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Abstract 

The word space is used in many ways and most of these applications 

give this word a different meaning. This makes the notion of space very 

obscure. Especially philosophers, mathematicians, and physicists have 

attributed a huge number of interpretations of the noun “space”. This 

has led to a huge number of different forms of space. Humans live in an 

environment that is characterized by space and time. This paper focuses 

on the most elemental meanings that mathematicians and physicists 

attribute to the word “space”. Next, the immediate extensions of this 

elementary space are investigated. Since physicists investigate our 

physical reality, the paper also investigates how physical reality treats 

the notion of space. This leads to a revolutionary new mathematical 

concept that is called the Hilbert repository. It exposes great similarity 

with part of the Standard Model of particle physics that concerns 

elementary fermions. This model exposes what experimenters have 

discovered about these elementary object types. 
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1 Mathematics versus reality 

Mathematicians are humans and therefore they need names or symbols 

and extensive descriptions and recipes of the notions that they use. 

Without these linguistic extensions, for humans, mathematics would be 

unworkable. Physical reality does not require these additions. Reality 

does not use manuals or handbooks. Reality just applies the bare 

concepts. Still, it must obey the rules that are set by the structures and 

mechanisms. Physical reality does not intelligently obey rules. Probably, 

reality uses the trial-and-error approach. But that means that this 

approach must be efficient enough. The structures and mechanisms 

that reality applies must guide their usage automatically. Simple 

structures must automatically emerge into more complicated structures 

that offer restrictions that guide their usage. Mechanisms must limit the 

ways that they can be accessed. 

The names and descriptions that humans use for mathematical and 

physical subjects are sometimes confusing. This is due to the history of 

these linguistic tools. It is impossible to cure these unhappy historical 

facts. It is important to be aware of the existence of these confusing 

habits. 

In mathematics, spaces exist in many forms, and in combination with 

mechanisms they constitute dynamic systems. We will investigate these 

spaces and mechanisms to explain how these bare ingredients can 

successfully constitute dynamic systems.  

The elemental spaces must emerge into more complicated spaces and 

the capabilities of these extensions must become automatically 

accessible.  

The restrictions that go together with the extension of the model limit 

the structures and mechanisms that reality applies. This limits the part 

of mathematics that is suitable for comprehending the lower levels of 
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the structure and behavior of physical reality. This does not imply that 

the current state of humanly developed mathematics covers all aspects 

of these lower levels.  The lower levels of the structure and behavior of 

physical reality still contain incomprehensible mysteries. One of them is 

formed by the origin of the stochastic processes that control part of the 

dynamics of physical reality. 

2 Demarcation 

We will restrict our investigation to the simplest objects that can occupy 

space. These objects are point-like, or the objects are conglomerates of 

point-like objects. Space covered with a countable set of point-like 

objects behaves differently from space that is covered with an 

uncountable set of point-like objects. Uncountable sets form a sticky 

medium. It appears that these two different mediums can interact. The 

Hilbert repository forms a structure in which this interaction can be 

modeled. This document investigates what the Hilbert repository can 

explain. 
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3 Vector space 

 In human mathematics, space is not a well-defined concept. A vector 

space is considered as a quite elemental form of space. We start with a 

completely empty space. Completely empty space is a synonym for the 

ultimate nothingness. The next step involves the insertion of two point-

like objects in the completely empty space. The first added point is the 

base point of a vector. The second point is the pointer of the vector. The 

vector has a length and a direction. The direction defines a direction 

line. The direction line contains at least two separate points. The 

integrity of the vector is conserved when it is shifted in parallel as one 

unit to a different location. This turns empty space into a vector space. 

Vectors can reach any available location in the vector space. If a vector 

is shifted in parallel until its beginning point coincides with the 

beginning point of another vector, then the difference in direction of 

the two vectors becomes apparent. We shall see that a sticky medium is 

synonymous with space that is completely covered with point-like 

objects.  

3.1 Number systems and coordinate systems 

We apply the vector space to generate number systems. In the vector 

space, number systems define virtual locations. At the maiden state of 

the coordinate system, the coordinate markers turn the virtual locations 

of the generated numbers into actual locations of point-like objects. In 

this way, during their full life, the markers can help to navigate in the 

set of generated point-like objects. The coordinate markers tell the life 

story of the point-like objects that starts at the maiden state of the 

coordinate system. 

The markers use identifiers that are borrowed from a number system. 
The location of a marker point need not coincide with the virtual 
location of the corresponding number. However, in the maiden state of 
the coordinate system, borrowing the identification means that the 
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location of the coordinate marker is identical to the virtual location of 
the corresponding number.  

We apply Cartesian coordinates and, in some cases, spherical 
coordinates because especially in multidimensional situations the 
events in local and global coordinates are easier comprehended by 
humans than local and global events in functions that apply borderless 
parameter spaces, which stretch over multiple dimensions. In the 
maiden state of the coordinate system, the coordinate markers locate 
at the same locations as the corresponding numbers. The relation 
between the number system and the coordinate system corresponds to 
the relation between a parameter space and the function that applies 
the parameter space. 
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4 The real number system 

4.1 Counting and addition 

We start with generating a simple number system. One possibility is 

that the vector is shifted along its direction line such that its base point 

takes the location of the pointer location of the original vector. This 

action creates a new vector that consists of the base point of the first 

vector and the pointer location of the second vector. The length of the 

third vector is twice the length of the first vector. All contributing points 

find a position at the same direction line. The contributing points act as 

counts and the shift installs the addition procedure.  

Repeating the shift and addition procedures generates the set of the 
natural numbers. Even when we exhaust the natural numbers, then still 
the actual location of each natural number in the set will be surrounded 
by available space. We will call a set of objects countable when all 
members of the set can be labelled by a natural number. 

The procedure of addition can be reversed into subtraction until the 
base point of the first vector is passed. This is reason to identify this 
point as the condition in which space is back to being completely 
empty; For that reason, this point is called zero. If reverse addition is 
taken further, then this action introduces negative integer numbers. 
Together with zero and the natural numbers, this constitutes the set of 
integer numbers.  

During the maiden state of the coordinate system, corresponding 
coordinate markers will provide and identify the actual locations of the 
generated numbers. The number will keep its original virtual location. 
After the maiden state of the coordinate system, the virtual location of 
the number and the actual location of the coordinate marker will be 
decoupled but the coordinate marker will keep labeled by the identifier 
of the number. 
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4.2 Multiplication, division, and fractions 

The following step is the introduction of multiplication by combining 
multiple additions of the same integer number. Multiplication with 
integer numbers does not introduce new numbers, but the reverse 
operation that we will call division can introduce new numbers that we 
call fractions or ratios. In this way, the number system is extended to 
the set of rational numbers. All rational numbers except zero can be 
applied as a divisor. Scientists have shown that all rational numbers can 
be labeled with a natural number. This means that the set of rational 
numbers is still countable. This also indicates that all rational numbers 
are still surrounded by empty space.  

4.3 Superseding countability 

Up to so far, all rational numbers take a location on the same direction 
line. The square of a rational number is a multiplication of that number 
with itself. The result is a rational number. The reverse operation is 
called square root and this operation does not always result in a ratio. 
However, a converging series of rational numbers can approach the 
result arbitrarily close. Many numbers exist that are not rational 
numbers and can be approached arbitrarily close by converging series 
of rational numbers. We call these numbers, irrational numbers. The 
set of irrational numbers is not countable. If the set of the rational 
numbers is merged with the set of the irrational numbers, then the set 
of real numbers results. The set of all real numbers completely covers 
the same direction line. If the set covers all irrational numbers, then,  on 
the direction line, around the real numbers no space is left. This fact 
drastically changes the behavior of the covering set of point-like 
objects. 
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5 Spatial dimensions 

5.1 Different arithmetic 

The direction line that is covered by all real numbers leaves no space to 
add extra numbers. If we want to add all square roots of negative real 
numbers, then we must use one or three new direction lines that are 
independent of the direction line that is occupied by the real numbers. 
The independent direction lines cross at point zero. The arithmetic on 
these new direction lines differs from the arithmetic of the real number 
direction line. We call the new direction lines spatial direction lines. 
Instead of “spatial” mathematicians often use the confusing adjective 
“imaginary”. The spatial arithmetic will automatically add a third 
independent direction line when a second spatial direction line is 
added.  The real number direction line together with one spatial 
direction line forms the set of the complex numbers. The real number 
direction line together with three spatial direction lines form the set of 
the quaternions. Multiplying spatial numbers with real numbers is 
straightforward. In handling the arithmetic of multidimensional number 
systems, it is wise to treat the combined number as a sum of a real 
number and a spatial number. 

On spatial direction lines, the square of the spatial numbers results in a 
negative real number. Spatial numbers can be natural, rational, and 
irrational. Also, in spatial dimensions, the join of all irrational numbers 
will supersede countability. The main difference between real numbers 
and spatial numbers lays in the value of the square of the numbers. In 
real numbers, the square is always a positive real number. In spatial 
numbers, the square is always a negative real number. The product of 
two arbitrary spatial numbers is the sum of a real scalar and a new 
spatial number that is perpendicular to both factors. The real scalar 
equals the inner product of the two spatial factors. The new spatial 
number equals the outer product of the two spatial factors. 
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5.2 Multidimensional arithmetic 

In mathematics, a field is a set on which addition, subtraction, 

multiplication, and division are defined and behave mostly as the 

corresponding operations on rational and real numbers do. Division 

rings differ from mathematical fields in that their multiplication is not 

required to be commutative. 

The real number arithmetic and the spatial number arithmetic can be 
mixed. Spatial numbers that reside on different spatial direction lines 
can be added and multiplied. This will make the spatial number space of 
the quaternions isotropic. The coordinate markers will capture the 
geometric symmetry and the location of the geometric center. Real 
numbers can be added and multiplied by spatial numbers. 

The mix of real numbers and spatial numbers constitutes an associative 
division ring. 

For multidimensional numbers, we will use boldface to indicate the 

spatial part and we will indicate the real part with suffix ᵣ. 

Thus, the number a will be represented by the sum a=aᵣ+a. This means 

that the product c=a b of two numbers a and b will split into several 

terms 

c =cᵣ+c = a b = (aᵣ+a) (bᵣ+b) = aᵣ bᵣ +aᵣ b + a bᵣ + a b 

The product d of two spatial numbers a and b results in a real 

scalar part dᵣ and a new spatial part d 

d =dᵣ+d = a b  

dᵣ = −〈a,b〉 is the inner product of a and b 

d = a × b is the outer product of a and b 

The spatial vector d is independent of a and independent of b. 

This means that 〈a,d〉=0, and 〈b,d〉=0   
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For the inner product and the norm, ∥a∥ holds 〈a,a〉 = ∥a∥² 

〈a,b〉=∥a∥ ∥b∥ cos(α) 

Mathematics often treats spatial numbers as vectors. Mathematics 

defines the inner product of vectors that represent spatial numbers 

as the above geometric scalar vector product. It is also called the dot 

product of two vectors. Hilbert spaces define a different kind of 

inner product.  It is important to distinguish between the inner 

product in spatial number systems and the inner product in Hilbert 

spaces.  

∥a × b∥ =∥a∥ ∥b∥ sin(α) 

Only three mutually independent spatial numbers can be involved in 

the outer product. 

These formulas still do not determine the sign of the outer product. 

Apart from that sign, the outer product is fixed. 

The product of multidimensional numbers will split into five terms. 

 c =cᵣ + c = a b ≡ (aᵣ + a) (bᵣ + b) = aᵣ bᵣ − 〈a,b〉 + a bᵣ + aᵣ b ± a×b 

Before these formulas are used, the sign of the outer product must 

be selected. 

5.3 Symmetry 

The number of mutually independent direction lines in a number 
system is called the dimension of the number system. The sequencing 
on a direction line can be done in one direction or the reverse direction. 
The direction of the first direction line is arbitrary. Also, the location of 
point zero is arbitrary. The coordinate system captures these choices at 
its maiden state.  

Thus, the same number system exists in many versions that are 
distinguished by the selected coordinate system. The coordinate system 
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reflects the geometric symmetry and the geometric center of the 
number system. 

The coordinates remove the selection freedom. In the maiden state, the 
coordinate marker couples the identifier of the corresponding number 
to the point-like object that is identical to the pointer of the 
corresponding vector. The coordinate markers take care of the 
sequencing along direction lines. Sequencing in the real number 
dimensions is independent of sequencing in spatial number dimensions. 

The real numbers, the complex numbers, and the quaternions appear to 
be the only three division rings that offer an associative multiplication. 
Hilbert spaces can only cope with associative division rings.  Our 
purpose is to apply Hilbert spaces. So, we do not look for other number 
systems. Hilbert spaces apply a private version of a chosen number 
system. The private coordinate system selects which version is 
tolerated. The selected version of the number system is maintained by a 
dedicated operator that we will call the reference operator. In its 
eigenspace, this operator provides a private parameter space, which 
settles the private geometric symmetry and the geometric center of the 
Hilbert space. The private parameter space turns the Hilbert space into 
a corresponding function space. The eigenvectors of the reference 
operator form an orthogonal base for the Hilbert space. This allows a 
special trick that abstracts a complex-number-based Hilbert space from 
a quaternionic Hilbert space.  

