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Abstract

We continue to explore the consequences of Thermal Relativity Theory
to the physics of black holes. The thermal analog of Lorentz transforma-
tions in the tangent space of the thermodynamic manifold are studied
in connection to the Hawking evaporation of Schwarzschild black holes
and one finds that there is no bound to the thermal analog of proper
accelerations despite the maximal bound on the thermal analog of ve-
locity given by the Planck temperature. The proper entropic infinites-
imal interval corresponding to the Kerr-Newman black hole involves a
3×3 non-Hessian metric with diagonal and off-diagonal terms of the form
(ds)2 = gab(M,Q, J)dZadZb, where Za = M,Q, J are the mass, charge
and angular momentum, respectively. Black holes in asymptotically Anti
de Sitter (de Sitter) spacetimes are more subtle to study since the mass
turns out to be related to the enthalpy rather that the internal energy.
We finalize with some remarks about the thermal-relativistic analog of
proper force, the need to extend our analysis of Gibbs-Boltzmann entropy
to the case of Reny and Tsallis entropies, and to complexify spacetime.
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The deep origins of the connection between Black Holes and Thermody-
namics is still a mystery (to our knowledge). The idea of describing classical
thermodynamics using geometric approaches has a long history. The thermody-
namic length is a metric distance between equilibrium thermodynamic states.
Among various treatments, Weinhold [2] used the Hessian of internal energy
gWij = ∂i∂jU(S, Ek) to define a metric for thermodynamic fluctuations. U is the
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internal energy of the system and Ek refers to the extensive parameters of the
system, i, j, k = 1, 2, · · · , n.

Ruppeiner [3] used the negative Hessian of the entropy for the same purpose
to define the metric gRij = −∂i∂jS(U, Ek). Since the net entropy of the system is
extremal (maximized) at equilibrium the second derivatives are negative so that
gRij > 0. From the first law of thermodynamics dU = TdS+IadEa (given in terms
of the intensive and extensive variables Ia, Ea) one arrives at the relations Ia =
∂U
∂Ea = −T ∂S

∂Ea and one finds that the Ruppeiner metric is conformally related
to the Weinhold metric (ds)2R = gRijdE idEj = T−1(ds)2W = T−1gWlk dE ldEk.

It has long been observed that the Ruppeiner metric is flat for systems with
noninteracting underlying statistical mechanics such as the ideal gas [4]. Cur-
vature singularities signal critical behaviors. In addition, it has been applied to
a number of statistical systems including Van de Waals gas. Recently the anyon
gas has been studied using this approach. In the past years, this geometry has
been applied to black hole thermodynamics, with some physically relevant re-
sults. The most physically significant case is for the Kerr black hole in higher
dimensions, where the curvature singularity signals thermodynamic instability,
as found earlier by conventional methods [4]. There are also many important
applications of Finsler geometry to the field of Thermodynamics, contact geom-
etry and many other topics [8].

Quevedo [5] introduced a formalism called Geometrothermodynamics (GTD)
which also introduces metric structures on the configuration space E of the ther-
modynamic equilibrium states spanned by all the extensive variables. In GTD,
to study the geometric properties of the equilibrium space three thermodynamic
metrics have been proposed so far. These metrics were obtained by using the
condition of Legendre invariance and can be computed explicitly once a ther-
modynamic potential is specified as fundamental equation.

The three classes of Legendre invariant metrics are of the form ds2 = (dΦ−
IadEa)2 + hab(Ia, Ea)dEadIb where Φ is the thermodynamic potential. The re-
maining diffeomorphism invariance in the phase and equilibrium spaces can be
used to show that the components of the GTD-metrics can be interpreted as
the second moment of the fluctuation of a new thermodynamic potential. This
result establishes a direct connection between GTD and fluctuation theory. In
this way, the diffeomorphism invariance of GTD allows us to introduce new
thermodynamic coordinates and new thermodynamic potentials, which are not
related by means of Legendre transformations to the fundamental thermody-
namic potentials [6].

