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Abstract

We construct a consistent supersymmetric action for brane chiral and vector multiplets in a
six-dimensional chiral gauged supergravity. A nonzero brane tension can be accommodated by
allowing for a brane-localized Fayet-Iliopoulos term proportional to the brane tension. When the
brane chiral multiplet is charged under the bulk U(1)R, we obtain a nontrivial coupling to the
extra component of the U(1)R gauge field strength and a singular scalar self-interaction term.
In the context of D = 5, N = 2, Yang-Mills Supergavity compactified on S1/Z2 we consider the
supersymmetric coupling of matter fields propagating on the brane. To solve the discrepancy
between the bulk actions with limited field content and the wide range of brane actions that
involve all the possible R-R forms, we have constructed a new formulation of IIA/IIB supergravity
up to quartic order in fermions.



1 Introduction

There has been a lot of interest in brane world models in higher dimensions with the hope
to solve the particle physics problems and give a hint for physics beyond the Standard
Model (SM) in a different context. Particularly, in order to ameliorate the hierarchy
problem of the Higgs mass, models with extra dimensions compactified on a large flat
or small warped space were suggested as an alternative to the weak-scale supersymmetry
(SUSY). Furthermore, regarding the cosmological constant problem which has been one of
the most notorious problems as dictated by a no-go theorem, the self-tuning mechanism in
higher dimensions was suggested. This may give a better understanding of the cosmological
constant problem, although one has only the SM quantum corrections confined on a brane
under control. In particular, brane world models in six dimensions have drawn much
attention because the brane tension generates a nonzero deficit angle in extra dimensions
without curving the 4D spacetime. This feature has been first pursued in the framework
of spontaneous compactification due to gauge fluxes in 6D Einstein-Maxwell theory, but
ended up with a fine-tuning condition for the brane tension due to flux quantization or
conservation. Furthermore, we still need some symmetry to ensure that a bulk tuning
condition is stable against the quantum corrections.

Six dimensional supergravity provides a fascinating laboratory for investigating the
issues which underly the cosmological constant problem, largely because six dimensions
is both simple enough to allow the construction of explicit solutions, yet rich enough to
exhibit an interesting variety of properties. In particular, it provides the simplest setting
within which a collection of positive-tension branes can combine to produce vanishing
4D curvature. This makes it a very fruitful arena in which to explore how natural are the
choices which must be made in order to ensure acceptably flat 4D worlds. The Salam-Sezgin
supergravity has drawn a renewed interest due to the possibility of attacking both brane
and bulk fine-tuning problems encountered in the non-supersymmetric models. In this
model, Salam and Sezgin obtained a spontaneous compactification on a sphere with U(1)R
flux to get the 4D Minkowski spacetime and showed that 4D N = 1 SUSY survives or there
is a massless chiral gravitino in four dimensions. The most general warped non-singular
solutions with 4D maximal symmetry have been recently found to be a warped product of
the 4D Minkowski space and a two dimensional compact manifold. Nonetheless, there is
still a fine-tuning between brane tensions due to the flux quantization. It has been shown,
on the other hand, that there are warped singular solutions with 4D curved spacetime.
The stability analysis of the warped background has been done for scalar perturbations
and bulk gauge fields and fermions.

In this paper, we consider the supersymmetrisation of the brane tension action in a way
compatible with the bulk SUSY in 6D Salam-Sezgin supergravity. We find that a brane-
localised Fayet-Ilioupolos (FI) term proportional to each brane tension must be introduced
to cancel the SUSY variation of the brane tension term. With a nonzero FI term, we
should also add in the action the brane-localised bilinear fermion terms that couple to
the U(1)R field strength. Furthermore, we should modify the SUSY transformation of the
U(1)R gaugino with a singular term. The Z2 orbifold boundary conditions on the branes
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are also required to project out half of the bulk SUSY. In order to get the right Bianchi
identities with the modified gauge field strengths, we also need to add a localised correction
to the Chern-Simons term in the field strength for the Kalb-Ramond field appearing in the
action and the SUSY transformation.