A complex-number-based Hilbert space can be abstracted from a 
quaternionic Hilbert space by taking all eigenvectors of its reference 
operator that belong to the same spatial direction together with the 
real number eigenvectors and use these vectors as an orthogonal base 
of the new complex-number-based Hilbert space. This shows that 
complex-number-based Hilbert spaces can be considered subspaces of 
quaternionic Hilbert spaces. 
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The reverse trick is only possible if in the quaternionic Hilbert space, 
locally, the conditions are sufficiently isotropic. The stickiness of the 
space coverage can disturb the local isotropy. This only occurs in non-
separable Hilbert spaces. The exact match is established during the 
maiden state of the coordinate system. Deformations are captured by 
natural operators. The natural operators represent fields. For moderate 
deviations, the coordinate markers can help to find a suitable map of 
the complex-number-based coordinate markers to the quaternionic 
coordinate markers. In quaternionic Hilbert space the originally 
complex-number-based coordinate lines become geodesics. 

 

5.4 Stickiness 

If space is covered with point-like objects that act as markers of a 
coordinate system, then the behavior of the combination is determined 
by the cardinal number of the set of point-like objects. If the set is 
countable, then the set of point-like objects acts as an ensemble of 
discrete objects. Every member of the set seems to be surrounded by 
empty space. However, if the set is no longer countable, then the 
behavior of the combination of space and point-like objects changes 
from an ensemble of discrete objects to a coherent sticky medium. It 
looks as if the combination occupies all available space. The 
combination becomes deformable and mathematically the medium acts 
as a differentiable continuum. This switch in behavior happens if 
number systems containing all integer numbers and all rational 
numbers are suddenly extended by adding all irrational numbers. It 
means that the coordinates besides concerning integer markers and 
rational markers also concern irrational markers. The coordinate system 
puts the numbers in the correct sequence. It means that some 
coordinate markers merge into the same point. All converging series of 
markers end in a limit that is also a coordinate marker.  
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5.5 Sticky behavior 

The set of the complex numbers covers two dimensions. For complex 
numbers, the outer product does not exist. Two extra independent lines 
can offer a location to other roots of negative numbers. Together the 
four direction lines constitute the number system of the quaternions. 
Both the complex numbers and the quaternions contain a one-
dimensional subspace that obeys the arithmetic of the real numbers. In 
the real number system, all squares of numbers deliver a positive scalar. 
In the spatial dimensions of the number system, all squares of numbers 
deliver a negative real number. 

If the real numbers are interpreted as timestamps, then stickiness can 
be interpreted as a dynamic behavior that covers all spatial dimensions.  
The stickiness of the medium leads to a particular dynamic behavior of 
the medium.   

A single deformation does not change the sequencing that the 
coordinate markers indicate. Each dynamic deformation takes response 
time for the reaction of the sticky medium. In multidimensional space 
coverage the stickiness results in a typical dynamic sticky behavior of 
the spatial dimensions, while the real dimension acts as the progression 
parameter. For example, in a complex-number-based coordinate 
system the sticky medium will react to a sudden point-like disturbance 
by removing the deformation as quickly as possible. The medium sends 
the disturbance as two shock fronts that move in opposite directions 
with fixed speed away from the location of the disturbing pulse. The 
shock fronts do not alter until they reach infinity. In a quaternionic 
coordinate system the sticky medium will react to a sudden point-like 
disturbance by removing the deformation as quickly as possible. The 
medium sends the disturbance as a spherical shock front that moves in 
all directions with fixed speed away from the location of the disturbing 
pulse. The amplitude of the spherical shock front diminishes with 
increasing distance from the location of the pulse. Finally, the spherical 
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shock front vanishes at infinity. The shock front shifts the coordinate 
markers and in this way the coordinate system gets expanded. 

5.6 Sticky coordinates  

With quaternionic coordinates, any sudden local deformation is quickly 
spread in all directions over the full medium until the disturbance 
vanishes at infinity. The spread occurs with a fixed finite speed. Finally, 
each sudden local deformation expands the medium.  

The deformations do not touch the number systems. Instead, in the 
maiden state, the coordinate system reflects the geometric symmetry 
and the geometric center of the number system. In the maiden state, 
the coordinate markers locate at the same locations as the 
corresponding numbers. After that instant, the coordinate markers will 
be used to follow the deformations and the vibrations of the medium. 
The relation between the number system and the coordinate system 
corresponds to the relation between a parameter space and the 
function that applies the parameter space. Like the parameter space the 
number system gets never deformed. Number systems do not cover 
space. Instead, the coordinate markers cover space. Coordinate markers 
constitute the navigation system of the space coverage. They also help 
navigating the sticky medium. 

At the scale of elementary particles, the deformations caused by these 
particles are recurrently regenerated. This is implemented by the 
ongoing hopping path of the particle. The hopping path recurrently 
regenerates a coherent hop landing location swarm that can be 
described by a stable location density distribution. If the hop landings 
cause a reaction of the sticky medium, then that reaction blurs the hop 
landing location distribution. The blur smooths the effect of the hop 
landing location swarm. Consequently, the deformation can be 
described by a smooth function, which is a blurred version of the 
location density distribution that describes the hop landing location 
swarm. 
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Humans often have problems comprehending what an infinite set is and 
are not familiar with uncountable sets. That is why the switch in 
behavior works counterintuitively.  

Functions can describe the deformations and vibrations of the sticky 
medium. Differential calculus describes the corresponding change of 
the coordinate markers in fine detail. Mathematicians can interpret the 
solutions of quaternionic differential equations. Second-order partial 
differential equations treat the interaction between sticky mediums and 
point-like actuators.  

5.7 Combining influences 

The sticky medium transfers information between events and observers 
of that event. Observers can perceive the event via interaction with the 
sticky medium. The transfer of the information occurs with finite speed. 
This fact affects the perceived information. If the speed of information 
transfer is fixed, then a hyperbolic transformation can mathematically 
describe the involved coordinate transformation. The observer will 
perceive in spacetime coordinates. Provided that nothing deforms the 
information transfer path, a hyperbolic Lorentz transform describes the 
conversion from Cartesian coordinates to spacetime coordinates. 
Coordinates can describe the dynamic deformations but do not 
represent coordinate transforms that account for the effects of 
information transfer through the sticky medium.  

Tensors can combine the coordinate transforms and the influence of 
deformations. The gravitation field describes the sticky medium. 
Tensors do not work correctly when multiple fields affect the observer. 
This occurs when both the gravitation field and electric fields affect the 
observer. First, the origin of gravitation and the origin of electric charge 
must be cleared. Another disadvantage of tensors is that the tool is so 
complicated that it obscures more than it elucidates. In many cases, the 
coordinate transformation can be ignored, and the application of 
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untransformed coordinates suffices to describe what the observer 
perceives. 
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6 Embedding in underlying vector space 

6.1 Map of vector space 

If two vector spaces have the same number of mutually independent 

vectors, then they have the same dimension. This enables constructing 

a map of the first vector space onto the second vector space. This map 

introduces relations between the original vectors and their maps. It is 

possible to map a vector space onto itself.  In that case, one of the 

relations is called the inner product, and the vector space is called inner 

product space. This naming is confusing because this inner product 

differs considerably from the inner product that exists between spatial 

parts in number systems. 

The resulting inner product space features the astonishing capability 

that its maps can archive the numbers that are delivered by the inner 

product of vectors that map onto the original vector direction. For that 

reason, the maps are also called operators. The archived numbers are 

called eigenvalues and the involved vectors are called eigenvectors. 

The operators manage the archived numbers in their eigenspaces. The 

inner product space is a direct extension of the underlying elemental 

vector space. 

This investigation disregards the interesting question of why vector 

spaces exist that can map onto other vector spaces or themselves and 

what activates these spaces to construct that map. This paper leaves 

that question open. The value of the inner product of vector pairs 

appears to be restricted to members of an associative division ring. A 

restriction to a real number would be easily comprehensible because 

that can be interpreted as scaling or inversion of the original vector.  

But apart from the real numbers also the complex numbers and the 

quaternions constitute associative division rings. These numbers are not 

so easily interpreted as scaling factors. 
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Defining the inner product space differently than via a map solves the 

dilemma. We start from an associative division ring and attach an 

independent vector that is taken from a vector space to each of the 

members of the selected version of the chosen number system. We 

prepared this by attaching a vector that points to a coordinate marker 

to each of the members of the chosen associative division ring. The 

applied vector space will become the underlying vector space of the 

inner product space. Next, the attached vectors are considered as an 

orthogonal base of the infinite-dimensional vector space that underlies 

the inner product space. This base is constituted by the eigenvectors of 

a special normal operator, whose eigenspace represents the natural 

parameter space of the inner product space. In other words, the final 

inner product space is generated from a selected set of coordinate 

systems without the explicit need to consider a map of the vector space 

onto itself. The inner product space is constituted by superpositions of 

the eigenvectors of the referenced special operator. The superposition 

coefficients are taken from the selected version of the chosen number 

system. The operator is considered as the owner of the eigenspace and 

defines the set of eigenvectors that belong to the eigenvalues. The 

superposition coefficients take over part of the role of the inner 

products of vector pairs. The value of the inner product of a vector and 

a base vector, which is an eigenvector of the special operator that owns 

the natural parameter space as its eigenspace is a superposition 

coefficient and becomes a coordinate marker value at the maiden state 

of the coordinate system. 

A century ago, a group of mathematicians discovered the existence of 

such special vector spaces. 

6.2 Hilbert space 

At the beginning of the last century David Hilbert and others discovered 

the special behavior of inner product spaces. John von Neumann, the 



19 
 

assistant of David Hilbert introduced the name Hilbert space for inner 

product spaces that are complete. The most important aspect of Hilbert 

spaces is their capability to archive sets of numbers inside the 

eigenspaces of operators. The eigenvalues of all operators of a Hilbert 

space must be a member of a selected version of an associative division 

ring [2]. Coordinate systems determine the selected version. This 

selected version supplies the Hilbert space with a private parameter 

space that determines the geometric symmetry and the geometric 

center of the Hilbert space. This private parameter space is the natural 

parameter space of the Hilbert space. It is the parameter space of 

functions for which the target values populate the eigenspaces of a 

class of natural operators. Other operators can exist in a Hilbert space 

that manages a different parameter space of a corresponding function 

in their eigenspace. These are not natural operators. The private 

parameter space is the eigenspace of a special operator that in this 

document will be called the reference operator. The eigenvectors of the 

reference operator archive the elements of the selected version of the 

chosen number system and embed them in this way into the underlying 

vector space. 

6.3 Symmetry and geometric center 

The definition of a Hilbert space hardly ever mentions that the Hilbert 

space selects a single version and not all available versions of the 

chosen number system. Other treatments of Hilbert spaces usually only 

mention that the Hilbert space selects between the real number 

system, the complex number system, and the quaternionic number 

system. With the version, the Hilbert space also selects the Cartesian 

and polar coordinate system, and via that choice, the Hilbert space 

selects its inherent geometric symmetry and its geometric center. The 

selected version defines what natural operators are and which 
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parameter space is the natural parameter space. This particular asset 

acts as the root geometry of the Hilbert space. 

6.4 Bra's and ket's 

Paul Dirac introduced a handy notation for the relationship that exists 

between an original vector and its map.  This relation applies to a bra 

and a ket [1]. This section treats the case that the inner product space 

applies quaternions to specify the values of its inner products. 

The ket f   is a covariant vector, and the bra g   is a contravariant 

vector. The inner product |f g  acts as a metric. It has a quaternionic 

value. Since the product of quaternions is not commutative, care must 

be taken with the format of the formulas.  

6.4.1 Ket vectors 

The addition of ket vectors is commutative and associative. 

 f g g f f g+ = + = +   (6.4.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (6.4.2) 

Together with quaternions, a set of ket vectors forms a ket vector 

space. Ket vectors are covariant vectors.  

A quaternion   can be used to construct a covariant linear combination 

with the ket vector f   

 f f =   (6.4.3) 

6.4.2 Bra vectors 

For bra vectors hold 

 f g g f f g+ = + = +   (6.4.4) 
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 ( ) ( )f g h f g h f g h+ + = + + = + +   (6.4.5) 

Bra vectors are contravariant vectors. 

 *f f =   (6.4.6) 

Quaternions can constitute linear combinations with bra vectors. 

A set of bra vectors form the vector space that is adjunct to the vector 

space of ket vectors that are the origins of these maps. If the map 

images the adjunct space onto the original vector space, then the bra 

vectors may be mapped onto the same ket vector. 