Zhao [7] was able to outline the essential principles of Thermal Relativity; i.e.
invariance under the group G of general coordinate transformations on the ther-
modynamic configuration space, and introduced a metric with a Lorentzian
signature on the space. The line element was identified as the square of the
proper entropy, and which was also invariant under the action of the group G.
Thus the first and second law of thermodynamics admitted an invariant formu-
lation under general coordinate transformations, which justified the foundations
for the principle of Thermal Relativity (frame independence and thermal causal-
ity). It is important to emphasize that one must not confuse Thermal Relativity
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with Relativistic Thermodynamics, nor with (GTD) Geometrothermodynamics,
nor with Thermodynamic (Information) Geometry.

Recently we derived the exact thermal relativistic corrections to the Schwarzschild
black hole entropy and provided a detailed analysis of the many novel appli-
cations and consequences of the Thermal Relativity principle to the physics of
black holes, quantum gravity, minimal area, minimal mass, Yang-Mills mass
gap, information paradox, arrow of time, dark matter, and dark energy [1].

We shall briefly review our results in [1] which involved the thermal analog
of Lorentz boosts transformations and then extend our analysis to the ther-
mal analog of proper accelerations in connection to the physics of Hawking’s
evaporation of black holes.

One may implement Zhao’s formulation [7] of Thermal Relativity in the flat
analog of Minkowski space as

(ds)2 = (TP dS)2 − (dM)2 ↔ (dτ)2 = (cdt)2 − (dx)2 (1)

The maximal Planck temperature TP plays the role of the speed of light, and s
is the so-called proper entropy which is invariant under the thermodynamical
version of Lorentz transformations [7]. Note the s ↔ τ correspondence. Thus
the flow of the proper entropy s is consistent with the arrow of time.

The left hand side of (1) yields, after recurring to the first law of Thermo-
dynamics TdS = dM ⇒ T = dM

dS ,

(ds)2 = (TP dS)2
(

1 − T 2

T 2
P

)
⇒ (ds) = (TP dS)

√(
1 − T 2

T 2
P

)
=

TP (
dM

T
)

√(
1 − T 2

T 2
P

)
⇒ dM =

T

TP

1√
1− T 2

T 2
P

ds (2)

Given the thermal dilation factor one can always define an “effective” tem-
perature by

Teff =
T√

1− T 2

T 2
P

(3a)

such that dM = γ(T )T (ds/TP ) becomes then the thermal relativistic analog of

the Energy-Momentum relations E = moc
2(1 − v2

c2 )−
1
2 , ~p = mo~v(1 − v2

c2 )−
1
2 in

Special Relativity, in terms of the rest mass mo, velocity v, and maximal speed
of light c.

Setting T equal to the Hawking temperature of a Schwarzschild black hole
T = TH = (8πGM)−1, the effective temperature (3a) can be written in terms
of the mass as

Teff =
T√

1− T 2

T 2
P

=
1√

(8πGM)2 − 1
T 2
P

(3b)
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The effective Teff = ∞ blows up when one reaches the maximal temperature
T = TH = TP at the reduced Planck mass M = 1

8πGTP
= MP

8π . The mass

value of MP

8π corresponds to the minimal mass at the point when the black hole
evaporation process stops since the maximal Planck TP cannot be surpassed
beyond that point.

Eq-(1) allowed to derive the thermal relativistic corrections to the Black
Hole Entropy [1] as follows. After renaming S̃ ≡ (s/TP ), in terms of the
proper entropy s, the first law of black hole thermal-relativity dynamics dM =
γ(TH)THdS̃ yields the corrected entropy

∫ S̃

S̃o

dS̃ = S̃ − S̃o =

∫ M

Mo

dM

γ(TH)TH
=

∫ M

Mo

dM

√
1− (T 2

H/T
2
P )

TH
(4)

inserting the expression for the Hawking temperature TH(M) = (8πGM)−1

into eq-(4), and after setting (TP )−2 = (MP )−2 = L2
P = G, yields the following

integral

S̃ − S̃o =

∫ M

Mo

dM (8πGM)

