its nearest frame of reference, i.e. it
represents the smallest none-zero velocity that the particle could attain. From Eqn 35, it is evident
that the higher the rest mass m of a particle the smaller is its near rest velocity. The near rest
velocity of the reference mass m̄ is then given by v̄′1 = c/

√
2.

11 Quantization of phase angle

The quantized equation of the phase angle θ of the b vector, could be obtained from Eqn 25 as
follows:

c2

v′2
= 1 +

m2c2

p2
(36)

substituting for c/v′ and p from Eqn’s 15 and 32, respectively, and solving for the phase angle θ we
will have:

θn = tan−1

√
1 +

m

m̄n2
n = 1, 2, ... (37)

From Eqn 37, for a stationary particle with the quantum index n = 1, we have:

θ1 = tan−1

√
1 +

m

m̄
(38)

From above, for particles of increasing smaller mass, as m→ 0 the term
√

1 + m
m̄ → 1 and with that

θ1 → π/4. Hence, the quantized equation of phase angle confirms that the mass-less m = 0 particles
travel with the speed of light. Inversely, for particles of increasing larger mass, the term

√
1 + m

m̄
increases and with that the phase angle θ1 → π/2, reducing the coordinate uncertainties at near
rest condition. Therefore, the higher the rest mass of a particle the less the spacetime coordinate
uncertainties in its near rest condition.

12 Quantization of energy

According to the theory of Special Relativity, the total energy E of a particle in terms of its mass
m and momentum p is given by:

E2 = p2c2 +m2c4 (39)

substituting for the momentum p from Eqn 32, we then find particle’s total energy in discrete values
n as follows:

En = mc2

√
1 +

m̄

m
n2 n = 1, 2, ... (40)

According to Eqn 40, the relativistic rest energy E = mc2 requires a correction for quantum particles
for which the absolute rest condition is prohibited. Therefore, for the lowest quantum index n = 1
we have:

E1 = mc2

√
1 +

m̄

m
(41)

It is event that the quantum multiplier
√

1 + m̄
m in front of mc2 is greater than one. As mentioned

above, this is to account for the fact that in quantum mechanics, unlike relativity, the rest condition
in its absolute sense is prohibited. Hence, the total energy of a particle near rest is equal to its rela-
tivistic rest energy E = mc2 augmented by the quantum rest kinetic energy. Moreover, for particles
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of increasing larger mass, the term
√

1 + m̄
m → 1 and with that E1 → mc2. This means the kinetic

energy corresponding to the rest condition of a massive particle is near zero - as expected from the
classical physics.

13 Four-vector of momentum

According to the theory of Special Relativity, the invariant length of momentum four-vector of a
particle of mass m is the constant m2c2. Hence, using the equations developed earlier, the latter
must turn out to be independent of the quantum index n. To verify this, we begin with the definition
of the momentum four-vector in Special Relativity [Ref 3]:

P = (
En
c
, pn) (42)

Substituting for the energy and momentum terms from Eqns 40 and 32 we arrive at:

P = (mc

√
1 +

m̄

m
n2, mc

√
m̄

m
n) (43)

Subsequently, for the magnitude of the four-vector P we then have:

P.P = m2c2(1 +
m̄

m
n2)−m2c2 m̄

m
n2 = m2c2 (44)

which is found to be independent of quantum index n - as required.

14 Non-relativistic approximations

We begin by recalling that the approximation
√

1 + z ≈ (1 + z
2) is mathematically valid if z ≈ 0.

Using this approximation, in the non-relativistic conditions where the term m̄
mn

2 is sufficiently small,
from Eqn 40 the total energy of a particle with rest mass m can be approximated as follows:

En = mc2 +
1

2
m(c2n2 m̄

m
) n = 1, 2, ..., N (45)

As discussed before, for the non-relativistic condition to be valid the maximum quantum N in Eqn
45 must be sufficiently small. The first term mc2 is the rest energy, and hence, the second term in
the equation is expected to be the kinetic energy KE of the particle. To realize the second term,
we note that in the non-relativistic conditions the kinetic energy KE in terms of rest mass m and
momentum p is also given by:

KE =
p2

2m
(46)

Again substituting for the momentum p from Eqn 32 we get:

KEn =
1

2
m(c2n2 m̄

m
) n = 1, 2, ..., N (47)

Comparing with the classical equation KE = 1
2mv

′2, the quantum equation of non-relativistic
velocities will be as follows:

v′n = c

√
m̄

m
n n = 1, 2, ..., N (48)
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15 Upper limit of acceleration

In addition to the four-vector of coordinate intervals that obey Lorentz transformation and have an
invariant interval, velocities and accelerations in the theory of relativity also constitute four-vectors.
Derivative of the coordinate intervals with respect to the proper-time τ are called proper-velocities.
They constitute a time-like four-vector with the invariant length c. Derivative of proper-velocities
with respect to the proper-time generate a space-like four-vector of proper-accelerations. By def-
inition, the invariant length of proper-acceleration four-vector is called local-acceleration a, which
physically is understood to be the magnitude of the acceleration relative to an inertial frame which
is instantaneously at rest with the accelerating particle. Local acceleration is measurable by an
accelerometer carried with the particle.

Next we discuss the limit local acceleration au which is a direct consequence of the lower limit
velocities v′1, upper limit velocity c and the uncertainty time interval δt′1. The limit acceleration
au corresponds to a case that the coordinate velocity of a particle, varies from the lower limit of
the stationary value v′1, given by Eqn 35, to the upper limit c, within the invariant time interval
δτ = A/c . Hence,

a =
c2

A
(1−

√
m̄

m+ m̄
) (49)

It is evident that for particles of large mass where m� m̄ the term
√

m̄
m+m̄ → 0 and with that the

local acceleration a→ au given by:

au =
c2

A
(50)

The latter represents the maximum acceleration a particle can attain in the physical world.

16 Unit Black Hole

The limit acceleration au, considered as the gravitational pull at event horizon of black holes, can
be used to constrain the mass and size of the smallest possible black hole in nature; herein, called a
Unit Black Hole (UBH). The reason for such naming will become apparent when the quantization
of the black holes mass and event horizon diameter will be discussed at the subsequent sections.
Accordingly, for the Event Horizon radius RE of a black hole with mass MB using Schwarzchild’s
equation [4] we have:

RE =
2GMB

c2
(51)

To arrive at the limit acceleration au, we now define UBH as a black hole with the event horizon
diameter A and mass M0, and re-write the Schwarzchilds Eqn 51 for the UBH as follows:

A

2
=

2GM0

c2

AA
(52)

substituting for c2

A from Eqn 50 and re-arranging we arrive at:

au =
GM0

(A2 )2
(53)

From Eqn 53, we conclude that the limit acceleration au should be interpreted as the local ac-
celeration of a free falling particle when located at the distance A/2 from the geometric center of
the UBH. At that distance, the gravitational pull is at limit and cannot physically increase any
further. Diameter A could be considered as the boundary of physical singularity. Re-arranging Eqn
53 further and substituting for au from Eqn 50 we then arrive at the mass of UBH as follows:

M0 =
Ac2

4G
(54)
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The mass M0 represents the minimum mass of black holes in cosmos.

17 Physical Units in SR-QM theory

Unlike the units of the SI or imperial systems, which have their origins in the human experience of
the physical world, the units of the combined SR-QM theory must be based on the natural units;
free from any anthropocentric bias. One such natural system of units that is entirely based on the
most fundamental constants of nature, G, c and h is that of Max Planck, where the units of length,
mass and time are defined as follows:

lp =

√
Gh

c3
(55)

mp =

√
ch

G

τp =

√
Gh

c5

As mentioned earlier, the reference mass m̄ is considered the smallest none-zero rest mass such that
particles lighter than m̄ are physically massless. We now express the reference mass m̄ as a perfect
square fraction of Planck mass mp as follows:

m̄ =
1

j2
mp (56)

Note that in [5] the discrepancy in escape rates of CH4 and N2 molecules from exosphere of Pluto
is used to constrain the reference mass to the range 3.1979E − 45 < m̄ < 3.2039E − 45. Once the
precise value of m̄ is determined - either by additional observational data or by the experimental
set up proposed in [5] - the reference index j is then trivially obtained from Eqn 56. Subsequently,
the invariant length A can be obtained in terms of Planck length lp by substituting for m̄ in Eqn
30 as follows:

A = j2 lp (57)

Using the same structure of Eqn 56, we then similarly define the rest mass m of a given particle as
a perfect square fraction of Planck mass mp as follows:

mz =
1

z2
mp z = 1, 2, ..., j (58)

Note that the quantum index z for the particle mass begins from the index z = 1 all the way to
the reference index z = j to satisfy m̄ ≤ m ≤ mp. Moreover, note that by defining the gravitational
coupling constant ᾱg using a pair of m̄’s attracting each other, then the relation between the index
j and the gravitational coupling constant ᾱg would be as follows:

ᾱg =
Gm̄2

hc
= (

m̄

mp
)2 = j−4 (59)

Substituting for m, A and m̄ from Eqn’s 58, 57 and 56 in Eqn 31, the fully quantized equation of
the spacetime coordinate uncertainty ε of a quantum particle in terms of Planck length lp is then
given as follows:

εn,z = jzn lp z = 1, 2, ..., j n = 1, 2, ... (60)

The cosmological time interval δτ = A/c yields to the following in terms of Planck time τp :

δτ =
A

c
=
j2
√

Gh
c3

c
= j2

√
Gh

c5
= j2 τp (61)
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Subsequently, quantized coordinate time uncertainty δt′ would be given by:

δt′n,z = j
√
j2 + z2n2 τp (62)

In addition, for the upper limit of local acceleration au we then have the following:

au =
c2

A
=

c2

j2
√

Gh
c3

=
1

j2

√
c7

Gh
=

1

j2
ap (63)

where the term ap =
√
c7/Gh is Planck acceleration. Further, the fully quantized equation for the

momentum of the quantum particle in terms of Planck momentum pp = mpc is given as follows:

pn,z =
n

jz
pp z = 1, 2, ..., j n = 1, 2, ... (64)

Similarly, the fully quantized equation for the energy of a quantum particle in terms Planck energy
Ep = mpc

2 is given as follows:

En,z =
1

jz2

√
j2 + n2z2Ep z = 1, 2, ..., j n = 1, 2, ... (65)

18 The Uncertainty Principle

In this section, we will verify that the equations developed earlier for the uncertainty in position,
momentum, time and energy of a particle with rest mass m are in agreement with the uncertainty
principle [3] given by the inequalities ∆x′ ∆p ≥ h̄/2 and ∆t′ ∆E ≥ h̄/2. From Eqn 64, the
uncertainty in momentum for a unit variation of the quantum index ∆n = 1 is given by the
difference:

∆p =
1

2
(pn+1,z − pn−1,z) =

1

jz
mpc (66)

The product of the uncertainty in momentum ∆p from Eqn 66 and uncertainty in position ∆x′

from Eqn 60 would then be as follows:

∆x′ ∆p = jzn lp ×
1

jz
mpc = nh > h̄/2 n = 1, 2, ... (67)

The inequality is evidently satisfied for every quantum index n, including in the lowest quantum
state n = 1 where the particle is closest to its stationary state. Similarly, by knowing that h = Epτp
and substituting for the time uncertainty ∆t′ = δt′n,z from Eqn 62 and energy uncertainty ∆E =
1
2(En+1,z − En−1,z) from Eqn 65 results in:

∆t′ ∆E =
1

z2

√
j2 + z2n2 (

√
j2 + z2(n+ 1)2 −

√
j2 + z2(n− 1)2 ) h > h̄ (68)

The inequality is evidently satisfied for all combination of quantum indexes (n, z), including the
limiting case (1, 1) for any value of j.

