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Abstract

Superstring theory is the most promising candidate for a unified quantum theory of the fun-
damental interactions including gravity. The purpose of this investigation is to study toroidal
compactification of the type IIB theory and implications of SL(2, R) symmetry for the reduced
action. It has been shown recently that the toroidally compactified type IIB string effective
action possesses an SL(2, R) invariance as a consequence of the corresponding symmetry in ten
dimensions when the self-dual five-form field strength is set to zero. We will study the toroidal
compactification of type IIB string theory and explore some of the consequences of SL(2, R)
invariance of ten dimensional theory. The compactified theory on a d-dimensional torus respects
the symmetry when specify the transformation properties of the resulting scalar and vector fields.



1 Introduction

It is recognised that dualities play a central role in our understanding of the dynamics
of string theory. The intimate connections between various superstring theories and the
nonperturbative features of these theories in diverse dimensions are unravelled by the
web of duality relations. The S-duality transformation relates strong and weak coupling
phases of a given theory in some cases, whereas in some other situation strong and
weak coupling regimes of two different theories are connected. One familiar example
is the heterotic string toroidally compactified from ten to four dimension and for such
a theory S-duality is the generalization of the familiar electric-magnetic duality. An-
other situation arises in six spacetime dimensions, when the ten dimensional hetetoric
string is compactified on T 4. The S-duality, on this occasion, relates the six dimensional
heterotic string to type IIA theory compactified on K3. It was conjectured that type
IIB theory in ten dimensions is endowed with SL(2, Z) symmetry. There is mounting
evidence for this symmetry and it has played a very important role in providing deeper
insight into the nonperturbative attributes of type IIB theory. The discrete subgroup
of the SL(2, R) group survives as an exact symmetry of the quantum theory and has
been referred to as S-duality in the literature in analogy with the corresponding symme-
try in N=4, D=4 heterotic string theory. Furthermore, there is an intimate connection
between type IIB theory compactified on a circle and the M-theory compactified on
T 2 leading to a host of interesting results. We recall that the bosonic massless exci-
tations of type IIB theory consist of graviton, dilaton and antisymmetric tensor in the
Neveu-Schwarz-Neveu-Schwarz (NS-NS) sector, denoted by ĜMN , φ̂ and B̂

(1)
MN , respec-

tively. The Ramond-Ramond (R-R) counterparts are ’axion’, χ̂, another antisymmetric

tensor field, B̂
(2)
MN and a four index antisymmetric potential, ĈMNPR, with self-dual field

strength. The Lorentz indices in ten dimensions are denoted by M,N,P,... and the field
are defined with a hat. The complex moduli, λ̂ = χ̂ + ie−φ̂ is known to transform non-
trivially under SL(2, R) and same is the case for the two second rank tensor fields B̂(1)

and B(2). The SL(2, R) eventually breaks to the robust discrete symmetry SL(2, Z).
The equations of motion of type IIB supergravity theory are invariant under an SL(2, R)
group known as the supergravity duality group. A discrete subgroup of this group has
been conjectured to be the exact symmetry of the full quantum type IIB string the-
ory. As the string theory coupling constant transforms non-trivially under this SL(2, R)
transformation, this symmetry is non-perturbative. In general case it is not possible to
prove this conjecture in the perturbative framework of string theory. A strong evidence
in favor of this conjecture has been given by Schwarz when he showed that certain BPS
saturated macroscopic string-like solutions of type IIB string theory form an SL(2, Z)
multiplet. These solutions, when characterized by two relatively prime integers corre-
sponding to the charges associated with the two antisymmetric gauge fields from NS-NS
and R-R sectors, are stable and do not decay further into strings with lower charges.
The tensions as well as the charges associated with the strings have been shown to be
given by SL(2, Z) covariant expressions. The level of low energy effective action that
this SL(2, R) invariance of the type IIB theory survives the toroidal compactification.
In fact, this is not surprising since a symmetry in a higher dimensional theory should
become a part of the bigger symmetry in the lower dimensional theory, although in this
case, it requires quite non-trivial calculation to prove the invariance.
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2 Dimensional Reduction of the Effective Action

We shall also need to consider the low-energy limit of the type–IIB superstring for our
discussion duality. The zero-slope limit of the type–IIB superstring is given by N = 2,
D = 10 chiral supergravity. This theory contains a metric, a complex antisymmetric
tensor, a complex scalar and a four-index antisymmetric tensor gauge field. The complex
scalar parametrizes the coset SU(1, 1)/U(1). We denote the type–IIB fields as follows:

{

D̂µ̂ν̂λ̂ρ̂, ĝµ̂ν̂ , B̂µ̂ν̂ , Φ̂
}

, (1)

where ĝµ̂ν̂ is the Einstein-frame metric. We will start in the Einstein-frame and then
switch to the string-frame metric once we have correctly identified the type–IIB dilaton
field. The field equations of the type–IIB theory cannot be derived from a covariant
action. The theory is invariant under D = 10 general coordinate transformations and
under the following tensor gauge transformations:

δB̂ = ∂Σ̂ , δD̂ = ∂ρ̂+ 3
8i

(

∂Σ̂B̂∗ − ∂Σ̂∗B̂
)

. (2)

It is convenient to start by rewriting the theory using the string-frame metric, but
before we have to identify the type–IIB dilaton. This is easier to do in the SL(2, R)

version of the theory. Accordingly, we first define the complex scalar field λ̂ = χ̂+ ie−φ̂

This definition implies that φ̂ is the type–IIB dilaton and will be justified below. We
next consider the complex antisymmetric tensor B. To make contact with the real O(2)
notation we write

B̂ = B̂(1) + iB̂(2) , Σ̂ = Σ̂(1) + iΣ̂(2) . (3)

Using this notation the field-strengths of the B̂ gauge fields and their gauge transforma-
tions can be written as:

Ĥ(i) = ∂B̂(i) , δB̂(i) = ∂Σ̂(i) ,

F̂ (D̂) = ∂D̂ + 3
4
ǫijB̂(i)∂B̂(j) , δD̂ = ∂ρ̂− 3

4
ǫij∂Σ̂(i)B̂(j) .

(4)

The low energy four dimensional effective action of interest to us is

S =

∫

d4x
√
−Ge−2φ

(

R + 4∂µφ∂µφ+
1

8
tr ∂µM−1∂µM− 1

12
HµνρH

µνρ − 1

4
FT

µνM−1Fµν

)

(5)
where G = (detGµν), Gµν being the four dimensional metric in the string frame, φ is
the dilaton field in D = 4, R is the scalar curvature corresponding to the metric Gµν .
This four dimensional action is of generic form which can be obtained through toroidal
compactification on T 6 of a ten dimensional string effective action. For example, if we
start from the ten dimensional heterotic string, the matrixM which contains the scalar
fields, parametrizes the coset, O(22,6)

O(22)×O(6)
and Fµν corresponds to 28 Abelian gauge field

strengths. On the other hand if we start from ten dimensional action of type II theories,
then the reduced action can be identified with the one that is obtained by dimensional
reductions of the NS-NS sector and now there will be only 12 gauge fields (6 from the
metric and 6 from antisymmetric tensor) andM will contain scalars parametrizing the
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coset O(6,6)
O(6)×O(6)

. The superscript T denotes the transpose of a matrix. Definitions of the
field strengths are