√
1− G

(8πGM)2
=

∫ M

Mo

dM
√

(8πGM)2 − G

(5)
where S̃o ≡ S̃(Mo). The indefinite integral

∫
dx
√
a2x2 − b =

ax
√
a2x2 − b

2a
− b

2a
ln
(
a [
√
a2x2 − b + ax]

)
(6)

permits to evaluate the definite integral in the right hand side of (5) between
the upper limit M , and a lower limit Mo defined by (8πGMo)

2−G = 0, giving

S̃ =
A

4G

√
1− 1

16π
(
A

4G
)−1 − 1

16π
ln

(
4
√
π (

A

4G
)

1
2 [ 1 +

√
1− 1

16π
(
A

4G
)−1 ]

)
(7)

after using the relation for the ordinary entropy in the Schwarzschild black hole
(adopting the units h̄ = c = kB = 1)

S =
A

4G
= 4πGM2 ⇒ M = (

A

16πG2
)

1
2 (8)

and (8πGMo)
2 = G ⇒ 8πGMo =

√
G ⇒ Mo = MP

8π . The lower limit Mo of
integration is required in eq-(5) to ensure the terms inside the square root are
positive definite and the integral is real-valued. This lower mass Mo is associated
to a black hole remnant which has reached the maximal Planck temperature
TP (the thermal dilation factor diverges) and where black hole evaporation
stops. One of the most salient features of eq-(7) is that the modified entropy
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(S̃), corresponding to the minimal area Ao = G
4π =

L2
P

4π , S̃o = S̃(Ao) = 0 is
zero. The fact that the third law of thermodynamics (zero entropy at zero
absolute temperature) is violated here should not be bothersome because it is
well known that the entropy of extremal Kerr, Kerr-Newman black holes is not
zero despite having a zero Hawking temperature. It also violates the third law
of thermodynamics

Given the correspondence between an interval in thermal configuration space
and the interval in spacetime

(ds)2 = (TP dS)2
(

1 − T 2

T 2
P

)
⇔ (dτ)2 = (cdt)2

(
1 − v2

c2

)
(9)

one will also have the thermal “velocity” boost transformations analog of the
Lorentz boost transformation that leave invariant the interval

(ds)2 = (TP dS)2 − (dM)2 = (TP dS
′)2 − (dM ′)2 (10)

These thermal boosts transformations which leave invariant eq-(10) are given
by

S′ =
S − TM

T 2
P√

1− ( T
TP

)2
, M ′ =

M − TS√
1− ( T

TP
)2

(11)

Based on this thermal relativistic analogy with the Lorentz velocity-boosts
transformations, and on the correspondence S ↔ t;M ↔ x, one learns that the
analog of length-contraction in Special Relativity is going to be M -contraction
under thermal boosts transformations. Since the black hole Hawking radiation
leads to a mass loss of black holes one could then postulate that a continuous
succession of thermal boosts transformations, whose respective thermal boost
rapidity parameters are continuously increasing, may mimick the black hole
evaporation process. As the black hole evaporates it gets hotter and hotter
so that the corresponding thermal boost rapidity parameters ξ = arctanh( T

TP
)

increase as the temperature increases.
Similarly, the analog of time-dilation in Special Relativity is going to be

S-dilation under thermal boosts transformations, meaning that a continuous
succession of thermal boosts transformations continuously increases the entropy
S of the emitted Hawking thermal radiation. A thermal gas of photons at a
temperature of T has an entropy proportional to T 3, so an increase in T leads
to an increase in entropy S. Therefore, the thermal boosts transformations
can reflect the loss of the black hole mass and the increase in entropy of the
emitted radiation. Because the black hole entropy decreases due to the loss of
mass and decrease of its horizon area, there is no S-dilation for the black hole,
however, the net entropy of the black hole plus the emitted radiation (the outside
region) must always increase consistent with the second law of thermodynamics
: ∆SBH + ∆Srad ≥ 0.
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Since a continuous succession of thermal boosts transformations can be mod-
eled by the analog of thermal accelerations, let us introduce the following dot
derivatives