19 Quantized black hole mass and size

Substituting for the invariant A from Eqn 57 in the Eqn 54, the mass of the unit black hole M0 in
terms of Planck mass mp will be as follows:

M0 =
Ac2

4G
=
c2j2

√
Gh
c3

4G
=

1

4
j2mp (69)
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Now note that, as discussed earlier, the diameter of the event horizon of the UBH is A = j2lp
precisely. It is evident the next physically possible diameter for a black hole minutely more massive
than UBH is when the event horizon diameter increases by one Planck length lp only, as shown in
Fig 8. According to Schwarzchilds Eqn 51, the mass of such black hole is equal to the mass of UBH
plus a quarter of Planck mass mp, i.e. M1 = M0 + 1

4mp. Note that one quarter of Planck mass
corresponds to the quantum mass index z = 2 in Eqn 58. Therefore, for every m2 = 1

4mp mass
added to a given black hole the event horizon increases by one Planck length in diameter. Hence,
the quantized equation for the black holes mass Mb in terms of Planck mass is given as follows:

Mb =
1

4
(j2 + b)mp b = 0, 1, 2, ... (70)

Similarly, the quantized equation for the event horizon diameter Db of black holes is given in terms
of Planck length as follows:

Db = (j2 + b)lp b = 0, 1, 2, ... (71)

where the quantum index b = 0, in both equations, corresponds to the UBH. As discussed before, the
reference index j will be constrained once the reference mass m̄ is accurately determined. Knowing
the mass and size of the UBH, its mass density ρu is trivially obtained in terms of Planck density
ρp = c5/G2h as follows:

ρu =
3

2πj4
ρp (72)

Figure 8: Quantized mass and event horizon of black holes (j not to scale)

20 Quantized Hawking temperature

According to the Bekenstein-Hawking the black hole entropy Sb, is given by [6]:

S =
κ

4l2p
H (73)

where κ is the Boltzmann constant and H is the surface area of the event horizon of black holes,
given by H = πD2. Taking the quantized diameter Db = π(j2 + b)2 l2p from Eqn 71, the quantum of
entropy variation ∆Sb from Eqn 73 for a unit variation of the quantum index ∆b = 1 is then given
as follows:

∆Sb =
1

2
(Sb+1 − Sb−1) =

1

2
κπ(j2 + b) b = 0, 1, 2, ... (74)
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Similarly, the quantum of energy variation ∆E for a unit variation of the quantum index ∆b = 1 is
simply given by:

∆E =
1

4
mpc

2 (75)

From Eqn’s 75 and 74 we then have:

∆Sb =
∆E

Tb
=

1

2
κπ(j2 + b) b = 0, 1, 2, ... (76)

From above, the quantized equation of the black hole temperature Tb is then given by:

Tb =
1

2π(j2 + b)
Tp b = 0, 1, 2, ... (77)

where Tp = mpc
2/κ is Planck temperature. Under the quantum index b = 0, the UBH has therefore

the highest temperature T0 = Tp/2πj
2 among black holes. Finally, note that Hawking’s equation

for black hole temperature is given by [7]:

T =
h̄c3

8πGMκ
(78)

It can be trivially verified that by substituting for the black hole mass M in above with its quantized
form Mb = 1

4(j2 + b)mp we arrive at Eqn 77; indicating the latter is indeed the quantized form of
Hawking’s radiation. From both equations is evident that black hole temperature is inversely
proportional to its mass. From Eqn 77, the temperature drop ∆Tb of a black hole for a single
quantum increase in its mass is given by:

∆Tb = − 1

2π

Tp
(j2 + b+ 1)(j2 + b)

b = 0, 1, 2, ... (79)

21 Conclusion

By combining the theories of Special Relativity and Quantum Mechanics it was shown that the
inherent spacetime coordinate uncertainties of quantum particles constitute a time-like four-vector
with an invariant length interval A. It was found that determining the reference mass limit m̄ (a
minimum none-zero mass limit below which a particle is physically treated as massless) plays a key
role in determining the magnitude of the invariant length interval A. The reference mass limit was
best defined as a perfect square fraction of Planck mass. The invariant length interval, in turn, was
found to be a perfect square multiple of Planck length. Quantum equations for particles inherent
spatial uncertainty, momentum, coordinate time and energy were expressed in terms of Planck
length lp , Planck momentum mpc, Planck time τp and Planck energy mpc

2, respectively. Moreover,
it was found that the local-acceleration has a physical upper limit au, expressed as a perfect square
fraction of Planck acceleration

√
c7/Gh. The limit acceleration was then used to constrain the mass

of the smallest possible black hole in nature. Finally, the mass, diameter and temperature of black
holes were quantized in terms of Planck mass, Planck length and Planck temperature, respectively.
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