Fµν = ∂µAν − ∂νAµ , Hµνρ = ∂µBνρ +AT
µηFνρ + cyc. in µνρ (6)

where Aµ is a 28 dimensional vector field containing the 28 gauge fields coming from
the dimensional reduction of the ten dimensional metric, antisymmetric tensor field and
U(1)16 gauge fields in the case of heterotic string. We choose M to be constant and

put Hµνρ = 0 and set all the gauge fields except one (denoted as A
(1)
µ ) to zero, then the

action (5) reduces in the Einstein frame to,

S̄ =

∫

d4x
√−g

(

R− 2∂µφ∂µφ− 1

4
e−2φF (1)

µν F (1) µν

)

(7)

where the Einstein metric is related to the string metric by gµν = e−2φGµν . R denotes

the scalar curvature with respect to the Einstein metric gµν . The gauge field A
(1)
µ came

from one of the U(1)16 gauge fields in ten dimensions, we choose A
(1)
µ to come from the

dimensional reduction of the ten dimensional antisymmetric tensor field.
Let us recall that the massless spectrum of the type IIB string theory in the bosonic

sector contains a graviton, a dilaton and an antisymmetric tensor field as NS-NS sector
states, whereas, in the R-R sector it contains another scalar, another antisymmetric ten-
sor field and a four-form gauge field whose field-strength is self-dual. It is well known that
a covariant action for self dual five index antisymmetric tensor fields in ten dimensions
does not exist and we set this field strength to zero, since this field is of no relevance
to us in what follows. Therefore, a consistent, covariant action can be written from
which the type IIB supergravity equations of motion can be derived. We have studied
the dimensional reduction of this action on a (10−D) dimensional torus. When D = 4,
the corresponding four dimensional type IIB string effective action in the Einstein frame
takes the following form:

SII =

∫

d4x
√−g

[

R +
1

4
tr ∂µM∂µM−1 +

1

8
∂µ log∆

¯
∂µ log∆

¯
+
1

4
∂µgmn∂

µgmn

−1
4
gmnF

(3) m
µν F (3) µν, n − 1

4
(∆
¯
)1/2gmpgnq∂µBT

mnM∂µBpq (8)

−1
4
(∆
¯
)1/2gmpHT

µν mMHµν
p −

1

12
(∆
¯
)1/2HT

µνλMHµνλ

]

Here g = (det gµν), where gµν is the four dimensional Einstein metric and R is the scalar
curvature associated with gµν . M is an SL(2, R) matrix defined as

M≡
(

χ2 + e−2φ̃ χ
χ 1

)

eφ̃ (9)

where χ is the R-R scalar and φ̃ = φ+ 1
2
log∆, φ being the NS-NS scalar, the four dimen-

sional dilaton and ∆2 = (detGmn), Gmn being the scalars coming from the dimensional
reduction of the ten dimensional string metric. gmn = e−2φGmn and (∆

¯
)2 = (det gmn).

F
(3) m
µν = ∂µA

(3) m
ν − ∂νA

(3) m
µ , where A

(3) m
µ is the gauge field resulting from the di-

mensional reduction of the string metric. Bmn ≡
(

B
(1)
mn

B
(2)
mn

)

, where B
(i)
mn, for i = 1, 2
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are the moduli coming from the dimensional reduction of the NS-NS and R-R anti-

symmetric tensor fields. Hµν m ≡
(

H
(1)
µν m

H
(2)
µν m

)

, where H
(i)
µν m = F

(i)
µν m − B

(i)
mnF

(3) n
µν and

F
(i)
µν m = ∂µA

(i)
ν m − ∂νA

(i)
µ m, with A

(i)
µ m being the gauge fields resulting from the dimen-

sional reduction of the NS-NS and R-R sector antisymmetric tensor fields. Finally,

Hµνλ ≡
(

H
(1)
µνλ

H
(2)
µνλ

)

, H
(i)
µνλ = ∂µB

(i)
νλ − F (3) m

µν A
(i)
λ m + cyc. in µνλ. (10)

The action (8) can be easily seen to be invariant under the following global SL(2, R)
transformation:

M → ΛMΛT , Bmn → (Λ−1)TBmn
(

A
(1)
µ m

A
(2)
µ m

)

≡ Aµ m → (Λ−1)TAµ m,

(

B
(1)
µν

B
(2)
µν

)

≡ Bµν → (Λ−1)TBµν

gµν → gµν , gmn → gmn, A(3) m
µ → A(3) m

µ (11)

where Λ is the SL(2, R) transformation matrix.
We shall consider a truncated action, rather than the full action (8). Let us, from

now on, set H
(i)
µνλ = 0, A

(3) m
µ = 0, Gmn = δmn, ∆ = 1, B

(i)
mn = 0 and all the components

of A
(1)
µ m and A

(2)
µ m to zero except one (we call the non-zero components of the gauge fields

as A
(1)
µ and A

(2)
µ with the corresponding field-strength F

(i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ ), then the

action (25) reduces to:

∫

d4x
√−g

[

R +
1

4
tr ∂µM∂µM−1 +

1

8
∂µ log∆

¯
∂µ log∆

¯

+
1

4
∂µgmn∂

µgmn − 1

4
(∆
¯
)

1
6FT

µνMFµν

]

(12)

In the equationM is as given in (9) with φ̃ replaced by φ since we have set ∆ = 1, and

Fµν ≡
(

F
(1)
µν

F
(2)
µν

)

. The action (12) is invariant under the global SL(2, R) transformation:

M→ ΛMΛT ,

(

A
(1)
µ

A
(2)
µ

)

≡ Aµ → (Λ−1)TAµ (13)

The compactifications of type IIA and type IIB theories as we go from ten to nine
dimensions have been studied by Bergshoeff, Hull and Ortin and they have explored
implications of various dualities for this compactification. More recently, Andrianop-
oli and collaborators have studied compactification of type II theories and M-theory
in various dimensions. It is well known that type IIA and type IIB theories are re-
lated by T-duality below ten dimensions. In lower dimensions the S-duality combines
with the T-duality leading to U-duality. For example in 8-dimensions, the U-duality
group is SL(3, Z)×SL(2, Z) and various branes belong to representations of this larger
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group. The five dimensional string effective action, obtained by toroidal compactifica-
tion of type IIB superstring action, has attracted considerable of attention in establishing
Beckenstein-Hawking area-entropy relations for extremal black holes and the near ex-
tremal ones. Therefore, it is of interest to obtain type IIB effective action, through
dimensional reduction, in lower dimensional spacetime and explore the implications of
SL(2, R) duality transformations.

Let us consider the ten dimensional action for the type IIB theory:

Ŝ =
1

2κ2

∫

d10x

√

−Ĝ

{

e−2φ̂

(

R̂ + 4(∂φ̂)2 − 1

12
Ĥ

(1)
MNP Ĥ(1)MNP

)

− 1

2
(∂χ̂)2

− 1

12
χ̂2Ĥ

(1)
MNP Ĥ(1)MNP − 1

6
χ̂Ĥ

(1)
MNP Ĥ(2)MNP − 1

12
Ĥ

(2)
MNP Ĥ(2)MNP

}

(14)

Here ĜMN is the ten dimensional metric in the string frame, Ĥ(1) and Ĥ(2) are the
field strengths associated with the potentials B̂(1) and B̂(2) respectively. It is well known
that in ten dimensions, it is not possible to construct a covariant action for ĈMNPR with
self-dual field strength and therefore, we have set this field to zero throughout this paper;
however, one can dimensionally reduce this field while carrying out compactification; we
set it to zero for convenience. In order to express the action in a manifestly SL(2, R)

invariant form, recall that the axion and the dilaton parametrize the coset SL(2,R)
SO(2)