6.4.3 Inner products 

For the inner product holds 

 
*

| |f g g f=   (6.4.7) 

For quaternionic numbers   and    hold 

 ( )
**

*| | | |f g g f g f f g   = = =   (6.4.8) 

 | |f g f g =   (6.4.9) 

 
( )

( )

* *

*

| | |

|

f g f g f g

f g

   

 

+ = +

= +
  (6.4.10) 

This corresponds with (6.4.3) and (6.4.6) 

 *f f =   (6.4.11) 

 g g =   (6.4.12) 
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We made a choice. Another possibility would be f f =  and 

*g g =   

6.4.4 Operator construction 

f g  is a constructed operator.  

 ( )
†

g f f g=   (6.4.13) 

The superfix † indicates the adjoint version of the operator. 

 For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 

 |n m nmq q =   (6.4.14) 

The reverse bra-ket method enables the definition of new operators 

that are defined by quaternionic functions. 

  
1

(| )| i i

N

i

ig h g hF q F q q
=

=    (6.4.15) 

The symbol F is used both for the operator F and the quaternionic 

function ( )F q .  This enables the shorthand 

 ( )i i iF q F q q   (6.4.16) 

for operator F . It is evident that for the adjoint operator 

 ( )† *

i i iF q F q q   (6.4.17) 

For reference operatorRholds 

 
i i iq q q=R   (6.4.18) 
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If  iq  consists of all rational values of the version of the quaternionic 

number system that Hilbert spaceHapplies then the eigenspace of R

represents the natural parameter space of the separable Hilbert space

H. It is also the parameter space of the function ( )F q that defines the 

natural operator F in the formula (6.4.16). 

6.4.5 Operator types 

I  is used to indicate the identity operator. 

For normal operator N  holds † †NN NN= . 

The normed eigenvectors of a normal operator form an orthonormal 

base of the Hilbert space. 

For unitary operator U holds † †UU U U I= =  

For Hermitian operator H holds †H H=  

A normal operator N  has a Hermitian part 
†

2

N N+
 and an anti-

Hermitian part 
†

2

N N−
 

For anti-Hermitian operator A  holds †A A= −  

6.5 Separable space 

In mathematics a topological space is called separable if it 

contains a countable dense subset; that is, there exists 

a sequence  
0i

i
i

f
=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one element 

of the sequence. 

Its values on this countable dense subset determine every continuous 

function on the separable inner product space.  
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The Hilbert space ℌ is separable. That means that a countable row of 

elements  nf exists that spans the whole space. In the quaternionic 

Hilbert space, the quaternions are chosen as the private associative 

division ring. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an 

orthonormal base of Hilbert space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that span the 

full Hilbert space ℌ. 

Any ket vector f  in ℌ can be written as a linear combination of 

elements of  k . 

 |
k

f k k f=    (6.5.1) 

A bra base  b  of ℌ† is a minimal set of bra vectors b  that span the 

full Hilbert space ℌ†. 

Any bra vector f  in  ℌ† can be written as a linear combination of 

elements of  b . 

 |
b

f f b b=    (6.5.2) 

Often, a base selects vectors such that their norm equals 1. Such a base 

is called an orthonormal base. The normed eigenvectors of a normal 

operator form an orthonormal base. 
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Separable Hilbert spaces do not support closed sets of irrational 

numbers as eigenvalues of an operator. The eigenspaces of their 

operators are countable. 

For any subspace S let S⊥ be the orthogonal complement of S . Call the 

subspace "closed" if S S⊥⊥ =  

Call this whole vector space, and the Hermitian form (6.4.7), 

"orthomodular" if for every closed subspace S  we have that S S⊥+ is 

the entire space. (The term "orthomodular" derives from the study of 

quantum logic. In quantum logic, the distributive law is taken to fail due 

to the uncertainty principle, and it is replaced with the "modular law," 

or in the case of infinite-dimensional Hilbert spaces, the "orthomodular 

law. The set of closed subspaces of an infinite-dimensional separable 

Hilbert space form an orthomodular lattice. 

6.6 Non-separable Hilbert space 

Every infinite-dimensional separable Hilbert space owns a unique non-

separable companion Hilbert space that embeds its separable partner. 

The non-separable Hilbert space allows operators that maintain 

eigenspaces that in every dimension and every spatial direction contain 

closed sets of rational and irrational eigenvalues. These eigenspaces 

behave as dynamic sticky continuums. 

Gelfand triple and Rigged Hilbert space are other names for the 

general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with continuum 

eigenspaces, the reverse bra-ket method turns from a summation into 

an integration. 

 ( ) | |g h g h dVq dF q F q      (6.6.1) 
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Here we omitted the enumerating subscripts that were used in the 

countable base of the separable Hilbert space. 

The shorthand for the operator F is now  

 ( )F q F q q   (6.6.2) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (6.6.3) 

The reference operator that provides the continuum natural 

parameter space as its eigenspace follows from 

  | qg h g h dVdq q      (6.6.4) 

The corresponding shorthand is  

 q q q   (6.6.5) 

The reference operator is a special kind of defined operator. Via the 

quaternionic functions that specify defined operators, the claim 

becomes clear that every infinite-dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be 

considered to embed its separable companion. 

The reverse bracket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

6.7 Quaternionic function space 

Each quaternionic separable Hilbert space owns a reference operator 

that manages an eigenspace that is formed by the version of the 

quaternionic number system that this Hilbert space applies to specify 

the values of the inner product of its vector pairs. This eigenspace is the 

natural parameter space of this Hilbert space. 
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The eigenvectors of the reference operator constitute an orthonormal 

base of the Hilbert space. The reference operator is a natural operator. 

A category of normal operators can be defined that share the 

eigenvectors of the reference operator and use the target values that 

belong to the original eigenvalues as the new eigenvalues of the defined 

operator. These operators are natural operators. According to this 

reasoning is every quaternionic separable Hilbert space a quaternionic 

function space. In that function space, the eigenvectors of the reference 

operator represent Dirac delta distributions. 

6.8 Converting quaternionic Hilbert space to complex-number-based Hilbert space  

In its eigenspace, the reference operator provides a private parameter 
space, which settles the private geometric symmetry and the geometric 
center of the Hilbert space. The private parameter space turns the 
Hilbert space into a corresponding function space. The eigenvectors of 
the reference operator form an orthogonal base for the Hilbert space. 
This allows a special trick that abstracts a complex-number-based 
Hilbert space from a quaternionic Hilbert space. A complex-number-
based Hilbert space can be abstracted from a quaternionic Hilbert space 
by taking all eigenvectors of its reference operator that belong to the 
same spatial direction together with the real number eigenvectors and 
use these as an orthogonal base of the new complex-number-based 
Hilbert space. This shows that complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

6.8.1 Position space and change space 

If the members of the real axis are interpreted as instants of time, then 

the spatial parts of the quaternions form spatial positions in a dynamic 

position space. The dynamic position space corresponds to the 

eigenspace of the natural reference operator. Thus, another name of 

the natural reference operator is the dynamic position operator.  
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Another orthonormal base of the Hilbert space forms another function 

space. An orthonormal base exists in which each member can be 

written as a linear combination of all base vectors of the position space 

such that all superposition coefficients have the same norm. We call the 

resulting space a change space. The eigenvectors of the change 

operator correspond to the parameter space of the change space. This 

is not a natural parameter space, and the change operator is not a 

natural operator. Any dynamic function that is defined in the position 

space corresponds with a function in the change space. That function is 

the Fourier transform of the original function that is defined in the 

dynamic position space. The existence of the Fourier transform leads to 

the uncertainty principle for spatial kinematic data. 

Integrating in position space in a selected spatial direction results in the 

full compression of that dimension in change space. 

6.8.2 Fourier transform 

Fourier transforms are easier described in a complex-number-based 

Hilbert space. The complex-number-based Hilbert space results from 

selecting all base vectors that belong to the same spatial direction in the 

dynamic position space of the quaternionic Hilbert space and construct 

a new complex-number-based Hilbert space from the selected 

orthonormal base. 

The Fourier transform in this complex-number-based Hilbert space is 

given by the relation between ( )f x  and ( )nf   in the sum 

 ( ) ( ) 2

1( ) ni x

n n n

n

f x f e
   



+

=−

= −   (6.8.1) 

In the limit where ( )1 0n n  + = − → the sum becomes an integral 

 ( ) 2( ) i xf x f e d  


−
=    (6.8.2) 
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The reverse Fourier transform runs as 

 ( ) 2( ) i xf f x e dx 


−

−
=    (6.8.3) 

In these formulas, the symbol i  represents a normalized spatial number 

part of a complex number. i  corresponds to the spatial direction that 

was selected for constructing the complex-number-based Hilbert space. 

The function 2 ipxe  is an eigenfunction of the operator i
x




 which is 

recognizable as part of the change operator (7.2.3). 

 2 22ipx ipxi e pe
x

 


=


  (6.8.4) 

The eigenvalue p represents the eigenfunction and the eigenvector p in 

the change space. In the same sense, the function 2 ipxe −  is an 

eigenfunction of the position operator i
p


−


and corresponds with the 

eigenvalue x  of that operator. 

 2 22ipx ipxi e xe
p

 − −
− =


  (6.8.5) 

The eigenvalue x represents the eigenfunction and the eigenvector x in 

the position space. 

The Fourier transform of a Dirac delta function is 

 ( ) 2( ) 1i xx e dx   


−

−
= =   (6.8.6) 

The inverse transform tells 

  2( ) 1 i xx e d  


−
=    (6.8.7) 
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 ( )1
( )

2

ip x a
x a e dp



 −

−
− =    (6.8.8) 

 2 2( )ipa ipxe x a e dx 


−
= −   (6.8.9) 

The operator xP i
x


=


 is often called the momentum operator for the 

spatial direction i  of the coordinate x . P differs from the classical 

momentum that is defined as the product of velocity v and mass m . 

6.8.3 Uncertainty principle 

The uncertainty principle states  

 ( )
2 2

2 2

0 0 2

1
( ) ( ) ( ) ( )

16
x x f x dx f d   



 

− −

 
− −  

 
   (6.8.10) 

For a Gaussian distribution, the equality sign holds. The Fourier 

transform of a Gaussian distribution is again a Gaussian distribution that 

has a different standard deviation. 

If ( )f x  spreads, then ( )f   shrinks and vice versa. 

In this way, the characteristic function of a stochastic process can 

control the spread of the location density distribution of the produced 

location swarm. 
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7 Field equations 

Field equations are quaternionic functions or quaternionic differential 

and integral equations that describe the behavior of the continuum part 

of quaternionic fields. In the context of this document, these 

quaternionic fields are eigenspaces of natural operators that reside in 

non-separable quaternionic Hilbert spaces. These eigenspaces can 

contain separable subspaces. The stickiness of the field goes together 

with differentiability. 

7.1 Quaternions 

We will use a vector cap to indicate the spatial part and we will indicate 

the scalar part with suffix ᵣ. This differs from the earlier notation that 

uses boldface for the spatial part of the quaternion. 

Thus, the number a will be represented by the sum 
ra a a= + . This 

means that the product c ab=  of two numbers a  and b will split into several 

terms 

 ( )( )r r r r r r rc c c ab a a b b a b a b ab ab= + = = + + = + + +   (7.1.1) 

The product d of two spatial numbers a and b results in a real scalar part 

and a new spatial part 

 rd d d ab= + =   (7.1.2) 

,rd a b= −  is the inner product of a and b  

d a b=  is the outer product of a and b  

The spatial vector d is independent of a and independent of b . This means 

that , 0a d = and , 0b d =  

For the inner product and the norm a holds 
2

,a a a=  
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Only three mutually independent spatial number parts can be involved 

in the outer product. 

These formulas still do not determine the sign of the outer product. 

Apart from that sign, the outer product is fixed. 

Quaternionic multiplication obeys the equation  

 
( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (7.1.3) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. The version must be selected before it can be used in 

calculations. 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (7.1.4) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase  of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 

space, the real scalar parts of quaternions are often interpreted as 

instances of (proper) time, and the spatial parts are often interpreted as 

spatial locations. The real scalar parts of quaternionic functions 

represent dynamic scalar fields. The spatial parts of quaternionic 

functions represent dynamic vector fields. 
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7.2 Quaternionic differential calculus 

The differential change can be expressed in terms of a linear 

combination of partial differentials. Now the total differential 

change df of field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (7.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Thus, 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (7.2.2) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a vector part. 

The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (7.2.3) 
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The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia [5].  The partial derivatives in the change operator 

only use parameters that are taken from the natural parameter space. 

 
( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (7.2.4) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have a separate physical 

meaning. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  =  −    (7.2.5) 

 
r r   =  +      (7.2.6) 

f is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

 ( ) 2,     =  =    (7.2.7) 

 ( ), 0   =   (7.2.8) 

 ( ) 0r   =   (7.2.9) 

https://en.wikipedia.org/wiki/Del
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 ( ) ( ) ( ), ,      =   −     (7.2.10) 

Sometimes parts of the change get new symbols 

 
r rE  = − −   (7.2.11) 

 B =    (7.2.12) 

The formula (7.2.4) does not leave room for gauges. In Maxwell 

equations, the equation (7.2.5) is a gauge. 