Ṡ ≡ dS

dS̃
, Ṁ ≡ dM

dS̃
(12)

defined in terms of S̃ ≡ s
TP

, a dimensionless quantity that has the same units
as the entropy. One may generalize the notion of a tangent spacetime interval
to the notion of a thermal tangent-space infinitesimal interval given by

(dσ)2 = (dS)2 − T−2P (dM)2 + T−2P [ (TP dṠ)2 − (dṀ)2 ] (13)

After factoring out (dS̃)2 ≡ (dS)2 − T−2P (dM)2 in eq-(13) gives

(dσ)2 = (dS̃)2

(
1 − T

2(S̃)

T 2
P

)
(14)

where the expression (whose physical units are those of a temperature-squared)

− T 2(S̃) ≡ (TP S̈)2 − (M̈)2 = T 2
P (
d2S

dS̃2
)2 − (

d2M

dS̃2
)2 ≤ 0 (15)

defines the Thermal Relativity analog of the spacelike proper acceleration-
squared (ẗ)2 − (ẍ)2 ≤ 0. When the velocity is timelike vµv

µ = 1 > 0, the
acceleration is spacelike aµa

µ < 0 as a result of differentiating d
dτ (vµv

µ) =
d
dτ 1 = 2

dvµ
dτ v

µ = 2aµv
µ = 0. From which one learns that the spacelike aµ is

orthogonal to the timelike velocity vµ.
Eq-(14) can be rewritten as

(dσ)2 = (dS̃)2

(
1 − T

2(S̃)

T 2
P

)
= (dM)2 (

dS̃

dM
)2

(
1 − T

2(S̃(M))

T 2
P

)
(16a)

By using the identity (dy/dx) = (dx/dy)−1 one has ( dS̃dM )2 = (dM
dS̃

)−2 so that

eq-(16a) becomes

(dσ)2 = (dM)2 (
dM

dS̃
)−2

(
1 − T

2(S̃(M))

T 2
P

)
(16b)

To evaluate d2S
dS̃2

and d2M
dS̃2

in eq-(15) is highly nontrivial if one recurs to the

complicated expression (7) found for the thermal relativistic corrections to the
black hole entropy and given by S̃ = S̃(M), after expressing the horizon area
A = 4π(2GM)2 in terms of the mass. The reason being that one must invert (if
possible) the expression S̃(M) leading to M = M(S̃), and to the Bekenstein-
Hawking entropy S(S̃) = A

4G = 4πGM2(S̃). And, in doing so, one may then

evaluate the first Ṁ, Ṡ, and the second derivatives M̈, S̈ with respect to S̃.
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Because this is extremely cumbersome it is far simpler to use the relation

Ṁ =
dM

dS̃
= Teff ≡ Tγ(T ) =

(
(8πGM)2 − 1

T 2
P

)−1/2
⇒

M̈ =
d2M

dS̃2
= − (8πG)2 M

(
(8πGM)2 − 1

T 2
P

)−2
(17)

S = 4πGM2 ⇒ Ṡ =
dS

dS̃
= (8πGM)

(
(8πGM)2 − 1

T 2
P

)−1/2
⇒

S̈ =
d2S

dS̃2
= (8πG)

(
(8πGM)2 − 1

T 2
P

)−1
− (8πG)3 M2

(
(8πGM)2 − 1

T 2
P

)−2
(18)

Hence, after some straightforward algebra, the quantity (TP S̈)2 − (M̈)2 = −T 2

can be expressed directly in terms of M as

(TP S̈)2−(M̈)2 ≡ −T 2(M) = − T 2
P (

TP
M

)2 (8πGMTP )2
(

(8πGMTP )2 − 1
)−3
(19)

Using the definition of the Hawking temperature TH = (8πGM)−1, the
above expression can be also be rewritten as

(TP S̈)2 − (M̈)2 ≡ −T 2(M) = − T 2
P (

TP
M

)2 (
TP
TH

)2
(

(
TP
TH

)2 − 1

)−3
(20)