. We

over to the Einstein frame through the conformal transformation ĝMN = e−
1
2
φ̂ĜMN and

the action (14) takes the form

ŜE =
1

2κ2

∫

d10x
√

−ĝ

{

R̂ĝ +
1

4
Tr(∂NM̂∂NM̂−1)− 1

12
ĤT

MNPM̂ĤMNP

}

(15)

Here R̂ĝ is the scalar curvature computed from the Einstein metric. Note that detM̂
is unity. The action is invariant under following transformations,

M̂ → ΛM̂ΛT , H → (ΛT )−1H, ĝMN → ĝMN , (16)

where Λ ∈ SL(2, R). Let us introduce a 2× 2 matrix Σ and consider a generic form of
Λ with ad− bc = 1. It is easy to check that,

ΛΣΛT = Σ, ΣΛΣ = Λ−1, M̂ΣM̂ = Σ, ΣM̂Σ = M̂−1 (17)

Thus Σ plays the role of SL(2, R) metric and the symmetric matrix M̂ ∈ SL(2, R).
It is evident that the second term of equation (15) can be written as

1

4
Tr[∂NM̂Σ∂NM̂Σ] (18)

The Einstein equation can be derived by varying the action with respect to the met-
ric and the equation of motion associated with the antisymmetric tensor fields can be
obtained in a straight forward manner. The M̂ -equation of motion follows from the vari-
ation of the action if we keep in mind that M̂ is a symmetric SL(2, R) matrix satisfying
the properties mentioned above. Thus, if we consider an infinitesimal transformation,
we arrive at following relations.

Λ = 1+ ǫ, Λ ∈ SL(2, R)

ǫΣ + ΣǫT = 0, M̂ → ǫM̂+ M̂ǫT +M (19)
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The desired equation of motion, derived from the above action, is

∂M(
√

−ĝĝMNM̂Σ∂NM̂Σ)− 1

6
ĤTM̂Ĥ = 0 (20)

Note that this is a matrix equation of motion and we have suppressed the indices for
notational conveniences. It is worthwhile, at this stage to point out some similarities
with the the global O(d, d) symmetry that arises when one considers toroidal compact-
ifications to lower spacetime dimension. The metric Σ is analogous to the metric, η,
associated with the O(d, d) transformations and the M̂ equation of motion bears resem-
blance with the corresponding M -matrix of the O(d, d) case.

We consider a string effective action in D spacetime dimensions with massless fields
such as graviton, ĜMN , antisymmetric tensor, B̂MN , (M, N = 0, 1, · · · , D− 1), dilaton,
Φ̂ and n Abelian gauge fields, ÂI

M . If we compactify coordinates on a d = D − 4
dimensional torus and assume that the backgrounds are independent of these d compact
coordinates, the resulting four dimensional reduced effective action takes the following
form

S =

∫

d4x
√−g e−Φ

(

R + gµν∂µΦ∂νΦ +
1

8
Tr∂µ M−1∂µM

−1
4
F i

µν (M
−1)i j F j µν − 1

12
Hµνλ Hµνλ − 2Λ

)

, (21)

Φ = Φ̂− 1
2
ln detGαβ is shifted dilaton with the spacetime dependent background fields

(Gαβ , AI
α ≡ ÂI

α , Bαβ ≡ B̂αβ) defining a generic point in moduli-space in the toroidal
compactification of string theory. The moduli M is a (2d+ n)× (2d+ n) matrix valued
scalar field and satisfies the condition MLML = 1, where L is the O(d, d+ n) metric

ΩTLΩ = L . (22)

Here Id is d-dimensional identity matrix and Ω is an element of the group O(d, d + n).
The field strengths appearing in (21) are

Hµνλ = ∂µBνλ −
1

2
Ai

µLi jF j
νλ + cyclic perm.

F i
µν = ∂µAi

ν − ∂νAi
µ , (23)

where i, j are O(d, d+ n) matrix indices. Ai
µ ≡ (A

(1)α
µ = Ĝµα , A

(2)
µα = B̂µα + B̂αβA

(1)β
µ +

1
2
ÂI

α A
(3) I
µ , A

(3) I
µ = ÂI

µ−ÂI
α A

(1) α
µ ) is a (2d+n) component vector field. It is more conve-

nient for the implementation of S-duality transformation to rescale the σ-model metric
to Einstein metric, gµν → eΦgµν , and introduce the axion ∂σχ = (η2/6)

√−gǫµνλσH
µνλ

where η = e−Φ . Then (21) can be expressed as

S =

∫

d4x
√−g

(

R− 1

2 η2
gµν∂µΨ ∂νΨ̄ +

1

8
Tr(∂µM

−1∂µM)

−1
4
ηF i

µνM
−1
i j F j µν +

1

4
χF i

µν Lij F̃ j µν − 2Λ

η

)

, (24)

where Ψ = χ+ i η is a complex scalar field and

F̃ i
µν =

1

2

√−gǫµνρσ F i ρσ. (25)
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Wemention in passing that the action (21) is manifestly invariant under globalO(d, d+n)
transformations:

M → ΩM ΩT , Ω ∈ O(d, d+ n) (26)

Φ → Φ, gµν → gµν , Bµν → Bµν , Ai
µ → Ωi

j Aj
µ. (27)

The equations of motion corresponding to Ψ, gµν and Aµ derived from the action (24)
are

▽µ ▽µ Ψ

η2
+ i
▽µΨ▽µ Ψ

η3
− i

4
FM F +

1

4
F L F̃ + i

2Λ

η2
= 0, (28)

Rµν −
▽µΨ▽ν Ψ̄

2 η2
+
1

8
Tr(∂µM

−1 ∂νM)− η

2
FµλM

−1F λ
ν + gµν

(

η

8
FM−1F − Λ

η

)

= 0,(29)

▽µ

(

η (M L)ijF j µν − χ F̃ i µν
)

= 0,

(30)

and the Bianchi identity is

▽µF̃ i µν = 0. (31)

The S-duality transformations correspond to

Ψ→ aΨ+ b

cΨ+ d
, a d− b c = 1 , a, b, · · · ∈ Z, (32)

F i
µν → c η (M L)ij F̃ j

µν + (c χ+ d)F i
µν (33)

and the metric gµν and moduli M remain invariant.
Explicit calculations show that under S-duality the terms in (29) and (30) remain

invariant when Λ = 0, however for nonvanishing Λ these equations are not S-duality
invariant. In this context, we mention that it has been observed, in specific cases,
that S-duality invariance of equations of motion is broken in presence of Λ. To analize
S-duality invariance, let us consider a specific transformation (a = d = 0, b = −c = 1)

Ψ→ −1/Ψ and F i
µν → − η (M L)ij F̃ j

µν − χF i
µν . (34)

Now it is straightforward to find that first four terms on the left-hand-side of (29) are
invariant under above transformation (34) while the last term with Λ is not. Similarly,
it can also be checked that except Λ-term all other terms in (30) make an invariant com-
bination. Thus in general, the presence of cosmological constant breaks the S-duality
invariance of the string equations of motion. Furthermore, in principle the cosmological
constant Λ can be generalised to a nontrivial dilaton potential V (Φ) which might be gen-
erated due to nonperturbative effects. However, the corresponding equations of motion

7



are S-duality invariant only if V (Φ) = 0. We write the equations of motion involving
V (Φ) after rescaling to Einstein metric:

▽µ ▽µ Ψ

η2
+ i
▽µΨ▽µ Ψ

η3
− i

4
FM F +

1

4
F L F̃ + i

(

2 Ṽ (η)

η2
− 2

η

∂Ṽ (η)

∂η

)

= 0,

Rµν −
▽µΨ▽ν Ψ̄

2 η2
+
1

8
Tr(∂µM

−1 ∂νM)− η

2
FµλM

−1F λ
ν + gµν

(

η

8
FM−1F − Ṽ (η)

η

)

= 0,

(35)

where Ṽ (η) is the dilaton potential reexpressed in terms of new variable η = e−Φ. We
note that the above equations of motion (35) are not invariant under the transformation
(34) as long as the dilaton potential V (Φ) is nonzero.