 ( ), 0B =   (7.2.13) 

 
r r rE B  = −  − = −   (7.2.14) 

 ( ) ( ) ( ), , ,r rE   = −  −     (7.2.15) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r =  −   (7.2.16) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (7.2.17) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (7.2.4) and (7.2.17).  

 † * † *

r r r =  =  − =  +  =  +    (7.2.18) 

In the Hilbert space, the quaternionic nabla is a normal operator. 
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 † † * * ,r r  =  =   =  =   +     (7.2.19) 

Are normal operators who are also Hermitian. 

The separate operators
r r   and ,   are also Hermitian operators.  

,  is known as the Laplace operator.  

The two operators can also be combined as ,r r=   −    . This is 

the d’Alembert operator.  

The solutions of , 0r r  +   =  and , 0r r  −   =  differ. These 

two equations offer different solutions and for that reason, they deliver 

different dynamic behavior of the field. The equations control the 

behavior of the embedding field that physicists call their universe. This 

dynamic field exists everywhere in the reach of the parameter space of 

the function. Both equations also control the behavior of the symmetry-

related fields. The homogeneous d’Alembert equation is known as the 

wave equation and offers waves and wave packages as its solutions. 

Both equations offer shock fronts as solutions but only the operators in 

(7.2.19) deliver shock fronts that feature a spin or polarization vector. 

Integration over the time domain turns both equations in the Poisson 

equation and removes the spin or polarization vector. Shock fronts 

require a corresponding actuator and occur only in odd numbers of 

participating dimensions. Spherical shock fronts require an isotropic 

actuator. 

7.3 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

7.3.1 Field excitations 

The dynamic changes of the field are interpreted as field excitations or 

as field deformations or field expansions. 
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The field excitations that will be discussed here are solutions of 

mentioned second-order partial differential equations.  

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =  and 
* =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (7.3.1) 

All other terms vanish. ,   is known as the Laplace operator. 

Integration over the time domain results in the Poisson equation 

 , =    (7.3.2) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the Green’s function
1

4 'q q −
  of the affected field [33]. 

This solution is the spatial Dirac ( )q   pulse response of the field under 

strict isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (7.3.3) 

 

( )
( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (7.3.4) 
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This solution corresponds with an ongoing source or sink that exists in 

the field.  

Change can take place in one spatial dimension or combined in two or 

three spatial dimensions. 

Under isotropic conditions, the dynamic spherical pulse response of the 

field is a solution of a special form of the equation (7.3.1)  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (7.3.5) 

Here ( )   is a step function and ( )q  is a Dirac pulse response. For the 

spherical pulse response, the pulse must be isotropic. 

After the instant ' , the equation turns into a homogeneous equation.  

A remarkably simple solution is the shock front in one dimension along 

the line 'q q− . 

 ( )( )' 'f q q c n  = −  −   (7.3.6) 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. Here, the normalized 

vector n  can be interpreted as the polarization of the solution [41]. We 

intentionally placed the spatial vector n  close to speed c. 

In isotropic conditions, we better switch to spherical coordinates. Then 

the equation gets the form 

 

( )

2 2

2 2

2 2

2 2

2

0

r r r

r
r







   
+ + 

   

  
= + = 

  

  (7.3.7) 
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The second line describes the second-order change of r  in one 

dimension along the radius r. That solution is described above. A 

solution of this equation is 

 ( )r f r c n =    (7.3.8) 

 

The solution of (7.3.7) is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (7.3.9) 

The normalized vector n  can be interpreted as the spin of the solution.  

It might be related to the direction that is selected when the 

quaternion-based Hilbert space is temporary reduced to a subspace 

that contains a complex-number based Hilbert space. The spherical 

pulse response acts either as an expanding or as a contracting spherical 

shock front. Over time this pulse response integrates into the Green’s 

function. This means that the isotropic pulse injects the volume of the 

Green’s function into the field. Subsequently, the front spreads this 

volume over the field. The contracting shock front collects the volume 

of the Green’s function and sucks it out of the field. The ± sign in the 

equation (7.3.5) selects between injection and subtraction. 

Shock fronts only occur in one and three dimensions. A pulse response 

can also occur in two dimensions, but in that case, the pulse response is 

a complicated vibration that looks like the result of a throw of a stone in 

the middle of a pond. 
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Equations (7.3.1) and (7.3.2) show that the operators 
2

2




and ,   

are valid second-order partial differential operators. These operators 

combine in the quaternionic equivalent of the wave equation [6]. 

 
2

2
,  



 
= −   = 

 
   (7.3.10) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (7.3.11) 

 ( )( )' 'f q q c  = −  −   (7.3.12) 

These pulse responses do not contain the normed vector n . Apart from 

pulse responses, the wave equation offers waves as its solutions. 

If locally the field can be split into a time-dependent part ( )T  and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation [7]. 

 
2

2

2
,


  




=   = −


   (7.3.13) 

 ( , ) ( ) ( )q A q T  =    (7.3.14) 

 
2

2

2

1 1
,

T
A

T A





=   = −


   (7.3.15) 

 2, 0A A  + =    (7.3.16) 

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Helmholtz_equation


41 
 

 
2

2

2
0

T
T




+ =


   (7.3.17) 

 acts as quantum coupling between(7.3.16) and (7.3.17). 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode. The switch of the 

oscillation mode means that temporarily the oscillation is stopped and 

instead an object is emitted or absorbed that compensates for the 

difference in potential energy. The location-dependent part of the field 

( )A q  describes the possible oscillation modes of the field and depends 

on boundary conditions.  The oscillations have a binding effect. They 

keep moving objects within a bounded region.  

For three-dimensional isotropic spherical conditions, the solutions have 

the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (7.3.18) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics [13][14]. These solutions play a role in the 

spectra of atomic modules. 

Planar and spherical waves are the simpler wave solutions 
of the equation (7.3.13) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (7.3.19) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (7.3.20) 

A more general solution is a superposition of these basic types. 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(7.3.5) and (7.3.10). The equation (7.3.5) has spherical shock-front 

solutions with a spin vector that behaves like the spin of elementary 

particles. Obviously, the field only reacts dynamically when it gets 

triggered by corresponding actuators. Pulses may cause shock fronts 

that after the trigger keep traveling. Oscillations of type (7.3.19) and 

(7.3.20) must be triggered by periodic actuators.  

The inhomogeneous pulse activated equations are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (7.3.21) 

Without the interaction with actuators, all vibrations and deformations 

of the field vanish until the affected field locally resembles a flat field. 

Only an ongoing stream of actuators can generate a more persistently 

deformed field. This is provided by an ongoing embedding of the 

actuators into the eigenspaces of operators that archive the dynamic 

fields. 

7.4 Isotropic conditions 

The two shock-front solutions show an interesting property of the 
Laplace operator. In isotropic conditions, the Poisson equation can be 
rewritten as 

 ( )
2 2

2 2

2 1
, r

r r r r r
   

   
=   = + = 

   
   (7.4.1) 

 

The product ( )r = is a solution of a one-dimensional equation in 

which r plays the variable.  
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The same thing holds for all differential equations that contain the 

Laplace operator ,    

So, spherical solutions of the second-order differential equations / r

can be obtained from the solutions ξ of one-dimensional second-order 
differential equations by dividing   with the distance r  to the center. 

It looks as if in isotropic conditions the quaternionic differential calculus 
can be scaled down to complex-number-based differential calculus. This 
already works at local scales. If on larger scales the isotropic condition is 
violated, then the coordinates of the complex-number-based 
abstraction must be adapted to the possibly deformed Cartesian 
coordinates of the quaternionic platform. This makes sense in the 
presence of moderate deformations of the quaternionic field. After 
adaptation, the map of each complex-number-based coordinate line 
becomes a geodesic. 

These tricks are possible because complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

If the dimension of the quaternionic Hilbert space is reduced to the 
dimension of a subspace that contains a complex-number-based Hilbert 
space, then it might become important whether the selected direction 
involves a polar angle or an azimuth angle. In mathematics, the range of 
the polar angle is twice the range of the azimuth angle. In physics the 
two ranges are swept. 

7.5 Conversion to antiparticle 

The switch from quaternionic Hilbert space to complex-number-based 

Hilbert space will have repercussions for the selection operator that 

generates the footprint of the Hilbert space. Instead of a three-

dimensional spatial footprint, the selection mechanism will produce a 

one-dimensional spatial footprint. The three-dimensional hopping path 

transfers to a one-dimensional string of separate landing locations. The 
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spherical pulse responses that act as spherical shock fronts become 

one-dimensional pulse responses that act as shock fronts. If they are 

evenly distributed in time, then they become evenly distributed in 

space. This means that the complex-number-based footprint will 

represent what we know as a photon. Photons obey the Planck-Einstein 

relation. E=h v. 

Switching back to the quaternion-based Hilbert space offers the 

opportunity to switch to the situation in which the symmetry of the 

floating Hilbert space is converted to the antisymmetric version of the 

number system. Emission or absorption of the photon takes the 

duration of a full generation cycle of the hop landing location swarm. 

Observers can only perceive pair production or pair annihilation events. 

This explanation suggests that when photon emission or photon 

absorption is involved, always the involved stochastic mechanism 

switches during a fixed cycling period from quaternionic mode to 

complex-number-based mode. The cycling period conforms with the 

photon emission duration. 

7.6 Enclosure balance equations 

Enclosure balance equations are quaternionic integral equations that 

describe the balance between the inside, the border, and the outside of 

an enclosure. 

These integral balance equations base on replacing the del operator   

with a normed vector n . The vector n  is oriented outward and 

perpendicular to a local part of the closed boundary of the 

enclosed region. 

 n       (7.6.1) 

This approach turns part of the differential continuity equation into a 

corresponding integral balance equation. 
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 dV n dS  =      (7.6.2) 

n dS    plays the role of a differential surface. n  is perpendicular to that 

surface. 

This result separates into three parts 

 
,

,

r

r

n

n n n

    

  

 = −  +    

= − +  
  (7.6.3) 

The first part concerns the gradient of the scalar part of the field 

 
r rn       (7.6.4) 

 
r rdV n dS  =      (7.6.5) 

The divergence is treated in an integral balance equation that is known 

as the Gauss theorem. It is also known as the divergence theorem [15]. 

 , ,n     (7.6.6) 

 , ,dV n dS  =    (7.6.7) 

The curl is treated in a corresponding integrated balance equation 

 n      (7.6.8) 

 dV n dS  =     (7.6.9) 

Equation (7.6.7) and equation (7.6.9) can be combined in the extended 

theorem 

 dV n dS  =       (7.6.10) 
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The method also applies to other partial differential equations. For 

example 

 
( ) ( ), ,

, ,n n n n

   

 

  =   −     

= −
  (7.6.11) 

 ( )     , ,
V S S

dV dS dS    =   −      (7.6.12) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (7.6.13) 

This is known as the Stokes theorem[16] 

The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (7.6.14) 

7.7 Derivation of physical laws 

The quaternionic equivalents of Ampère's law are [19] 

 
r rJ B E J n B E  =     =    (7.7.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +      (7.7.2) 

The quaternionic equivalents of Faraday's law are [20]: 

 ( ) ( )r r r rB E B n E  =   = −   =   = −  (7.7.3) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (7.7.4) 

 ( ) rJ B E v  =   − =   −  =   (7.7.5) 
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 ( ), , ,r

S C S

n dS dl v n dS    = = +      (7.7.6) 

The equations (7.7.4) and (7.7.6) enable the derivation of the Lorentz 

force [21]. 

 
rE B = −   (7.7.7) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (7.7.8) 

The Leibniz integral equation states [22] 
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 (7.7.9) 

With X B=   and , 0B =   follows 

 ( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d

d

d
B n dS B n dS v B dl

d

E dl v B dl

  

 



   


  


=

= − 

= − − 

  

 

 

 (7.7.10) 

The electromotive force (EMF)    equals [23] 

 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force


48 
 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (7.7.11) 

 F qE qv B= +    (7.7.12) 
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8 Systems of Hilbert spaces 

Only a subtle difference exists between an elemental vector space and 

the Hilbert space that provides an inner product for each pair of its 

vectors. The inner product is the most important difference. The fact 

that the Hilbert space is complete is another difference. Several 

properties of Hilbert spaces are the consequence of these differences. 

An important property is the private natural parameter space of the 

Hilbert space that provides its geometric symmetry and its geometric 

center. An important restriction is that Hilbert spaces can only cope 

with number systems that are associative division rings. This excludes 

octonions and biquaternions. Each Hilbert space selects a version of an 

associative division ring that is determined by the coordinate systems, 

which sequence the elements of the chosen number system. This takes 

the restrictions to a deeper level. The selected version determines the 

geometric symmetry and the geometric center of the Hilbert space. 