From eqs-(19) one learns that T 2 → 0 as M → ∞ as one would expect. A
trivial example in classical mechanics is that if one were to exert a finite force
on an infinitely massive object its acceleration will be zero. One also infers that
the right-hand side of eq-(19) is ≤ 0 if, and only if, the mass M ≥ Mo = MP

8π
is greater or equal to the minimal mass Mo. Note that when the Schwarzschild
black hole reaches the minimal mass Mo (it has attained the maximal Planck
temperature TH = TP ) one has that T 2(M = Mo) = ∞ blows up due to
the divergence of the last factor in (19) because when M = Mo = MP

8π ⇒
8πGMoTP − 1 = GM2

P − 1 = 0, due to TP = MP and G = L2
P = M−2P in the

natural units h̄ = c = kB = 1.
Also if TH > TP were to exceed TP then T 2 < 0, and T would have been

imaginary, which is the analog of a tachyon m2 < 0. Note that T in eq-(9) plays
an analogous role as a velocity; T in eqs-(15,20) plays an analogous role as a
proper acceleration, and Teff = Tγ(T ) plays the analogous role as energy.

The Fulling-Davies-Unruh effect [9] states that for a uniformly accelerat-
ing observer, the vacuum state of an inertial observer is seen as a mixed state
in thermodynamic equilibrium with a non-zero temperature bath. The uni-
formly accelerated observer (detector) will be immersed in a bath of thermal
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radiation with a temperature T = a
2π . In this case one has a precise relation

between temperature and acceleration, whereas in Thermal Relativity one has
a correspondence between T and velocity, instead.

Therefore, the thermal analog of the tangent spacetime interval for a Schwarzschild
black hole is given by

(dσ)2 = (dM)2 (
dS̃

dM
)2

(
1 − T

2(S̃(M))

T 2
P

)
=

(dM)2 (
dM

dS̃
)−2

(
1 − T

2(S̃(M))

T 2
P

)
=

T−2P (dM)2 [ (8πGMTP )2 − 1 ]

(
1 − T

2(S̃(M))

T 2
P

)
(21)

where −T 2 is explicitly given by eq-(19) in terms of M .
When M = Mo, the first parenthesis in eq-(21) goes to 0, while the second

one goes to −∞ even faster, so that the interval (dσ)2 → −∞× 0 → −∞ < 0
blows up and becomes negative definite at the location of the minimal mass
M = Mo = MP

8π (at T = TP ). This reminds us of the spacelike singularity at
r = 0 of a Schwarzchild black hole due to the exchange roles of t and r as a
result of the sign changes in the gtt, grr metric components once one crosses the
horizon.

On the other hand, the value of Mh such that T 2(Mh) = T 2
P leading to

dσ2 = 0 is the thermal analog of the black hole horizon beyond which the roles
of t and r are exchanged. Upon setting T 2(Mh) = T 2

P in eq-(19) yields for Mh

the value of

Mh =
MP

8π

√
1 + (8π)2/3 > Mo =

MP

8π
(22)

One finds that Mh is greater but of the same order of magnitude as the minimal
mass Mo.

To sum up, one has explicitly checked that the thermal analog of the proper
acceleration −T 2 ≤ 0 is spacelike if M ≥ Mo. Both the effective Teff = ∞,
and T =∞ blow up when one reaches the maximal temperature T = TH = TP
at the reduced Planck mass M = 1

8πGTP
= MP

8π , corresponding to the minimal
mass Mo at the point when the Schwarzschild black hole evaporation process
stops.