In summarizing, we have explored the consequences of S-duality transformations
on the equations of motion with nonzero cosmological constant. First, we studied a
four dimensional action in a general frame-work. The reduced action (21) could have
been obtained from toroidal compactification of a heterotic string effective action in
higher dimensions. Although these actions do not necessarily represent supersymmetric
theories, S-duality invariance would have implied the absence of cosmological constant.
We note that the cosmological constant term breaks S-duality for the exact conformal
field theory backgrounds.

In this context, let us briefly discuss the presence of higher order terms and the
consequences of the S-duality transformations in the equations of motion. We write
down the next higher order term to the low energy string effective action (24) as

S =

∫

d4x
√−g η

(

RµνλρR
µνλρ

)

. (36)

In presence of the higher order term the equation of motion (29) gets an additional
contribution i

4
RµνλρR

µνλρ and similarly (30) is modified with the extra term η [Gµν +
gµν ▽α ▽αR], where

Gµν = −
1

2
gµνRαβλρR

αβλρ+2RµαβγR
αβγ

ν −4▽α▽αRµν+2▽µ▽νR−4RµαR α
ν +4RµανβRαβ.

(37)
We have checked that under the S-duality transformation with the additional term also
breaks S-duality invariance. The graviton equation along with the higher order correction
term as mentioned above is also not invariant under the S-duality. Thus it can be argued
that the presence of the higher order terms do not restore the S-duality invariance in
the equations of motion. Notice that when we dimensionally reduce the terms involving
quadratic in curvature, there will be additional terms in involving moduli and gauge
fields arising from dimensional reduction. We have seen that the contribution of (36)
to equations of motion already breaks the S-duality. Therefore, even if we explicitly
take into account the contribution coming from moduli and extra gauge fields in the
corresponding equations of motion, the S-duality invariance will not be restored.
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3 Scherk–Schwarz Dimensional Reduction

In the present section, we demonstrate how the preceding conjecture is realized for gen-
eralized toroidal compactifications of heterotic string theory. In this case, the standard
Kaluza-Klein reduction on a d-dimensional torus from 10 to 10− d dimensions produces
a theory with global O(d, d + 16) symmetry and with a U(1)2d+16 gauge group. The
effective action can be organized to make the former U-duality symmetry manifest. Es-
sentially the 2d + 16 gauge fields may be assembled as a vector under this symmetry,
while there are d(d + 16) moduli scalars transforming as a traceless symmetric tensor.
We will show that this global symmetry is retained in the massive theories produced
by generalized Scherk-Schwarz reductions. The bosonic part of effective action may be
written as:

S =

∫

dDx
√−ge−φ

{

R + (∇φ)2 +
1

8
LabDµM

bcLcdDµMda

− 1

4
F a

µνLabM
bcLcdF

dµν − 1

12
H2

µνλ −W(M)
}

(38)

where the scalar potential takes the simple form:

W(M) =
1

12
MadM beM cffabcfdef −

1

4
MadLbeLcffabcfdef . (39)

The essential point is that the various mass parameters introduced by the generalized
reduction can be organized as a completely antisymmetric three-index tensor fabc under
the O(d, d + 16) transformations. These parameters play a dual role in the reduced
theory: first, as mass parameters defining the scalar potential potcovariant, and second
as structure constants in the non-abelian gauge group of this theory, implicitly appearing
in F a

µν andDµMab. That is the generalized reduction has produced a gauged supergravity
with a nontrivial non-abelian symmetry.

A simple intuition which explains the emergence of this nonabelian symmetry is as
follows: The Scherk-Schwarz reduction introduces an axionic shift which depends on
internal coordinates. Now a part of gauge symmetry in the reduced theory can be
thought of as local shifts of the internal coordinates. These Kaluza-Klein gauge trans-
formations are inherited from the diffeomorphism invariance of original ten-dimensional
theory. Hence consistency of this symmetry in the generalized reduction requires that
these gauge transformations be accompanied by a local axionic shift. That is the latter
symmetries, which are ordinarily only a part of the global U-duality group, have now
been incorporated as a part of the local gauge group.

We begin with a review of the standard Kaluza-Klein reduction of low energy het-
erotic string theory on a d-torus. Our notation will be such that d+D = 10 and hence
this compactification yields an effective D-dimensional theory. In ten dimensions, the
low energy action is

S =

∫

d10x
√
−Ge−Φ

{

R+ (∇Φ)2 − 1

12
HµνλHµνλ − 1

4
Σ16

I=1F I
µνF I µν

}

(40)

The ten-dimensional fields, Φ, Gµν , R, Hµνλ and F I
µν , denote the dilaton, string-frame

metric, Ricci scalar, Kalb-Ramond three-form field strength, and the Yang-Mills field
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strengths, respectively. The D-dimensional counterparts of these fields will be denoted
with upper case latin letters, except the dilaton, which will be φ. Our convention for
the metric signature is G = (−,+,+, ...,+), and that for the curvature is Rµ

νλσ =
∂λΓ

µ
νσ − ∂σΓ

µ
νλ + . . .. We assume that the only nontrivial components of the Yang-

Mills potential reside in the Cartan subalgebra of the gauge group, and hence F I
µν =

∂µAI
ν − ∂νAI

µ. The low energy action has been truncated to terms with at most two
derivatives. Consistent with this truncation, the three-form H is defined by including
only the Yang-Mills Chern-Simons term,

H = dB − 1

2
Σ16

I=1AI ∧ F I (41)

In component notation by the antisymmetry of Bµν and F I
µν , we have

Hµνρ = ∂µBνρ −
1

2
Σ16

I=1AI
µF I

νρ + cyclic perm. (42)

We wish to consider the standard Kaluza-Klein dimensional reduction of heterotic
action (40) on a d-torus, to set the stage for Scherk-Schwarz reductions. After precision
algebraic manipulations with the reduction formulas, we find that the reduced degrees of
freedom, with simple gauge transformation properties, are given in terms of the original
higher-dimensional degrees of freedom as follows:

AI
µ = AI

µ −AI
MV M

µ, BµM = BµM + BMNV N
µ +

1

2
AI

MAI
µ

Bµν = Bµν + V M
[µBν]M − BMNV M

µV
N

ν −AI
MV M

[µA
I
ν] (43)

The vector fields BµM and AI
µ with V M

µ comprise the full multiplet of 2d + 16
Abelian U(1) gauge fields. Their field strengths will be denoted:

V M
µν = ∂µV

M
ν − ∂νV

M
µ, HµνM = ∂µBνM − ∂νBµM , F I

µν = ∂µA
I
ν − ∂νA

I
µ.
(44)

The reduced action in D dimensions may be decomposed as follows:

S = S1 + S2 + S3 (45)

where the reduced metric-dilaton-two-form action is

S1 =

∫

dDx
√−ge−φ

{

R + (∇φ)2 − 1

12
H2

µνλ

}

, (46)

the scalar moduli action is

S2 =

∫

dDx
√−ge−φ

{1

4
(∇µGMN)(∇µGMN)− 1

2
GMN(∇µAI

M)(∇µAI
N)

−1
4
GMPGNQ

(

∇µBMN +AI
[M∇µAI

N ]