These restrictions still leave the possibility that in a system of Hilbert 

spaces all members share the same underlying elemental vector space. 

In this system, one of the members acts as the background platform. All 

other members float with their geometric center over the parameter 

space of the background platform. If the background platform features 

infinite dimensions, then its non-separable companion also becomes 

part of the background platform. The resulting system of Hilbert spaces 

will be called the Hilbert repository. The Hilbert repository distributes 

its storage capability over its participating members. The floating 

members act as read-only storage that is filled at the birth of the 

considered Hilbert space and not changed after that instant. 

8.1 Hilbert repository 

Sharing the same underlying vector space imposes new restrictions and 

enables new capabilities. The restrictions enforce that not all possible 

Hilbert spaces can be a member of the Hilbert repository. The 



50 
 

coordinate systems of the selected versions of the number systems 

must have their Cartesian coordinate axes in parallel. This limits the 

allowed symmetries to a small set.  

This restriction is not obvious and currently known mathematics does 

not yet deliver this hard requirement. The existence of this restriction is 

derived from the Standard Model of particle physics. The Standard 

Model reflects the knowledge of particle physicists that is derived from 

measurements. In the Standard Model, the set of elementary fermions 

show great similarity with the set of floating separate quaternionic 

Hilbert spaces that populate the Hilbert repository. Elementary fermion 

types appear to correspond with the differences between the 

symmetries of the allowed floating separable Hilbert spaces and the 

symmetry of the background platform. 

The differences between the symmetries of the floating platforms and 

the background platform generate sources and sinks that locate at the 

geometric centers of the floating platforms. The sources and sinks 

correspond to symmetry-related charges that may be zero or can have 

one of a restricted set of values. Non-zero symmetry-related charges 

generate corresponding symmetry-related fields. 
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9 Dynamics in the Hilbert repository 

9.1 Embedding in the background platform 

The differences in the symmetry between the platforms only become 

apparent when a floating platform is embedded into the background 

platform or more specific when eigenvalues of a dedicated selection 

operator are mapped to corresponding eigenvectors in the background 

platform. A special operator in the non-separable Hilbert space of the 

background platform manages in its eigenspace the dynamic field that 

embeds discrete eigenvalues that originate from the eigenspace of the 

selection operator that resides in the floating platform. The eigenspace 

of the selection operator is filled in advance by a stochastic preselection 

process. The selector of the stochastic preselection process hops 

around in the eigenspace of the reference operator such that after 

sequencing the timestamps, an ongoing hopping path results that 

recurrently regenerates a hop landing location swarm that can be 

described by a stable location density distribution. The Fourier 

transform of this location density distribution equals the characteristic 

function of the stochastic selection mechanism. The hop landing 

location swarm generates the footprint of the floating platform in the 

eigenspace of the operator that manages the embedding field in the 

background platform. The coverage of the embedding field lets the field 

act as a sticky medium. The sticky medium resists the embedding of 

objects that break the symmetry of the embedding field. It appears that 

only isotropic symmetry breaks can deform the embedding field. The 

sticky medium reacts to the deformation by moving the deformation in 

all directions away from the embedding location until it vanishes at 

infinity. Differential calculus shows that the sticky medium reacts with a 

spherical pulse response that behaves as a spherical shock front that 

diminishes its amplitude with increasing distance from the location of 

the pulse. The pulse responses can superpose and join into a more 
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persistent and more smoothed local deformation. This occurs when 

large amounts of nearby point-like actuators cooperate during a long 

enough time interval. 

The hop landing locations were created before the start of running time 

by a stochastic process that filled the eigenspaces of the selection 

operator. We will use the name footprint operator for the selection 

operator of the floating platforms, and we will use the name universe 

field for the dynamic field that embeds the footprints of the floating 

platforms. The eigenvalues of the footprint operator are archived in 

quaternionic storage bins that contain a timestamp and a three-

dimensional spatial number. After sequencing the timestamps, the 

eigenspace of the footprint operator contains an ongoing hopping path 

that recurrently regenerates a coherent hop landing location swarm 

that is described by a stable location density distribution. The ongoing 

embedding process maps the hopping path into the embedding field. 

Apart from this streaming mechanism, the symmetry related charges 

also represent sources or sinks that generate streams which embed 

symmetry related fields into the embedding field. The charges are not 

spread over the root geometry of the floating platform. Instead, they 

locate in the geometric center of the floating platform. Thus, the map of 

the footprint spreads around the image of the symmetry-related 

charge.  

Without these streaming processes, not many dynamics would occur in 

the embedding field. 

9.2 Footprint 

An ongoing embedding of a stream of symmetry-disturbing eigenvalues 

will cause a persistent deformation of the embedding field. The 

eigenspace of the footprint operator can archive a cord of quaternionic 

storage bins that contain the timestamps and the landing locations that 
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will be embedded. After sequencing the timestamps, the archive shows 

an ongoing hopping path that translates into an ongoing embedding 

process. This embedding process runs during the running episode of the 

Hilbert repository and acts as an imaging process in which the image 

quality is characterized by an Optical Transfer Function [25][26]. This 

function is the Fourier transfer of the Point Spread Function. The Point 

Spread Function can be interpreted as a hop landing location density 

distribution. Its Fourier transform is the Optical Transfer Function of the 

embedding of the footprint of the considered object. 

9.2.1 Footprint mechanism 

The mechanism that generates the content of the eigenspace of the 

footprint operator did its work in the creation episode of the Hilbert 

repository. The private natural parameter space of the Hilbert space 

already exists in this creation episode. The timestamps and the hopping 

locations of the hopping path were taken from this private parameter 

space. The footprint mechanism owns a characteristic function that 

ensures that the hopping path recurrently regenerates a hop landing 

location swarm that features a stable location density distribution 

which is the Fourier transform of the characteristic function of the 

footprint mechanism. The location density distribution equals the 

mentioned Point Spread Function, and the characteristic function 

equals the corresponding Optical Transfer Function [26]. 

The hopping path, the hop landing location swarm, the location density 

distribution, and the Point Spread Function reside in the position space 

of the Hilbert space. The location density distribution equals the Point 

Spread Function and describes the hop landing location swarm. 

The Optical Transfer Function equals the characteristic function of the 

footprint mechanism, and both reside in the change space. 
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Nothing is said about the distribution of the timestamps. In imaging 

processes, the distribution of discrete objects in the imaging beam can 

often be characterized as the result of a combination of a Poisson 

process and a binomial process, where the binomial process is 

implemented by a spatial point spread function. In that case, the 

Poisson process handles the distribution of the timestamps.  

9.2.2 Footprint characteristics 

The footprint generates a nearly constant stream of potential point-like 

actuators in the form of a swarm that features a constant location 

density distribution. The actuators that originate from the same floating 

separable Hilbert space have a constant symmetry. Some of these 

actuator symmetries can disturb the symmetry of the embedding field 

and therefore they can generate pulse responses that at least 

temporarily deform this field. A symmetry disturbance that generates a 

spherical pulse response must represent an isotropic difference 

between the two symmetries. A sufficiently constant and sufficiently 

dense and coherent stream of such actuators can generate a persistent 

deformation. 

9.3 Resisting change 

 

The Green’s function, the shock fronts, and the oscillations also 

demonstrate the stickiness of dynamic quaternionic fields. Discrete sets 

of quaternions do not show this stickiness. 

The stickiness of the field tends to flatten the field and it resists new 

deformations of the field. 

9.3.1 Potential 

In physics, potential energy is the energy held by an object because of 

its position relative to other objects.  

https://en.wikipedia.org/wiki/Energy


55 
 

The gravitational potential at a location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object to 

that location from a fixed reference location [29][30][31][32][34]. 

The spherical shock fronts integrate over time into the Green’s function 

of the field. Thus, the shock front injects the content of the Green’s 

function into the affected field. All spherical shock fronts spread the 

contents of the front over the full field.  

We consider the gravitational potential to be zero at infinity. Thus, if 

infinity is selected as a reference location, then the gravitational 

potential at a considered location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object 

from infinity to that location. Thus, the potential at a location 

represents the reverse action of the combined spherical shock fronts 

that act at that location. 

9.3.2 Center of deformation 

The deformation potential ( )V r  describes the effect of a local response 

to an isotropic point-like actuator and reflects the work that must be 

done by an agent to bring a unit amount of the injected stuff from 

infinity back to the considered location. 

 ( ) /pV r m G r=    (9.3.1) 

Here 
pm  represents the mass that corresponds to the full pulse 

response. G  takes care for adaptation to physical units. r is the distance 

to the location of the pulse.  

A stream of footprint actuators recurrently regenerates a coherent 

swarm of embedding locations in the dynamic universe field. That 

swarm generates a potential 

 ( ) /V r MG r=    (9.3.2) 
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Here M  represents the mass that corresponds to the considered 

swarm of pulse responses. r is the distance to the center of the 

deformation. This formula is valid at sufficiently large values of r  such 

that the whole swarm can be considered as a point-like object. 

In a coherent swarm of massive objects , 1,2,3,...ip i n= , each with static 

mass 
im  at locations 

ir , the center of mass R  follows from [28] 

 ( )
1

0
n

i i

i

m r R
=

− =  (9.3.3) 

Thus 

 
1

1 n

i i

i

R m r
M =

=   (9.3.4) 

Where 

 
1

n

i

i

M m
=

=   (9.3.5) 

In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M as a single 

massive object that locates at R . The separate masses 
im may differ 

because, at the instant of summation, the corresponding deformation 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as 

one unit. The problem with the treatise in this paragraph is that in 

physical reality, point-like objects that possess a static mass do not 

exist. Only pulse responses that temporarily deform the field exist. 

Except for black holes, these pulse responses constitute all massive 

objects that exist in the universe. 
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9.4 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (9.3.3) and (9.3.4). Instead, the 

gravitational potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting gravitational potential of a Gaussian 

density distribution would be given by [35] 

 
( )

( )
ERF r

g r GM
r

  (9.4.1) 

Where ( )ERF r  is the well-known error function. Here the gravitational 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated gravitational potential that was 

described above in the equation (9.3.2). As indicated above, the 

convolution only offers an approximation because this computation 

does not account for the influence of the density of the swarm and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in multiple 

generations. These generations appear to have their own mass. For 

example, elementary fermions exist in three generations. The two more 

massive generations usually get the name muon or tau generation. 
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This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the Green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the gravitational 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the gravitation potential   

 ( )
GM

r
r

   (9.4.2) 

Warning: This simplified form shares its shape with the Green’s 

function of the deformed field. This does not mean that the Green’s 

function owns a mass that equals 
1

GM
G

= . The functions only share the 

form of their tail. 

9.5 Rest mass 

The weakness in the definition of the gravitation potential is the 

definition of the unit of mass and the fact that shock fronts move with a 

fixed finite speed. Thus, the definition of the gravitation potential only 

works properly if the geometric center location of the swarm of injected 

spherical pulses is at rest in the affected embedding field. The 
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consequence is that the mass that follows from the definition of the 

gravitation potential is the rest mass of the considered swarm. We will 

call the mass that is corrected for the motion of the observer relative to 

the observed scene the inertial mass. 

9.6 Observer 

The inspected location is the location of a hypothetical test object that 

owns an amount of mass. It can represent an elementary particle or a 

conglomerate of such particles. This location is the target location in the 

embedding field. The embedding field is supposed to be deformed by 

the embedded objects.  

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 

The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform converts the Euclidean coordinates of the background 

parameter space into the spacetime coordinates that are perceived by 

the observer.   

9.6.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the quaternionic 

setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (9.6.1) 

In flat dynamic fields, swarms of triggers of spherical pulse responses 

move with lower speed v. 

For the geometric centers of these swarms still holds: 



60 
 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (9.6.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v, 

then 

 ( ) ( )' cosh sinhct ct x = −   (9.6.3) 

 ( ) ( )' cosh sinhx x ct = −   (9.6.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (9.6.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (9.6.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (9.6.7) 

This is a hyperbolic transformation that relates two coordinate systems, 

which is known as a Lorentz boost [8]. 

This transformation can concern two platforms P  and 'P  on which 

swarms reside and that move with uniform relative speed. 

However, it can also concern the storage location P  that contains a 

timestamp t and spatial location  , ,x y z and platform 'P  that has 

coordinate time t  and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two platforms that move 

with uniform relative speed. One of them may be a floating Hilbert 

space on which the observer resides. Or it may be a cluster of such 

platforms that cling together and move as one unit. The other may be 

the background platform on which the embedding process produces 

the image of the footprint. 

https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts
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The Lorentz transform converts a Euclidean coordinate system 

consisting of a location  , ,x y z and proper timestamps   into the 

perceived coordinate system that consists of the spacetime coordinates 

 ', ', ', 'x y z ct in which 't  plays the role of coordinate time. The uniform 

velocity v  causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

9.6.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric [9]. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (9.6.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (9.6.9) 

 

Here ds  is the spacetime interval and d is the proper time interval. dt  

is the coordinate time interval 

9.6.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric [10]. The proper time interval d obeys 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   

   
  (9.6.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  
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According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius [11]. 