Despite postulating a maximal bound to the thermal analog of velocity and
given by the Planck temperature TP , we found that there is no maximal bound
to the thermal analog of proper acceleration since the T (Mo) = ∞ blows up
when the black hole has reached its minimal mass. Eq-(19) reflects the thermal
relativistic corrections to the “acceleration” rate of mass-loss of a Schwarzschild
black hole due to Hawking evaporation.
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To recapitulate, the thermal analog of “velocity” boost transformations leav-
ing invariant the thermal tangent space interval (dσ)2 = (dσ′)2 in eq-(13) are
of the form

S′ = S cosh(ξT ) − T−1P M sinh(ξT ), (23a)

T−1P M ′ = T−1P M cosh(ξT ) − S sinh(ξT ) (23b)

TP Ṡ′ ≡ TP
dS′

dS̃
= TP Ṡ cosh(ξT ) − Ṁ sinh(ξT ), (Ṡ ≡ dS

dS̃
, Ṁ ≡ dM

dS̃
)

(23c)

Ṁ ′ ≡ dM ′

dS̃
= Ṁ cosh(ξT ) − TP Ṡ sinh(ξT ), (23d)

and where the thermal “velocity” boost rapidity parameter ξT is defined as

tanh(ξ) ≡ T

TP
⇒ cosh(ξ) =

1√
1− ( T

TP
)2
, sinh(ξ) =

T
TP√

1− ( T
TP

)2
(24)

such that ξT →∞ as T → TP ⇒ tanh(ξT )→ 1.
One can verify that (dσ)2 in eq-(13) is invariant under the thermal velocity

boost transformations of eqs-(23). This is the analog of the Lorentz transforma-
tions leaving invariant the norms xµx

µ = t2−x2i , and pµp
µ = E2−p2i , i = 1, 2, 3

of the four-vectors xµ, pµ.
A Kerr-Newman black hole is described in terms of the mass M , charge Q

and angular momentum J . Given the first law dM = TdS +φdQ+ωdJ , where
φ is the electrostatic potential and ω is the angular velocity, it allows us to write
the thermodynamic length interval as

(ds)2 = (TP dS)2 − (dM)2 = (TP dS)2 − (TdS + φdQ+ ωdJ)2 (25)

and leads to a metric with diagonal and off-diagonal terms. The role of the
intensive variables T−1 = ∂S

∂M , φ = −T ∂S
∂Q , ω = −T ∂S

∂J , in the thermodynamic

distance (25) can be interpreted as mere parameters, whereas the extensive vari-
ables S,Q, J represent the “coordinates” of the “points” of the thermodynamic
manifold.

By holding J,Q fixed dJ = dQ = 0, the first law reduces to dM = TdS and
one ends up with the similar expression found before in eq-(2) of the form

dM = γ(T ) T
ds

TP
= γ(T ) T dS̃ (26)

where γ(T ) is the corresponding thermal dilation factor associated with the
Hawking temperature TH(M,Q, J) for the Kerr-Newman black hole and written
in terms of the inner r− and outer horizon radius r+ as
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TH(M,Q,
J

M
) =

1

2π

√
(GM)2 −Q2 − ( JM )2

2(GM)2 − Q2 + 2GM
√

(GM)2 −Q2 − ( JM )2
=

1

4π

r+ − r−

r2+ + ( JM )2
, r± = GM ±

√
(GM)2 −Q2 − (

J

M
)2 (27)

After using eqs-(26,27) one finds that the Thermal Relativity corrections to the
Kerr-Newman black hole entropy is given by the integral,

S̃ − S̃o =

∫ M

Mo

dM

√
T−2H (M,Q,

J

M
) − T−2P , TH(M,Q,

J

M
) 6= 0 (28)

Q, J are fixed in eq-(28) and treated as mere parameters independent on M .
The above and more complicated integral furnishes the sought-after corrections
S̃ to the original expression for Kerr-Newman black hole entropy given by

SKN (M,Q, J) =
A

4G
=

π ( r2+ + ( JM )2 )

G
(29)

Setting J = 0 in the integral (28) furnishes the corrections to the Reissner-
Nordstrom black hole entropy.

Note that the integral eq-(28) blows up when TH = 0 in the extremal case
r+ = r−. However, there is a caveat because when one sets r+ = r− ⇒
(GM)2 − Q2 − ( JM )2 = 0 it leads to a constraint among M,Q, J . Conse-
quently if one fixes Q, J , one also has to fix M so that the integration (28) over
the variable M no longer makes sense. Therefore, the integral (28) is valid only
when TH(M,Q, JM ) 6= 0, it is not valid in the extremal black hole case.