)(

∇µBPQ +AJ
[P∇µAJ

Q]

)}

(47)

and the gauge field action is

S3 = −
1

4

∫

dDx
√−ge−φ

{

f I
µνf

I µν + GMNhµνMhµν
N + GMNV M

µνV
N µν

}

. (48)
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In the latter, we use the definitions

f I
µν = F I

µν +AI
MV M

µν hµνM = HµνM −AI
MF I

µν − CMNV N
µν (49)

where CMN = BMN + 1
2
AI

MAI
N . The reduced three-form field strength is

Hµνρ = ∂µBνρ −
1

2
AI

µF
I
νρ −

1

2
V M

µHνρM −
1

2
BµMV M

νρ + cyclic perm. (50)

In addition to the original Yang-Mills Chern-Simons terms, the three-form field strength
now also contains the induced Chern-Simons terms arising for the new gauge fields.
At this point, we are ready to carry out the reduction of the action (40) from 10 to D
dimensions with the set of mass parameters γM

NP , m
I
MN and βMNP . First, it is convenient

to split the action into three sectors: the metric-dilaton, Yang-Mills, and Kalb-Ramond
three-from, and we discuss each of them separately.

The standard Kaluza-Klein reduction can be generalized by the introduction of a
constant flux of the three-form or gauge field strengths on a three- or two-cycle in the
internal space. These compactifications are then similar to the Type II string and M-
theory reductions. Note that a constant internal flux requires that the corresponding
potential necessarily depends on the internal coordinates. These fluxes, or alternatively
the slopes for the internal dependence for the potentials, then appear as mass parameters
in the reduced theory. There is also another set of masses related to certain components
of the internal metric, but the discussion of these contributions is more involved and we
will leave their discussion for the following section.

We can now reduce the action (40) using these results. This will generalize the
Kaluza-Klein reduction of the low energy heterotic action. The net result of this calcu-
lation is

S = S1 + S2 + S3 (51)

where the individual contributions to the action are

S1 =

∫

dDx
√−ge−φ

{

R + (∇φ)2 − 1

2
H2

µνλ

}

(52)

for the reduced metric-dilaton-two-form part,

S2 = −
∫

dDx
√−ge−φ

{

W(G,A)− 1

4
∇µGMN∇µGMN +

1

2
GMNDµAI

MDµAI
N

+
1

4
GMNGPQ(DµBMP +AI

[MDµAI
P ])(DµBNQ +AJ

[NDµAJ
Q])
}

(53)

for the moduli fields, and

S3 = −
1

4

∫

dDx
√−ge−φ

{

GMNV M
µνV

N µν + f I
µνf

I µν + GMNhµνMhµν
N

}

(54)

for the gauge field contributions. The auxiliary fields are defined according to

f I
µν = F I

µν +AI
MV M

µν

hµνM = HµνM −AI
MF I

µν − CMNV N
µν (55)
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The reduced three-form field strength, with all Chern-Simons contributions, is in com-
ponent form

Hµνλ = ∂µBνλ −
1

2
AI

µF
I
νλ −

1

2
V M

µHνλM −
1

2
BµMV M

νλ

+
1

2
βMNP V M

µV
N

νV
P

λ −mI
MNAI

µV
M

νV
N

λ + cyclic perm. (56)

In the moduli action modract, the functionW(GMN ,AI
M) denotes the moduli potential,

which arises because of the internal fluxes. They will in general induce an effective scalar
potential, via the terms such as, F I

MNF I MN ∼ GMNGPQmI
MP mI

NQ. For the reduction
scheme we find that the reduced moduli potential is

W(G,A) =
3

4
GMNGPQGRS

(

βMPR + 2AI
[MmI

PR]

)(

βNQS + 2AJ
[NmJ

QS]

)

+GMNGPQmI
MP mI

NQ (57)

Note that this moduli potential is independent of the two-form axions BMN .
We continue with the metric-dilaton sector, which is given by

Sgφ =

∫

d10x
√
−Ge−Φ

{

R(G) + (∇Φ)2
}

(58)

We can expand the ten-dimensional Ricci scalar and dilaton in terms of fields in the
D-dimensional space-time. The previous action becomes

Sgφ =

∫

dDx
√−ge−φ

{

R + (∇φ)2 +
1

4
DµGMNDµGMN − 1

4
GMNV M

µνV
Nµν

− GMNGPQGRSγM
PRγN

QS − 2GMNγP
MQγQ

NP

}

(59)

where we have used the following definitions:

DµGMN = ∂µGMN − 2GMP γP
NQV Q

µ − 2GNP γP
MQV Q

µ

V M
µν = ∂µV

M
ν − ∂νV

M
µ − 2γM

NP V N
µV

P
ν (60)

and where the covariant derivative of the moduli GMN emerges because of the axionic
degrees of freedom contained in the matrix GMN : we have GMN = δABEA

MEB
N . Hence

the local derivatives of GMN must be defined covariantly, since it contains a symmetric
bilinear of adjoint fields with respect to the nonabelian Kaluza-Klein group. It can be
easily verified that the determinant of GMN does not contain any axionic fields, however,
and so is a gauge singlet. That it why we can still shift the ten-dimensional dilaton to
get the D-dimensional dilaton.

We can now reduce the Yang-Mills sector. The ten-dimensional action is

SCY M = −1
4

∫

d10x
√
−Ge−ΦF I

µνF I µν (61)

Using the definition AI
µ = AI

µ −AI
MV M

µ, we arrive at

SCY M = −
∫

dDx
√−ge−φ

{1

4
(F I

µν +AI
MV M

µν)(F
I µν +AI

MV A µν)

+
1

2
GMNDµAI

MDµAI
N + GMPGNQ(mI

MN +AI
RγR

MN)(m
I
PQ +AI

SγS
PQ)
}

(62)
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where we use

DµAI
M = ∂µAI

M − 2(mI
MN +AI

P γP
MN)V

N
µ

F I
µν = ∂µA

I
ν − ∂νA

I
µ − 2mI

MNV M
µV

N
ν (63)

which again follow straightforwardly by dimensional reduction. The last contribution to
the action comes from the three-form kinetic terms in ten dimensions

SNS = −
1

12

∫

d10x
√
−Ge−ΦHµνλHµνλ (64)

The reduction of this action produces the following action in D dimensions:

SNS = −
∫

dDx
√−ge−φ

{ 1

12
HµνλH

µνλ

+
1

4
GMN(HµνM −AI

MF I
µν − CMP V P

µν)(H
µν

N −AI
NF I µν − CNQV Qµν)

+
1

4
GMPGNQ(DµBMN +AI

[MDµAI
N ])(DµBPQ +AJ

[PDµAJ
Q])

+
3

4
GMQGNRGPS(βMNP + 2AI

[MmI
NP ] − 2CT [MγG

NP ])

× (βQRS + 2AJ
[QmJ

RS] − 2CU [QγU
RS])

}

(65)

The new definitions here are

DµBMN = ∂µBMN + 2mI
MNAI

µ + 2γP
MNBµP − βMNP V P

µ

+4BQ[MγQ
N ]P V P

µ − 2AI
[MmI

N ]P V P
µ

HµνM = ∂µBνM − ∂νBµM + 3βMNP V N
µV

P
ν + 4γP

MNB[µP V N
ν] + 4mI

MNAI
[µV

N
ν]