 
2

2
s

GM
r

c
=  (9.6.11) 

 

The variable r equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

9.6.4 Event horizon 

The gravitational potential energy ( )U r   

 ( )
mMG

U r
r

=  (9.6.12) 

at the event horizon 
ehr r=  of a black hole is supposed to be equal to 

the mass-energy equivalent of an object that has unit mass 1m =  and is 

brought by an agent from infinity to that event horizon. Dark energy 

objects are energy packages in the form of one-dimensional shock 

fronts that are a candidate for this role. Photons are strings of 

equidistant samples of these energy packages. The energy equivalent of 

the unit mass objects is  

 2

eh

mMG
E mc

r
= =  (9.6.13) 

Or  

 
2eh

MG
r

c
=  (9.6.14) 
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At the event horizon, all energy of the dark energy object is consumed 

to compensate for the gravitational potential energy at that location. 

No field excitation and in particular no shock front can pass the event 

horizon. 

9.7 Inertial mass 

The Lorentz transform also gives the transform of the rest mass to the 

mass that is relevant when the embedding field moves relative to the 

floating platform of the observed object with uniform speedv . 

In that case, the inertial mass M relates to the test mass M0 as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (9.7.1) 

This indicates that the formula (9.3.2) for the gravitational potential at 

distance r must be changed to 

 0

2

2

( )

1

M G
V r

v
r

c

=

−

   (9.7.2) 

9.8 Inertia 

The relation between inertia and mass is complicated [36][37]. We 

apply an artificial field that resists its changing. The condition that for 

each type of massive object, the gravitational potential is a static 

function, and the condition that in free space, the massive object moves 

uniformly, establish that inertia rules the dynamics of the situation. 

These conditions define an artificial quaternionic field that resists 

change. The scalar part of the artificial field is represented by the 

gravitational potential, and the uniform speed of the massive object 

represents the imaginary (vector) part of the field. 
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The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate for each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (9.8.1) 

Thus 

 , 0r r r  =  −  =  (9.8.2) 

 0r r   =  +    =  (9.8.3) 

These formulas can be interpreted independently. For example, 

according to the equation (9.8.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 

change must together be equal to zero. For our purpose, the curl 

of the vector field   is expected to be zero. The resulting terms of the 

equation (9.8.3) are 

 0r r  +  =  (9.8.4) 

In the following text plays  the role of the vector field and r plays the 

role of the scalar gravitational potential of the considered object. For 

elementary modules, this special field concerns the effect of the hop 

landing location swarm that resides on the floating platform on its 

image in the embedding field. It reflects the activity of the stochastic 

process and the uniform movement in the free space of the floating 

platform over the background platform. It is characterized by a mass 

value and by the uniform velocity of the floating platform with respect 
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to the background platform. The real (scalar) part conforms to the 

deformation that the stochastic process causes. The imaginary (vector) 

part conforms to the speed of movement of the floating platform. The 

main characteristic of this field is that it tries to keep its overall change 

zero. The author calls   the conservation field. 

At a large distance r , we approximate this potential by using the 

formula 

 ( )r

GM
r

r
   (9.8.5) 

Here M is the inertial mass of the object that causes the deformation. 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 

as a normal situation. It is a combination of scalar potential 
GM

r
 and 

speed v . This speed of movement is the relative speed between the 

floating platform and the background platform. At rest this speed is 

uniform. 

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the changev of the vector field v  by compensating this with an 

equivalent change of the scalar part 
GM

r
 of the new field  . According 

to the equation (9.8.4), this equivalent change is the gradient of the real 

part of the field. 

 
3

GM GM r
a v

r r

 
= = − = 

 

 
 (9.8.6) 

This generated vector field acts on masses that appear in its realm. 
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Thus, if two uniformly moving masses m  and M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

gravitational force 

 ( )
( ) ( )0 1 2 0 0 1 2

1 2 0 3 3

1 2 1 2

Gm M r r Gm M r r
F r r m a

r r r r


− −
− = = =

− −
 (9.8.7) 

Here 0M M=  is the inertial mass of the object that causes the 

deformation. 
0m is the rest mass of the observer. 

The inertial mass M relates to its rest mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (9.8.8) 

This formula holds for all elementary particles except for quarks.  

The problem with quarks is that these particles do not provide an 

isotropic symmetry difference. They must first combine into hadrons to 

be able to generate an isotropic symmetry difference. This 

phenomenon is known as color confinement. 

9.9 Momentum 

In the formula (9.8.7) that relates mass to force the factor  that 

corrects for the relative speed can be attached to 0m  or to 0M  

 ( )
( )0 0 1 2

1 2 3

1 2

Gm M r r
F r r

r r


−
− =

−
 (9.9.1) 

The force relates to the temporal change of the momentum vector P of 

the observer 

  
dP

F P
dt

= =  (9.9.2) 



67 
 

The momentum vector P  is part of a quaternionic momentum P . The 

momentum depends on the relative speed of the moving object that 

causes the deformation which defines the mass. The speed is 

determined relative to the field that embeds the object and that gets 

deformed by the investigated object. For free elementary particles, the 

speed equals the floating speed of the platform on which the particle 

resides. 

 
rP P P= +  (9.9.3) 
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 (9.9.10) 
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 0P m v=  (9.9.12) 
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= + = + = +  (9.9.13)  

If 0v =  then 0P =  and 0rP P P m c= = =  
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Here Einstein’s famous mass-energy equivalence is involved. 

 2 2

0E m c mc= =  (9.9.14) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and 2M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitational potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the gravitational potential behaves like the 

Green’s function of the field. There, the formula r

GM

r
 = applies. 

Further, it bases on the intention of modules to keep the gravitational 

potential inside the mentioned sphere constant. At least that holds 

when this potential is averaged over the regeneration period. In that 

case, the overall change    in the conservation field  equals zero. Next, 

the definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 

represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 
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deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the gravitational potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the gravitational attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the Green’s function.  

9.9.1 Forces 

In the Hilbert repository, all symmetry-related charges are located at 

the geometric center of an elementary particle and all these particles 

own a footprint that for isotropic symmetry differences can deform the 

embedding field. In that case, the particle features mass and forces 

might be coupled to acceleration via  

 F ma=  (9.9.15) 

Or to momentum via F P=  (9.9.16) 
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10 Symmetry restrictions 

10.1 Using volume integrals to determine the symmetry-related charges 

In its simplest form in which no discontinuities occur in the integration 

domain  , the generalized Stokes theorem runs as 

 d  
  

= =     (10.1.1) 

We separate all point-like discontinuities from the domain  by 

encapsulating them in an extra boundary. Symmetry centers represent 

spherically shaped or cube-shaped closed parameter space 

regions x

nH  that float on a background parameter spaceR . The 

boundaries x

nH  separate the regions from the domain x

nH . The regions
x

nH are platforms for local discontinuities in basic fields. These fields are 

continuous in the domain H −  .  

 
1

N
x

n

n

H H
=

=   (10.1.2) 

The symmetry centers x

nS  are encapsulated in regions x

nH , and the 

encapsulating boundary x

nH is not part of the disconnected boundary, 

which encapsulates all continuous parts of the quaternionic manifold   

that exists in the quaternionic model. 

 
1 x

n

N

kH H H

d   
=−   

= = −       (10.1.3) 

In fact, it is sufficient that x

nH surrounds the current location of the 

elementary module. We will select a boundary, which has the shape of a 

small cube of which the sides run through a region of the parameter 

spaces where the manifolds are continuous. 
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If we take everywhere on the boundary the unit normal to point outward, 

then this reverses the direction of the normal on x

nH which negates the 

integral. Thus, in this formula, the contributions of 

boundaries  x

nH  are subtracted from the contributions of the 

boundary . This means that  also surrounds the regions  x

nH  

 This fact renders the integration sensitive to the ordering of the 

participating domains. 

Domain  corresponds to part of the background parameter spaceR . As 

mentioned before the symmetry centers x

nS  represent encapsulated 

regions  x

nH that float on the background parameter spaceR . The 

Cartesian axes of x

nS  are parallel to the Cartesian axes of background 

parameter spaceR . Only the orderings along these axes may differ. 

Further, the geometric center of the symmetry center x

nS is represented 

by a floating location on parameter spaceR . 

The symmetry center x

nS is characterized by a private symmetry flavor. 

That symmetry flavor relates to the Cartesian ordering of this parameter 

space. With the orientation of the coordinate axes fixed, eight 

independent Cartesian orderings are possible. 

The consequence of the differences in the symmetry flavor on the 

subtraction can best be comprehended when the encapsulation x

nH is 

performed by a cubic space form that is aligned along the Cartesian axes 

that act in the background parameter space. Now the six sides of the cube 

contribute differently to the effects of the encapsulation when the 

ordering of x

nH  differs from the Cartesian ordering of the reference 

parameter spaceR . Each discrepant axis ordering corresponds to one-

third of the surface of the cube. This effect is represented by 

the geometric symmetry-related charge, which includes the color 
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charge of the symmetry center. It is easily comprehensible related to the 

algorithm which below is introduced for the computation of the 

geometric symmetry-related charge. Also, the relation to the color charge 

will be clear. Thus, this effect couples the ordering of the local 

parameter spaces to the geometric symmetry-related charge of the 

encapsulated elementary module. The differences with the ordering of 

the surrounding parameter space determine the value of the geometric 

symmetry-related charge of the object that resides inside the 

encapsulation! 
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10.2 Symmetry flavor 

The Cartesian ordering of its private parameter space determines the 

symmetry flavor of the platform [17]. For that reason, this symmetry is 

compared with the reference symmetry, which is the symmetry of the 

background parameter space. Four arrows indicate the symmetry of the 

platform. The background is represented by: 

 

Now the geometric symmetry-related charge follows in two steps. 

 

 

1. Count the difference of the spatial part of the geometric 

symmetry of the platform with the spatial part of the geometric 

symmetry of the background parameter space. 

2. Switch the sign of the result for anti-particles. 

Symmetrieversion 

Ordering 

x   y   z    τ 

Sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

 ⓪ R N +0 neutrino 

 ① L R − 1 down quark 

 ② L G − 1 down quark 

 ③ R B +2 up quark 

 ④ L B −1 down quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N − 3 electron 

 ⑧ R N +3 positron 

 ⑨ L R − 2 anti-up quark 

 ⑩ L G − 2 anti-up quark 

 ⑪ R B +1 anti-down quark 

 ⑫ L B − 2 anti-up quark 

 ⑬ R G +1 anti-down quark 

 ⑭ R R +1 anti-down quark 

 ⑮ L N − 0 anti-neutrino 

 

 
 

  
 

  
  

   
 

  
  

   
  

   
   

    

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Probably, the neutrino and the antineutrino own an abnormal 

handedness.  

The suggested particle names that indicate the symmetry type are 

borrowed from the Standard Model. In the table, compared to the 

standard model, some differences exist with the selection of the anti-

predicate. All considered particles are elementary fermions. The 

freedom of choice in the spherical coordinate system might determine 

the spin [18]. In physics, the azimuth range is 2π radians, and the polar 

angle range is π radians. In mathematics the two ranges are swept. 

Symmetry disturbance means a difference between the platform 

symmetry and the symmetry of the background. Neutrinos do not 

disturb symmetry. Instead, they probably may cause conflicts with the 

handedness of the multiplication rule. 

In the Hilbert repository, only point-like charges occur that represent 

sources or sinks. These charges move with the geometrical center of the 

corresponding particle.  

10.3 Potential of the electric field 

The potential of an electromagnetic field is a quaternionic function.  

 ( ) ( ) ( )rr r r  = +    (10.3.1) 

The corresponding force is the Lorentz force. 

 
( )( ) r rF r Q v

Q E v B

   = − −  +  
 

 = +  

   (10.3.2) 

A stream of symmetry-related actuators that is represented by a source 

or sink and is characterized by a symmetry-related charge Q generates a 

scalar potential 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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0

( )
4

r

Q
r

r



=    (10.3.3) 

This means that its observation is affected by inertia in a way that is like 

the way that the observation of the gravitational potential is affected. 

This becomes noticeable in the electric force between two charges. 

10.3.1 Coulomb force 

The electric charge is coupled to the geometric center of a massive 

object. 

Another electric charge is coupled to another massive object. The 

charges repel or attract the charges that are located at the other 

geometric center. Thus, a relative speed of the two geometric centers is 

changed into an acceleration. 

With electromagnetic potentials, the force derives from the Lorentz 

force. If the magnetic potential   equals zero, then only part of the 

electric field results.  