In the most general case one must proceed by recurring to the explicit ex-
pression SKN = SKN (M,Q, J) (29) which implies

dSKN =
∂SKN
∂M

dM +
∂SKN
∂Q

dQ +
∂SKN
∂J

dJ (30)

so that eq-(25) can be rewritten as

(ds)2 = (TP dS)2 − (dM)2 = T 2
P (

∂SKN
∂M

dM +
∂SKN
∂Q

dQ+
∂SKN
∂J

dJ )2 − (dM)2

(31)
leading to a 3 × 3 non-Hessian metric with diagonal and off-diagonal terms
(ds)2 = gab(M,Q, J)dZadZb, with Za = M,Q, J . Once the Riemannian met-
ric is known one can find the connection and curvature. Similar to the Rup-
peiner thermodynamic geometry one would expect that the curvature singu-
larities should also signal critical behaviors and instabilities. Note however

10



that the 3 × 3 metric (31) differs from the 2 × 2 Ruppeiner Hessian metric
(ds)2R = −∂i∂jSKN (M,Q, J)dZidZj , with Zi = Q, J .

Eq-(31) could be integrated if one knew the M -dependence of Q(M), J(M).
For instance, in string theory the Regge trajectories display the J versus the m2

relation J ∼ α′m2 + αo given in terms of the Regge slope α′, the inverse of the
string tension, and the Regge intercept αo. Then a “path” in the thermodynamic
manifold can be chosen by selecting the functions Q = Q(M), J = J(M), and
in doing so, one will be able to integrate (31) with respect to M and determine
the thermodynamic length s of such “path” in terms of M . Similar arguments
follow if one knew the dependence of two other variables in terms of the third
one, for example, like M = M(Q); J = J(Q). Moreover, the geodesic paths
determined in terms of the analog of the torsionless Levi-Civita connection, and
corresponding to the metric which defines the interval (31), will generate the
solutions M(S̃), Q(S̃), J(S̃) which extremize the proper entropy S̃ = T−1P s. One
would have to distinguish the maxima from the minima in this case.

So far we have studied the asymptotically flat Schwarzschild and Kerr-
Newman black holes within the context of Thermal Relativity. Asymptot-
ically Anti de Sitter (de Sitter) spacetimes are more subtle to study since
the mass turns out to be related to the enthalpy which can be written as
M = H = U + pV . This framework is known as black hole thermodynamics
in the extended phase space or black hole chemistry [10]. Without the nega-
tive cosmological constant, the asymptotically flat black hole for example has
the vanishing pressure, and hence the notion of thermodynamic pressure and
volume are absent.

To finalize, there are other impending avenues to explore. Like to find what
is the thermal-relativistic analog of proper force (phase space) and to write
the thermal version of a cotangent space interval, instead of the tangent space
interval displayed in eq-(13). Also required is to extend our analysis to the case
of Reny and Tsallis entropy [11]. More importantly, to find the full dictionary
between the Riemannian, Finslerian geometric description of spacetime and the
thermal-relativistic description of the thermodynamic manifold. In other words,
using the language of Category theory, to establish the functorial map between
one category to the other.

A prior Spacetime/Thermodynamic manifold correspondence is already man-
ifest in Thermal Quantum Field Theory where the period in imaginary time is
related to the inverse temperature β = 1

T . In Relativistic Thermodynamics
one introduces the so-called inverse four-temperature βµ = T−1vµ, which is
proportional to the four-vector vµ = dxµ

dτ , since the relativistic thermodynamic
equilibrium conditions demand that βµ is a Killing vector field with the remark-
able consequence that all Lie derivatives of all physical observables along the
four-temperature flow must then vanish [12]. For this reason we believe that the
introduction of complexified spacetime coordinates (real and imaginary times)
might reveal more important clues of the interplay between spacetime relativity
with thermal relativity.
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