(66)

and the reduced three-form field strength is

Hµνλ = ∂µBνλ −
1

2
AI

µF
I
νλ −

1

2
V M

µHνλM −
1

2
BµMV M

νλ +
1

2
βMNP V M

µV
N

νV
P

λ

−mI
MNAI

µV
M

νV
N

λ − γM
NP BµMV N

νV
P

λ + cyclic perm. (67)

where BµM and Bµν are defined in (43), and still are the correct quantities to express
the reduced action, in a manifestly gauge and U-duality symmetric way. With this, we
finally find the reduced Kalb-Ramond action in D dimensions:

SKR = −
∫

dDx
√−ge−φ

{ 1

12
HµνλH

µνλ

+
1

4
GMN(BµνM −AI

MF I
µν − CMP V P

µν)(B
µν

N −AI
NF I µν − CNQV Qµν)

+
1

4
GMPGNQ(DµBMN +AI

[MDµAI
N ])(DµBPQ +AJ

[PDµAJ
Q])

+
3

4
GMQGNRGPS(βMNP + 2AI

[MmI
NP ] − 2CT [MγG

NP ])

× (βQRS + 2AJ
[QmJ

RS] − 2CU [QγH
RS])

}

(68)
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This is the last step in the reduction of the effective action.
To reassemble the reduced terms (59), (62) and (65) into a manifestly symmetric

action in D dimensions, we first need to establish the correct gauge algebra of the
reduced theory and identify the gauge invariant couplings of fields. Proceeding as before,
we first give the infinitesimal reduced gauge transformations. The fields not listed below
explicitly are invariant under the corresponding transformations. The reduced gauge
transformations are

Kalb-Ramond gauge transformations:

B′MN = BMN − 2λP γP
MN , B′

µM = BµM + ∂µλM − 2λP γP
MNV N

µ

B′
µν = Bµν +

1

2
λMV M

µν + γM
NP λMV N

µV
P

ν (69)

Yang-Mills gauge transformations:

B′MN = BMN − 2λImI
MN , A′

I
µ = AI

µ + ∂µλ
I

B′
µM = BµM − 2λImI

MNV N
µ, B′

µν = Bµν +
1

2
λIF I

µν +mI
MNλIV M

µV
N

ν (70)

Kaluza-Klein gauge transformations:

A′IM = AI
M + 2γN

MP ωPAI
N + 2mI

MNωN

B′MN = BMN + 3βMNP ωP + 2AI
[MmI

N ]P ωP +O(ω2)

G ′MN = GMN + 2γP
MQωQGPN + 2γP

NQωQGMP +O(ω2)

V ′M
µ = V M

µ − 2γM
NP ωP V N

µ + ∂µω
M +O(ω2)

A′
I
µ = AI

µ − 2mI
MNωNV M

µ +O(ω2)

B′
µM = BµM + 2γN

MP ωP BµN + 2mI
MNωNAI

µ + 3βMNP ωP V N
µ +O(ω2)

B′
µν = Bµν +

1

2
ωMHµνM −

3

2
βMNP ωMV N

µV
P

ν

− 2γP
MNωMB[µP V N

ν] − 2ωMmI
MNAI

[µV
N

ν] +O(ω2) (71)

Note that in the last set of gauge transformations, we have nontrivial transformation
rules for the moduli GMN . This arises from the nontrivial couplings of the metric axions,
where the metric mass parameters γM

NP were set to zero.
We define a combined gauge parameter ω̂a = (ωM , λM , λI) and generators: Ta =

(ZM , XM , Y I). The algebra of the latter

[Ta, Tb] = ifab
cTc (72)

defines the new set of structure constants, fab
c. To compute these, we again consider

the products of transformations (69–71) of the form h−1 ·g−1 ·h ·g where h and g are two
of gauge transformations with g = exp(iω̂a

1Ta) and h = exp(iω̂a
2Ta). Hence substituting

the explicit form of the gauge transformations (69–71), we can deduce the structure
constants. We evaluate h−1 · g−1 ·h · g|Ψ〉 for the set of basis states defined by the vector
fields. The structure constants are

fM
NP = fNP

M = 2γM
NP f I

MN = fMN
I = 2mI

MN fMNP = −3βMNP (73)
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The resulting gauge algebra is

[XM , XN ] = [Y I , Y J ] = [XM , Y I ] = 0

[XM , ZN ] = 2iγM
NP XP [Y I , ZM ] = 2imI

MNXN

[ZM , ZN ] = −3iβMNP XP + 2imI
MNY I + 2iγP

MNZP (74)

While the standard Cartan metric on this Lie algebra (74) is still degenerate, since the
gauge algebra is not semi-simple, we can nevertheless define the metric on the gauge
algebra by 〈Ta, Tb〉 = Lab. Formally keeping the definition of the Lie-algebra-valued
gauge field one-form potential, we find that the Lie-algebra-valued gauge field strength

F = dA+ iA ∧ A =
1

2
F a

µνTadxµ ∧ dxν (75)

again has components which coincide with the expressions for field strengths that come
from dimensional reduction: F a

µν = (V M
µν , HµνM , F I

µν). Explicitly, the components of
the gauge field strength are

Fµν
M = ∂µV

M
ν − ∂νV

M
µ − 2γM

NP V N
µV

P
ν

FµνM = ∂µBνM − ∂νBµM + 3βMNP V N
µV

P
ν + 4mI

MNAI
[µV

N
ν] + 4γP

MNB[µP V N
ν]

Fµν
I = ∂µA

I
ν − ∂νA

I
µ − 2mI

MNV M
µV

N
ν (76)

The nonabelian Chern-Simons form can be computed as usual, to yield

ωCS = 〈A ∧ F − i

3
A ∧ A ∧ A〉 (77)

=
1

3
dxµ ∧ dxν ∧ dxλ

(1

2
AI

µF
I
νλ +

1

2
V M

µHνλM +
1

2
BµMV M

νλ

+
1

2
βMNP V M

µV
N

νV
P

λ −mI
MNAI

µV
M

νV
N

λ − γM
NP BµMV N

νV
P

ν + c.p.
)

This is exactly the anomaly contribution to the reduced three-form field strength. Again
the Chern-Simons terms get twisted together into a single nonabelian structure, such
that, in form notation, the reduced three-form field strength is simply

H = dB − 1

2
ωCS (78)

We can also put the moduli potential in a duality symmetric form. Lowering the last
of index on the structure constants, fabc = f[ab

dLd|c], we can write the scalar potential
entirely in terms of the moduli matrix Mab:

W(M) =
1

12
MadM beM cffabcfdef −

1

4
MadLbeLcffabcfdef . (79)

Note the additional term linear in M which was absent in the formula (??) obtained with
nontrivial fluxes in the matter sector. This is, of course, consistent with our previous
results. Using the structure constants found in eq. strc, γM

NP = 0, this linear term
automatically vanishes. This new term’s only nontrivial contribution here is the last
interaction appearing in eq. redmetdil, which is linear in G and quadratic in the γM

NP .
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The mass parameters γM
NP , mI

MN and βMNP must satisfy the constraints

γM
N [P γN

QR] = 0, γM
MN = 0,

mI
Q[MγQ

NP ] = 0, βR[MNγR
PQ] = mI

[MNmI
PQ] . (80)

These relations will ensure that the structure constants satisfy the Jacobi identity:

Ladfa[bcfd|ef ] =
1

3
Lad
(

fabcfdef + fabefdfc + fabffdce

)

= 0 (81)

It now remains to note that we can also collect the gauge kinetic terms and the
moduli terms in the manifestly gauge- and duality-invariant fashion. The gauge fields
transform according to F ′aµν = Ua

bF
b
µν , where Ua

b is an O(d, d + 16) matrix. Thus the
moduli fields transform as

M ′ab = Ua
cU

b
dM

cd (82)

under the same gauge transformations, and we see that the covariant derivative of the
scalar moduli can be written