 ( )1 1 2

3

0 1 24
r

Q r r
E

r r




−
= − =

−
 (10.3.4) 

Thus, if two uniformly moving charges 1Q  and 2Q  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

electrical force 

 ( )
( )1 2 1 2

1 2 2 3

1 2

Q Q r r
F r r Q E

r r

 −
− = =

−
 (10.3.5) 

The force repels for two sources or two sinks and attracts for the 

combination of a source and a sink. 

These formulas hold for all elementary particles including quarks.  
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11 Basic fields 

11.1 Coupling of basic fields 

Besides the fact that the geometric center of the elementary particles 

also forms the geometric center of the symmetry-related field of this 

particle the coupling of the symmetry of the particle to the Cartesian 

coordinate system of the particle couples the basic fields of the particle 

to the background field that acts as our universe. It tries to keep the 

axes of the Cartesian coordinate systems in parallel. This couples the 

curl of the particle’s geometric symmetry-related field to the curl of the 

embedding background field. A non-zero curl might even couple to the 

otherwise undetermined direction of the spin vector in the spherical 

shock fronts. This couples the direction of spin to a non-zero magnetic 

field. 
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12 Conglomerates 

The Hilbert repository suggests that apart from the quarks all 

elementary fermions are constituted by excitations of the dynamic field 

that represents our universe. These excitations are spherical pulse 

responses that act as spherical shock fronts that locally and temporarily 

deform this embedding field. The quarks can combine into hadrons and 

are then also capable of generating spherical shock fronts.  

Further, the spherical shock fronts appear to constitute all discrete 

massive objects that exist in the universe. The exception to this rule is 

formed by encapsulated regions that contain countable sets of objects 

and therefore do not form a compact continuum. We call these regions 

black holes because no field excitations exist in these regions and no 

field excitations can enter or leave these regions. Still, the region can 

and will deform its continuous surround. 

The above statement suggests that elementary fermions can constitute 

higher generations of fermions and can generate bosons. The notorious 

exception is formed by photons. Photons are constituted by chains of 

equidistant one-dimensional shock fronts.   

The reason for this suggestion is that the footprint of elementary 

fermions is generated by stochastic processes that own a characteristic 

function, which is controlled from and specified in change space. 

This opens the possibility to also define the conglomerates of 

elementary particles in change space. Each conglomerate is defined by a 

private stochastic process that owns a characteristic function, which is a 

dynamic superposition of the characteristic functions of the 

components of the conglomerate. The superposition coefficients act as 

displacement generators. In this way, these coefficients specify the 

internal positions of the components. These dynamic coefficients define 

internal oscillations. 
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In change space, the location in the configuration space has no 

significance. Thus, components of a composite can locate far from each 

other in configuration space. This is the reason that entanglement 

exists. Entanglement becomes noticeable when components obey 

exclusion principles. 

12.1 Modular system 

The definition of these conglomerates causes that apart from black 

holes and photons, the discrete objects that exist in our universe and 

embed in the dynamic universe field form an extensive modular system 

with the elementary fermions as the elementary modules and individual 

modular systems at the top of the hierarchies. 

12.2 Module types 

Module-types form type communities. These communities have a much 

longer lifespan than individual modules. In the competition between 

module communities, the community that takes the best care for its 

members and that also takes care of the module communities on which 

it relies have the best chance of survival. This fact contrasts Darwin’s 

statement about the survival of the fittest individual. 

12.3 Atoms 

Compound modules are composite modules for which the images of the 

geometric centers of the platforms of the components coincide in the 

background platform. The charges of the platforms of the elementary 

modules establish the binding of the corresponding platforms. 

Physicists and chemists call these compound modules atoms or atomic 

ions. 

In free compound modules, the geometric symmetry-related charges do 

not take part in the oscillations. The targets of the private stochastic 

processes of the elementary modules oscillate. This means that the 

hopping path of the elementary module folds around the oscillation 



79 
 

path and the hop landing location swarm gets smeared along the 

oscillation path. The oscillation path is a solution to the Helmholtz 

equation. Each fermion must use a different oscillation mode. A change 

of the oscillation mode goes together with the emission or absorption 

of a photon. As suggested earlier the emission or absorption of a 

photon involves a switch from the quaternionic Hilbert space to a 

subspace that is represented by a complex-number based Hilbert space. 

The duration of the switch lasts a full particle regeneration cycle. During 

that cycle the stochastic mechanism does not produce a swarm of hop 

landing locations that produce pulses which generate spherical shock 

fronts, but instead it produces a one-dimensional string of pulse 

responses that cause one-dimensional shock fronts.  The center of 

emission coincides with the geometrical center of the compound 

module. This ensures that the emitted photon does not lose its 

integrity. All photons will share the same emission duration, and that 

duration will coincide with the regeneration cycle of the hop landing 

location swarm. Absorption cannot be interpreted so easily. In fact, it 

can only be comprehended as a time-reversed emission act. Otherwise, 

the absorption would require an incredible aiming precision for the 

photon. The number of one-dimensional pulses in the string 

corresponds to the step in energy of the Helmholtz oscillation. 

The type of stochastic process that controls the binding of components 

appears to be responsible for the absorption and emission of photons 

and the change of oscillation modes. If photons arrive with too low 

energy, then the energy is spent on the kinetic energy of the common 

platform. If photons arrive with too high energy, then the energy is 

distributed over the available oscillation modes, and the rest is spent on 

the kinetic energy of the common platform, or it escapes into free 

space. The process must somehow archive the modes of the 

components. It can apply the private platform of the components for 
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that purpose. Most probably, the current value of the dynamic 

superposition coefficient is stored in the eigenspace of a special 

superposition operator. 

12.4 Molecules 

Molecules are conglomerates of compound modules that each keep 

their private geometrical center. However, electron oscillations are 

shared among the compound modules. Together with the geometric 

symmetry-related charges, this binds the compound modules into the 

molecule. 

  



81 
 

13 Two episodes 

The footprint operator is already present at the time of the creation of 

the Hilbert repository and determines the behavior of the elementary 

particle throughout its existence. This fact is a great mystery. The 

humanly derived math does not yet offer an explanation. However, the 

existence of the footprint operator makes it possible to divide the 

model of physical reality into a preparatory episode in which there is no 

flowing time and an ongoing episode in which a continuing step-by-step 

embedding of the hop landing locations mimics the activities of the 

stochastic processes. The embedding process uses the stored and 

ordered time stamps to realize the corresponding hop landings. The 

range of running time is equal to the range of the archived time stamps. 

At the beginning of the running time, the field that represents our 

universe is still virginal and corresponds to the background parameter 

space. After the first footprints are completed, the relevant elementary 

particles can start to form composite objects. 

13.1 In the beginning 

Before the embedding processes that mimic the activity of the 

stochastic processes started their action, the content of the universe 

was empty. It was represented by a flat field that in its spatial part, was 

equal to the parameter space of the background platform. At the 

beginning instant, a huge number of these mimicked stochastic 

processes started their triggering of the dynamic field that represents 

the universe. The triggers may cause spherical pulse responses that act 

as spherical shock fronts. These spherical shock fronts temporarily 

deform the universe field. In that case, they will also persistently 

expand the universe. Thus, from that moment on, the universe started 

expanding. This did not happen at a single point. Instead, it happened at 

a huge number of locations that were distributed all over the spatial 
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part of the parameter space of the quaternionic function that describes 

the dynamic universe field. 

Close to the beginning of time, all distances were equal to the distances 

in the flat parameter space. Soon, these islands were uplifted with 

volume that was emitted at nearby locations. This flooding created 

growing distances between used locations. After some time, all 

parameter space locations were reached by the generated shock fronts. 

From that moment on the universe started acting as an everywhere 

expanded continuum that contained deformations which in advance 

were remarkably small. Where these deformations grew, the distances 

grew faster than in the environment. A more uniform expansion 

appears the rule and local deformations form the exception. 

Deformations make the information path longer and give the idea that 

time ticks slower in the deformed and expanded regions. This 

corresponds with the gravitational redshift of photons. 

Composed modules only started to be generated after the presence of 

enough elementary modules. The generation of photons that reflected 

the signatures of atoms only started after the presence of these 

compound modules. However, the spurious one-dimensional shock 

fronts could be generated from the beginning. 

This picture differs considerably from the popular scene of the big bang 

that started at a single location [12]. 

The expansion is the fastest in areas where spherical pulse responses 

are generated. For that reason, it is not surprising that the measured 

Hubble constant differs from place to place.  
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13.2 RTOS 

The archival of dynamic geometric data that takes place in the creation 

episode is determining the life story of the elementary particles. The 

activity of the stochastic processes is mimicked by the ongoing 

embedding process that implements the dynamic geometric data as an 

ongoing hopping path that recurrently regenerates a coherent hop 

landing location swarm that has a stable location density distribution. 

This location density distribution is the Fourier transform of the 

characteristic function of the stochastic process that filled the 

eigenspace of the footprint operator that resides at the private platform 

of the elementary particle. This activity acts as a Real-Time Operating 

System. The recurrent regeneration of the hop landing location swarm 

implements an effective guard against deadlocks and race conditions. 
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14 Dark objects 

Mainstream physics suggests the existence of two types of dark objects 

[39][40]. These are dark energy and dark matter. In contrast to 

mainstream physics, the Hilbert Book Model presents these two types 

of dark objects as field excitations that act as shock fronts. Together 

these special field excitations constitute, except for black holes, all 

discrete objects that exist in the universe. 

Dark matter objects are spherical pulse responses that behave as 

spherical shock fronts. They constitute the footprints of elementary 

particles. Further, they populate as a veiling glare the universe in the 

neighborhood of large assemblies of conglomerates of elementary 

particles. 

Dark energy objects are one-dimensional pulse responses and behave 

as one-dimensional shock fronts. They appear spread over the universe, 

but more specifically divided equidistantly in chains that constitute 

photons. Photons obey the Planck-Einstein relation E h= [24]. This 

means that the emission duration of photons is fixed and since all shock 

fronts move with speed c , at the instant of emission, all photons must 

feature the same length. 

Dark energy objects may change the kinetic energy of the floating 

platforms. If floating platforms cling together, then the kinetic energy of 

the conglomerate is changed. The massive objects may absorb or emit 

dark energy objects. In contrast, will atoms absorb and emit photons. 

Photons are quantized patterns of dark energy objects. 

14.1 Black holes 

We introduce a discontinuum as the antonym of a continuum. The 

universe is a mixed field. It can contain a set of enclosed spatial regions 

that encapsulate a discontinuum. A discontinuum is a dense discrete 

set. A discontinuum is countable. In physics, the equivalent of a 
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discontinuum is a black hole. The enclosing surface is a continuum with 

a lower dimension than the enclosed region. No field excitations exist 

inside the discontinuum. Thus, no field excitations can pass the 

enclosing surface. Since a discontinuum deforms the surrounding 

continuum, this enclosed region owns an amount of mass. Together 

with the spherical shock fronts and the elementary modules, the 

discontinuums are the only objects in the universe that own mass. The 

mass of spherical shock fronts is volatile. Only when gathered in 

coherent and dense ensembles these shock fronts can cause a 

persistent amount of mass. That happens in the footprint of elementary 

modules. It also happens in the halos of galaxies. So, black holes can 

only be perceived by their gravitational potential. However, outside the 

border of the black hole, many phenomena can occur that are caused 

by the activity of massive objects that are attracted by the enormous 

gravitation that the black hole generates. Elementary particles that 

hover with their platform over the encapsulated region can drop part of 

their footprint actuators into the black hole. In this way, black holes can 

steadily grow. This paper does not consider the join of black holes and it 

does not consider the birth of a black hole by squeezing one or more 

neutron stars. 
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15 The Standard Model of particle physics 

The Standard Model of particle physics is a useful report on what we 
think we know about these particles. It says nothing about our universe, 
and it also does not say anything about the electromagnetic field, but it 
reports on electric charges and color charges. The Standard Model 
pretends to treat the elementary particles, but it does not describe the 
structure and the behavior of these objects. The Standard Model does 
not treat dark matter and it does not treat dark energy. Some scientists 
consider some theories as a part of the Standard Model. This concerns 
Quantum Field Theory, Quantum Electrodynamics, and Quantum 
Chromodynamics. This puts these theories in an undeserved position 
because none of these theories is well-founded. Mathematicians have 
in vain tried to explain the strangely limited diversity of types of 
elementary particles and the mentioned theories do not explain this 
restricted diversity. 

This indicates that a great chance exists that the currently available 

theories are on a wrong track. A more fundamental approach may exist 

that also explains the diversity of the particle types. That theory must 

explain why so few different particle types exist and why these particle 

types divide into categories, such as fermions and bosons, and why 

these particle types differ in mass, electric charge, and color charge. 