DµM
ab = ∂µM

ab − fcd
aAc

µM
db − fcd

bAc
µM

ad . (83)

These are indeed identical with the expressions which were obtained by reduction. With
this it can be easily shown that the gauge kinetic terms can be collected into the covariant
expression

F2 = F a
µνLabM

bcLcdF
dµν (84)

Therefore, the reduced action can be again rewritten as

S =

∫

dDx
√−ge−φ

{

R + (∇φ)2 +
1

8
LabDµM

bcLcdDµMda

− 1

4
F a

µνLabM
bcLcdF

dµν − 1

12
H2

µνλ −W(M)
}

(85)

The general massive reductions produce reduced theories with a remarkably symmetric
form, where a part of the O(d, d+16) duality must be gauged in order to accommodate
the couplings induced by the mass terms. Here, we are lead to a slight puzzle. Quan-
tization conditions seem to break the O(d, d + 16, R) symmetry of the reduced action
to O(d, d + 16, Z). Another aspect of the reduced theory was that a part of the global
O(d, d + 16, R) symmetry becomes a local gauge symmetry. Thus it would seem that
this continuous subgroup of the U-duality group must also be exact since it corresponds
to a constant gauge transformations. The puzzle is to understand the interplay of these
two apparent exact symmetries. We will argue that in fact these symmetries are distinct
symmetries, despite their apparent common origin in O(d, d + 16, R). The physically
meaningful properties of the reduced theory, given by the masses and the structure con-
stants, depend on the directions and types of fields which are excited on the internal
space. In general, the internal fields can be turned on by using the tensor representations
of isometries. The similarity of the reduced actions for four dimensions is essentially dic-
tated by the fact that they are both versions of gauged N = 4 supergravity in which the
form of the action is completely fixed given the gauge group.
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4 Higher Dimensional Effective Action

It is well-known that the equations of motion of type IIB supergravity theory can not
be obtained from a covariant action because of the presence of a four-form gauge field
with the self-dual field strength in the spectrum. This gauge field couples to a self-dual
three-brane which can give rise to string solution in D ≤ 8. But, we are not going
to consider this type of string solution and set the corresponding field-strength F5 to
zero. There are also magnetically charged string solution for type II theory in D ≤ 6,
but since we are not restricting ourselves to any particular dimensionality we will not
consider those kinds of solutions also. Now as we set F5 = 0, the type IIB equations of
motion can be derived from the following covariant action:

S̃IIB
10 =

1

2κ2

∫

d10x
√
−G

[

e−2φ

(

R + 4∂µφ∂µφ− 1

12
H

(1)
µνλH

(1) µνλ

)

−1
2
∂µχ∂µχ− 1

12

(

H
(2)
µνλ + χH

(1)
µνλ

)

(

H(2) µνλ + χH(1) µνλ
)

]

(86)

Here µ, ν, . . . = 0, 1, . . . , D − 1 are the space-time indices and m, n, . . . = D, . . . , 9
are the internal indices. The metric Gµν , the dilaton φ and the antisymmetric tensor

B
(1)
µν (with H(1) = dB(1)) represent the massless modes in the NS-NS sector of type IIB

theory. Also the scalar χ and B
(2)
µν (with H(2) = dB(2)) represent the massless modes in

the R-R sector. The reduced action takes the form:

1

2κ2

∫

dDx
√
−G

[

e−2φ

(

R + 4∂µφ∂µφ− 1

4
GmnF

(3) m
µν F (3) µν, n +

1

4
∂µGmn∂

µGmn

−1
4
GmpGnq∂µB

(1)
mn∂

µB(1)
pq −

1

4
GmpH(1)

µν mH(1) µν
p − 1

12
H

(1)
µνλH

(1) µνλ

)

−1
2
∆∂µχ∂µχ− 1

4
∆GmpGnq

(

∂µB
(2)
mn + χ∂µB

(1)
mn

) (

∂µB(2)
pq + χ∂µB(1)

pq

)

−1
4
∆Gmp

(

H(2)
µν m + χH(1)

µν m

) (

H(2) µν
p + χH(1) µν

p

)

− 1

12
∆
(

H
(2)
µνλ + χH

(1)
µνλ

)

(

H(2) µνλ + χH(1) µνλ
)

]

(87)

The corresponding field-strengths are given below:

H(i)
µmn = H(i)

µmn = ∂µB
(i)
mn, H(i)

µνm = F (i)
µνm −B(i)

mnF
(3) n
µν (88)

where F
(i)
µν m = ∂µA

(i)
ν m − ∂νA

(i)
µ m and F

(3) m
µν = ∂µA

(3) m
ν − ∂νA

(3) m
µ and finally

H
(i)
µνλ = ∂µB

(i)
νλ − F (3) m

µν A
(i)
λ m + cyc. in µνλ (89)

The reduced action (87) have an SL(2, R) invariance which can be better understood by
rewriting the action in the Einstein frame. The metric in the Einstein frame is related
with the string metric as given in the second section. The action (87) in the Einstein
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frame takes the following form:

1

2κ2

∫

dDx
√−g

[

R− 1

2
∂µφ̃∂µφ̃− 1

2
e2φ̃∂µχ∂µχ+

1

8
∂µ log∆

¯
∂µ log∆

¯

+
1

4
∂µgmn∂

µgmn − 1

4
gmnF

(3) m
µν F (3) µν, n − 1

4
(∆
¯
)1/2gmpgnqe−φ̃∂µB

(1)
mn∂

µB(1)
pq

−1
4
(∆
¯
)1/2gmpgnqeφ̃

(

∂µB
(2)
mn + χ∂µB

(1)
mn

) (

∂µB(2)
pq + χ∂µB(1)

pq

)

(90)

−1
4
(∆
¯
)1/2gmp

{

e−φ̃H(1)
µνmH(1) µν

p + eφ̃
(

H(2)
µν m + χH(1)

µν m

) (

H(2) µν
p + χH(1) µν

p

)

}

− 1

12
(∆
¯
)1/2

{

e−φ̃H
(1)
µνλH

(1) µνλ + eφ̃
(

H
(2)
µνλ + χH

(1)
µνλ

)

(

H(2) µνλ + χH(1) µνλ
)

}

]

where we have defined φ̃ = φ+ 1
2
log∆. Also, Gmn = e

4
D−2

φgmn and ∆ = e2
(10−D)
(D−2)

φ∆
¯
with

(∆
¯
)2 = (det gmn). If we define the following SL(2, R) matrix then the action (90) can

be expressed in the manifestly SL(2, R) invariant form as

1

2κ2

∫

dDx
√−g

[

R +
1

4
tr ∂µMD∂µM−1

D +
1

8
∂µ log∆

¯
∂µ log∆

¯
+
1

4
∂µgmn∂

µgmn

−1
4
gmnF

(3) m
µν F (3) µν, n − 1

4
(∆
¯
)1/2gmpgnq∂µBT

mnMD∂µBpq (91)

−1
4
(∆
¯
)1/2gmpHT

µν mMDHµν
p −

1

12
(∆
¯
)1/2HT

µνλMDHµνλ

]

Here we have defined Bmn ≡
(

B
(1)
mn

B
(2)
mn

)

, Hµν m ≡
(

H
(1)
µν m

H
(2)
µν m

)

, Hµνλ ≡
(

H
(1)
µνλ

H
(2)
µνλ

)

.

The action (91) is invariant under the following global SL(2, R) transformation:

MD → ΛMDΛ
T , Bmn → (Λ−1)TBmn

(

A
(1)
µ m

A
(2)
µ m

)

≡ Aµ m → (Λ−1)TAµ m,

(

B
(1)
µν

B
(2)
µν

)

≡ Bµν → (Λ−1)TBµν (92)

where Λ =

(

a b
c d

)

is the SL(2, R) transformation matrix and a, b, c, d are constants

satisfying ad− bc = 1. If we set Gmn = δmn, ∆ = 1, A
(3) m
µ = A

(i)
µ n = B

(i)
mn = 0, then the

action (91) reduces to

1

2κ2

∫

dDx
√−g

[

R +
1

4
tr ∂µMD∂µM−1

D +
1

8
∂µ log∆

¯
∂µ log∆

¯

+
1

4
∂µgmn∂

µgmn − 1

12
(∆
¯
)1/2HT

µνλMDHµνλ

]

(93)

This action is SL(2, R) invariant under the transformation (92). Note that both gmn

and ∆
¯
are SL(2, R) invariant. Also,MD in (92) is as given in (90) with φ̃ replaced by

φ, the D-dimensional dilaton as ∆ = 1 in this case. Note also that although we have
set Gmn = δmn and ∆ = 1, but as they are not SL(2, R) invariant, non-trivial values of
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Gmn and ∆ will be generated through SL(2, R) transformation. It can be easily checked
that the SL(2, R) invariant action (93) gets precisely converted to the effective action
considered by Dabholkar by setting the R-R fields to zero. Thus, we note that the action
in the Einstein frame is a special case of the more general type II action (93) and so the
solution is a particular case of a general solution that we are going to construct.

The 10-dimensional effective action is invariant under general coordinate transfor-
mations as well as the gauge transformations associated with the two antisymmetric
tensor fields. When we examine the local symmetries of the theory in D-dimensions
after dimensional reduction, we find that there is general coordinate transformation in-
variance in D-dimensions. The Abelian gauge transformation, associated with Aα

µ, has

its origin in 10-dimensional general coordinate transformations. The field strength H
(i)
µνα

is invariant under a suitable gauge transformation once we define the gauge transforma-
tion for F

(i)
µνα since Fα

µν is gauge invariant under the gauge transformation of A-gauge
fields. Finally, the tensor field strength H

(i)
µνρ, defined above, can be shown to be gauge

invariant by defining appropriate gauge transformations for B
(i)
µν :

δB(i)
µν = ∂µξ

(i)
ν − ∂νξ

(i)
µ . (94)

The D-dimensional effective action takes the following form

SE =

∫

dDx
√−g

√
G
{

R +
1

4
[∂µGαβ∂µGαβ + gµν∂µlog G∂ν log G − gµλgνρGαβFα

µνFβ
λρ]

−1
4
GαβGγδ∂µB

(i)
αγMij∂

µB
(j)
βδ −

1

4
GαβgµλgνρH(i)

µναMijH
(j)
λρβ

− 1

12
H(i)

µνρMijH
(j)µνρ +

1

4
Tr(∂µMΣ∂µMΣ)

}

(95)

The above action is expressed in the Einstein frame, G being determinant of Gαβ. If
we demand SL(2, R) invariance of the above action, then the backgrounds are required
to satisfy following transformation properties:

M→ ΛMΛT , H(i)
µνρ → (ΛT )−1

ijH
(j)
µνρA

(i)
µα → (ΛT )−1

ijA
(j)
µα, B

(i)
αβ → (ΛT )−1

ijB
(j)
αβ(96)

It is evident from the D-dimensional action that dilaton and axion interact with an-
tisymmetric tensor fields, gauge fields and the scalars due to the presence ofM matrix
in various terms and these interaction terms respect the SL(2, R) symmetry. It is im-
portant know what type of dilatonic potential is admissible in the above action which
respects the S-duality symmetry. The only permissible interaction terms preserving the
symmetry are of the form Tr[MΣ]n. It is easy to check using the properties of Σ and
M matrices, such as Tr(MΣ) = 0 and Tr(MΣMΣ) = 2, that

Tr[MΣ]n = 0, T r[MΣ]n = 2 (97)

For odd n ∈ Z and even n ∈ Z respectively. Therefore, we reach a surprizing conclusion
that the presence of interaction terms of the form only adds constant term which amounts
to adding cosmological constant term to the reduced action. Note that the Einstein
metric is SL(2, R) invariant and one can add terms involving higher powers of curvature
(higher derivatives of metric) to the action and maintain the symmetry. However, we are
considering the case when the gravitational part of the action has the Einstein-Hilbert
term only.
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5 Discussion and Conclusion

To summarize, we first argued that the magnetically charged black hole solution by
Garfinkle, Horowitz and Strominger (GHS) derived in the context of D = 4 heterotic
string theory can also be interpreted as black hole solution of D = 4 type IIB theory
such that the gauge field appears due to compactification of the NS-NS antisymmetric
field of D = 10 action with all R-R fields set to zero. This GHS solution arises due to
the presence of an Abelian gauge field in the NS-NS sector of the theory as a conse-
quence of compactification of the corresponding antisymmetric tensor field. It has been
demonstrated that the low energy effective action of type IIB string theory compact-
ified on torus possesses an SL(2, Z) invariance if the D = 10 theory is endowed with
the same symmetry. By exploiting this symmetry of type IIB string theory, we have
constructed an infinite family of magnetically charged black hole solutions in D = 4.
Black hole solutions in string theory having electric, magnetic and both charges asso-
ciated with the gauge fields originating from the dimensional reduction of the various
heterotic string states as well as the NS-NS sector states of type II string theory have
been constructed before. The solutions we have constructed are characterized by two
integers corresponding to the charges associated with both NS-NS sector and R-R sector
gauge fields. We have studied the toroidal compactification of a truncated version when
the self-dual five-form field strength is zero of the type IIB string effective action in the
string frame. As we finally converted the reduced action in the Einstein frame by con-
formal rescaling of the metric we have recovered the SL(2, R) invariance of the reduced
action as a consequence of the same symmetry in ten dimensions. We have obtained the
transformation properties of the various fields and compared with the recently obtained
results of toroidal compactification of the same type IIB action in the Einstein frame.
Since the SL(2, R) matrixMD involved in the process of showing the invariance does not
contain the D-dimensional dilaton, the issue of strong-weak coupling duality symmetry
under a Z2 subgroup of this SL(2, R) group becomes confusing. We have clarified this
point and have shown how the Z2 subgroup produces the strong-weak coupling duality
in the reduced theory.

To conclude, we have constructed in this paper the SL(2, Z) multiplets of macro-
scopic string-like solutions of type II theory in any D < 10. This construction is made
possible by a recent observation of the SL(2, R) invariance of toroidally compactified
type IIB string effective action. This generalizes the construction of SL(2, Z) multiplets
of string-like solutions of type IIB string theory in D = 10 by Schwarz. Our solutions
have formal similarity with the solutions in D = 10, but they are totally different as
they involve dimensionally dependent functions. The string-like solutions in D < 10
are also characterized by two relatively prime integers, as their counterpart in D = 10,
corresponding to the charges of two antisymmetric tensor fields in the theory. We have
also discussed the stability of the solutions from the charge conservation and tension gap
relation. As we have mentioned, there are more string-like solutions not only with elec-
tric charge but also with magnetic charge in type II theories in lower dimensions which
should form multiplets of bigger symmetry group, the U-duality group. Apart from
the string-like solutions, there are also other p-brane solutions in these theories which
deserve a systematic study to properly identify the complete U-duality group. This will
provide strong evidence for the conjecture of the U-duality symmetries in those theories.
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