The Hilbert repository does not resemble the structure of the full set of 

elementary particles that are listed in the Standard Model. Instead, the 

set of particle types in the Hilbert repository resembles closely the set 

of elementary fermions in the Standard Model. This might indicate that 

the bosons listed in the Standard Model are not elementary modules 

and it may indicate that some bosons that the Standard Model 

considers as elementary particles differ from the model of elementary 

particles that the Hilbert repository provides. This will certainly hold for 

photons. Other bosons will be other elementary particle types, or they 
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are conglomerates of elementary fermions. Also, muon-type and tau-

type fermions may be conglomerates of elementary fermions. 

A guide may be that only elementary fermions act as elementary 

modules and form the conglomerates that populate our universe. 
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16 Conclusions 

The structure and the behavior of the Hilbert repository show an 

astonishing similarity with the structure and behavior of the set of 

elementary fermions in the Standard Model of particle physics. 

The universe is a dynamic field that is archived in the background 

platform of the Hilbert repository. This dynamic field can be described 

by a quaternionic function. Quaternionic differential calculus describes 

the dynamics of this field. Apart from the wave equation exists another 

second-order partial differential equation. 

Electric charges only appear at the geometric centers of the floating 

platforms on which elementary fermions reside. 

The shortlist of electric charges and color charges in the Standard 

Model conforms with the shortlist of symmetry-related charges in the 

Hilbert repository. 

Sources and sinks represent the symmetry-related charges. 

Elementary fermions behave as elementary modules. Except for black 

holes they constitute all massive objects that exist in the universe. 

Stochastic processes that own a characteristic function and can be 

considered as a combination of a Poisson process and a binomial 

process implement the wavefunction of elementary fermions. These 

processes produce an ongoing hopping path that recurrently 

regenerates a coherent hop landing location swarm that is described by 

a stable location density distribution. An ongoing embedding process 

images the hop landing locations on the dynamic universe field. If the 

hop landings deform the embedding field, then the generated spherical 

shock fronts blur the hop landing location swarm. The resulting 

deformation is described by the gravitational potential of the particle. 

That gravitational potential determines the mass of the particle. 



89 
 

Dark objects play an essential role in the dynamics of the universe field. 

Dark matter objects are spherical pulse responses that behave as 

spherical shock fronts and integrate over time in the Green’s function of 

the field. 

Dark matter objects constitute the footprints of elementary fermions. 

Dark matter objects explain the origin of gravity. 

Dark energy objects are one-dimensional pulse responses and behave 

as one-dimensional shock fronts. They appear spread over the universe, 

but more specifically they constitute photons divided equidistantly in 

chains. Photons obey the Planck-Einstein relation.  

Black holes are considered encapsulated discontinuous regions that 

exist in a continuous surround. They become noticeable by their 

gravitational potential and by the phenomena that occur at their 

border. 

The Hilbert repository supports both quantum physics and cosmology. 

This powerful structure enables the introduction of a creation episode 

in which time does not yet exist as a flowing progression indicator. At 

the beginning of flowing time, the universe is a virgin flat field that 

corresponds to a version of the quaternionic number system. 

Coordinate systems determine the symmetry of this version.  

This document offers an alternative for the Higgs mechanism as an 

explanation for the origin of gravity. This opposes the addition of the 

Higgs particle to the set of elementary particles that are registered in 

the Standard Model. This document also differs in the way that photons 

are treated. Both deviations are due to the discovery of the importance 

that shock fronts mean for the interaction between fields and actuators. 

Established physics appears to ignore shock fronts. These objects play 
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the most important part in what happens on the deepest levels of the 

structure that represents the skeleton of our living environment. 

16.1 Existential questions 

This paper considers a creation episode but does not treat the creation 

of the Hilbert repository itself. The Hilbert repository follows from 

extending the basic notion of a vector space. So, as soon as elemental 

vector spaces with all their ingredients exist, then the Hilbert repository 

will also exist. That does not guarantee that the eigenspaces of the 

footprint operators will be filled by a stochastic process that owns a 

characteristic function. The author could not yet find the reason why 

such stochastic processes already exist at the birth of the Hilbert 

repository and why the generated hopping path recurrently recreates a 

hop landing location swarm that has a stable location density 

distribution. In contrast, the private parameter space of Hilbert spaces 

is present at the birth of every Hilbert space. With that parameter 

space, every Hilbert space owns a geometric symmetry and a geometric 

center. 

 

 

References  

[1] In the second half of the twentieth century, Constantin Piron and 

Maria Pia Solèr proved that the number systems that a separable 

Hilbert space can use must be division rings. See 

https://golem.ph.utexas.edu/category/2010/12/solers_theorem.html ; 

“Division algebras and quantum theory” by John Baez. 

http://arxiv.org/abs/1101.5690 ; Orthomodularity in infinite 

dimensions; a theorem of M. Solèr  

https://golem.ph.utexas.edu/category/2010/12/solers_theorem.html
http://arxiv.org/abs/1101.5690


91 
 

[2] Hilbert space; https://ncatlab.org/nlab/show/Hilbert+space; 

https://en.wikipedia.org/wiki/Hilbert_space#Examples; 

https://en.wikipedia.org/wiki/The_Principles_of_Quantum_Mechanics 

http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-

00593-8/  

[3] Hilbert Lattice; https://ncatlab.org/nlab/show/Hilbert+lattice 

[4] Classical logic https://en.wikipedia.org/wiki/Classical_logic 

 

[5] Del operator; https://en.wikipedia.org/wiki/Del  

[6] Wave equation; https://en.wikipedia.org/wiki/Wave_equation  

[7] Helmholtz equation; 

https://en.wikipedia.org/wiki/Helmholtz_equation 

[8] Lorentz transformation ; 

https://en.wikipedia.org/wiki/Lorentz_transformation 

[9] Minkowski metric ; 

https://en.wikipedia.org/wiki/Minkowski_space#Minkowski_metric  

[10] Schwarzschild metric 

https://en.wikipedia.org/wiki/Schwarzschild_metric    

[11] Schwarzschild radius; http://jila.colorado.edu/~ajsh/bh/schwp.html ; 

https://en.wikipedia.org/wiki/Schwarzschild_radius  

[12] Big Bang; https://en.wikipedia.org/wiki/Big_Bang 

[13] Spherical Bessel functions; 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function 

[14] Spherical Harmonics; 

https://en.wikipedia.org/wiki/Spherical_Harmonics 

https://ncatlab.org/nlab/show/Hilbert+space
https://en.wikipedia.org/wiki/Hilbert_space#Examples
https://en.wikipedia.org/wiki/The_Principles_of_Quantum_Mechanics
http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/
http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/
https://ncatlab.org/nlab/show/Hilbert+lattice
https://en.wikipedia.org/wiki/Classical_logic
https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Lorentz_transformation
https://en.wikipedia.org/wiki/Minkowski_space#Minkowski_metric
https://en.wikipedia.org/wiki/Schwarzschild_metric
http://jila.colorado.edu/~ajsh/bh/schwp.html
https://en.wikipedia.org/wiki/Schwarzschild_radius
https://en.wikipedia.org/wiki/Big_Bang
https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics


92 
 

[15] Gauss theorem; 

https://en.wikipedia.org/wiki/Divergence_theorem 

[16] Stokes theorem; 

https://en.wikipedia.org/wiki/Stokes%27_theorem 

[17] Cartesian ordering; 

https://en.wikipedia.org/wiki/Cartesian_coordinate_system  

[18] Polar coordinate system; 

https://en.wikipedia.org/wiki/Spherical_coordinate_system  

[19] Ampère’s law; 

https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law 

[20] Faraday’s law; 

https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction 

[21] Derivation of the Lorentz force; 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Farad

ay's_law_of_induction 

[22] Leibnitz integral equation; 

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-

dimensional.2C_time-dependent_case  

[23] Electromotive force; 

https://en.wikipedia.org/wiki/Electromotive_force 

[24] Planck-Einstein relation ; 

https://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation 

[25] Optical Transfer Function 

https://en.wikipedia.org/wiki/Optical_transfer_function 

[26] Modulation Transfer Function 

https://en.wikipedia.org/wiki/Optical_transfer_function 

https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law
https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force
https://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation
https://en.wikipedia.org/wiki/Optical_transfer_function
https://en.wikipedia.org/wiki/Optical_transfer_function


93 
 

[28] https://en.wikipedia.org/wiki/Center_of_mass 

[29] https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion 

[30] Gravitation law 

https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitati

on 

[31] Gauss law for gravity 

https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity 

[32] Gauss Differential law 

https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity#Differential_

form 

[33] Green’s function 

https://en.wikipedia.org/wiki/Green%27s_function#Green's_functions_

for_the_Laplacian 

[34] Gravitational potential 

https://en.wikipedia.org/wiki/Gravitational_potential  

[35] Potential of a Gaussian charge density:  

http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Ga

ussian_charge_density  

[36] https://en.wikipedia.org/wiki/Inertia ; 

[37] Denis Sciama., On the Origin of Inertia; 

http://adsabs.harvard.edu/abs/1953MNRAS.113...34S  

[39] Dark energy https://en.wikipedia.org/wiki/Dark_energy 

[40] Dark matter https://en.wikipedia.org/wiki/Dark_matter 

[41] Polarization https://en.wikipedia.org/wiki/Circular_polarization  

https://en.wikipedia.org/wiki/Center_of_mass
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity#Differential_form
https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity#Differential_form
https://en.wikipedia.org/wiki/Green%27s_function#Green's_functions_for_the_Laplacian
https://en.wikipedia.org/wiki/Green%27s_function#Green's_functions_for_the_Laplacian
https://en.wikipedia.org/wiki/Gravitational_potential
http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density
http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density
https://en.wikipedia.org/wiki/Inertia
http://adsabs.harvard.edu/abs/1953MNRAS.113...34S
https://en.wikipedia.org/wiki/Dark_energy
https://en.wikipedia.org/wiki/Dark_matter
https://en.wikipedia.org/wiki/Circular_polarization


94 
 

[42] Base Model PowerPoint presentation; 

https://www.researchgate.net/publication/337224864_Base_model 

[43] “A Self-creating Model of Physical Reality”; 

http://vixra.org/abs/1908.0223 

[44] Higgs mechanism https://en.wikipedia.org/wiki/Higgs_mechanism 

 

https://www.researchgate.net/publication/337224864_Base_model
http://vixra.org/abs/1908.0223
https://en.wikipedia.org/wiki/Higgs_mechanism

	1 Mathematics versus reality
	2 Demarcation
	3 Vector space
	3.1 Number systems and coordinate systems

	4 The real number system
	4.1 Counting and addition
	4.2 Multiplication, division, and fractions
	4.3 Superseding countability

	5 Spatial dimensions
	5.1 Different arithmetic
	5.2 Multidimensional arithmetic
	5.3 Symmetry
	5.4 Stickiness
	5.5 Sticky behavior
	5.6 Sticky coordinates
	5.7 Combining influences

	6 Embedding in underlying vector space
	6.1 Map of vector space
	6.2 Hilbert space
	6.3 Symmetry and geometric center
	6.4 Bra's and ket's
	6.4.1 Ket vectors
	6.4.2 Bra vectors
	6.4.3 Inner products
	6.4.4 Operator construction
	6.4.5 Operator types

	6.5 Separable space
	6.6 Non-separable Hilbert space
	6.7 Quaternionic function space
	6.8 Converting quaternionic Hilbert space to complex-number-based Hilbert space
	6.8.1 Position space and change space
	6.8.2 Fourier transform
	6.8.3 Uncertainty principle


	7 Field equations
	7.1 Quaternions
	7.2 Quaternionic differential calculus
	7.3 Continuity equations
	7.3.1 Field excitations

	7.4 Isotropic conditions
	7.5 Conversion to antiparticle
	7.6 Enclosure balance equations
	7.7 Derivation of physical laws

	8 Systems of Hilbert spaces
	8.1 Hilbert repository

	9 Dynamics in the Hilbert repository
	9.1 Embedding in the background platform
	9.2 Footprint
	9.2.1 Footprint mechanism
	9.2.2 Footprint characteristics

	9.3 Resisting change
	9.3.1 Potential
	9.3.2 Center of deformation

	9.4 Pulse location density distribution
	9.5 Rest mass
	9.6 Observer
	9.6.1 Lorentz transform
	9.6.2 Minkowski metric
	9.6.3 Schwarzschild metric
	9.6.4 Event horizon

	9.7 Inertial mass
	9.8 Inertia
	9.9 Momentum
	9.9.1 Forces


	10 Symmetry restrictions
	10.1 Using volume integrals to determine the symmetry-related charges
	10.2 Symmetry flavor
	10.3 Potential of the electric field
	10.3.1 Coulomb force


	11 Basic fields
	11.1 Coupling of basic fields

	12 Conglomerates
	12.1 Modular system
	12.2 Module types
	12.3 Atoms
	12.4 Molecules

	13 Two episodes
	13.1 In the beginning
	13.2 RTOS

	14 Dark objects
	14.1 Black holes

	15 The Standard Model of particle physics
	16 Conclusions
	16.1 Existential questions