We discuss a generalized form of IIA/IIB supergravity depending on R-R potentials
C(p) (p = 0, 1, . . . 9) as the effective field theory of Type IIA/IIB superstring theory. For
the IIA case we explicitly break this R-R democracy to either p ≤ 3 or p ≥ 5 which allows
us to write a new bulk action that can be coupled to N = 1 supersymmetric brane actions.
Our purpose is to construct supersymmetric domain walls of string theory in D = 10 which
may shed some light on the stringy origin of the brane world scenarios. In the process
of pursuing this goal we have realized that all descriptions of the effective field theory
of Type IIA/IIB string theory available in the literature are inefficient for our purpose.
This has led us to introduce new versions of the effective supergravities corresponding to
Type IIA/IIB string theory. The standard IIA massless supergravity includes the C(1) and
C(3) R-R potentials and the corresponding G(2) and G(4) gauge-invariant R-R forms. Type
IIB supergravity includes the C(0), C(2) and C(4) R-R potentials and the corresponding
G(1), G(3) and G(5) gauge-invariant R-R forms. The realization of the total system in
supergravity is rather obscure.

2 Brane Multiplets in D = 5 , N = 2 Supergravity

In the on-shell formulation of D = 5 , N = 2 supergravity, compactified on S1/Z2, we
extend the results describing the interaction of the bulk fields with matter which is assumed
to be confined on the brane. We consider a five-dimensional Yang-Mills supergravity model.
The field content of the model is

{em̃µ̃ ,Ψi
µ̃, A

I
µ̃, λ

ia, φx} (1)

where µ̃ = (µ, 5) are curved and m̃ = (m, 5̇) are flat five-dimensional indices, with µ, m
their corresponding four dimensional indices. The remaining indices are I = 0, 1, . . . , n ,
a = 1, . . . , n and x = 1, . . . , n . The supergravity multiplet consists of the fünfbein em̃µ̃ ,
two gravitini Ψi

µ̃ and the graviphoton A
0
µ̃, where i = 1, 2 is the symplectic SU(2)R index.

Moreover, there exist n vector multiplets, counting the Yang-Mills fields (Aaµ̃). The spinor
and the scalar fields included in the vector multiplets are denoted by λia, φx respectively.

The bulk Lagrangian is

L0/e
(5) = −1

2
R(5) +

i

2
Ψ̄iµ̃γ

µ̃ν̃ρ̃∇ν̃Ψ
i
ρ̃ −

1

4
åIJF

I
µ̃ν̃F

I µ̃ν̃ − 1

2
gxy(Dµ̃φx)(Dµ̃φy)

+ Fermion + Chern− Simons terms (2)

Recalling the linearized supersymmetry transformations of the bulk fields

δem̃µ̃ = iǭiγ
m̃Ψi

µ̃
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δΨi
µ̃ = 2∇µ̃(ω)ǫ

i − hI

2
√
6
γ ν̃ρ̃µ̃ F

I
ν̃ρ̃ǫ

i − 2hI√
6
γ ρ̃F I

µ̃ρ̃ǫ
i

δAIµ̃ = −ihIaǭiγµ̃λai −
i
√
6

2
hIΨ̄µ̃iǫ

i

δλai = −faxγµ̃Dµ̃φ
xǫi − 1

2
haIγ

µ̃ν̃ǫiF I
µ̃ν̃

δφx = −ifxa ǭiλai (3)

The matter fields are considered to be localized on the branes at the fixed points x5 = 0
and x5 = πR. For the purposes of this work it suffices to consider only the brane at x5 = 0.
The treatment of fields living on the brane at x5 = πR is done similarly.

The requirement of N = 1 local supersymmetry invariance on the branes determines the
on-shell couplings of these fields to the gravity and gauge multiplets. These can be found
following Nöther’s procedure. This procedure is used in the on-shell formulation of local
supersymmetry, where the role of the gauge field is played by the gravitino, while the gauge
current is the supercurrent. However in the case of supersymmetry besides the modification
of the Lagrangian the transformation laws should be also modified accordingly. This is well
understood since the on-shell formulation follows from the off-shell after eliminating the
auxiliary fields by solving the equations of motion which are modified upon changing the
Lagrangian at each step.

The original Lagrangian is

Lorig = L0 + Lb (4)

with Lb the brane part including the interactions of the matter fields, localized on the
brane, with the projections of the bulk fields, gravity and gauge fields, on the brane. The
original SUSY transformations will be denoted by δ0. L0 is invariant under δ0, δ0L0 = 0,
but not Lb that is δ0Lb 6= 0. As already stated we must modify the original theory by
adding new terms, ∆L, so that the total Lagrangian

Ls = L0 + Lb +
∑

k

∆kL

is invariant under the modified SUSY transformations denoted by δs,

δs = δ0 +
∑

k

δk

that is δsLs = 0. We will proceed iteratively and in the above sums k denotes the iteration
step.

In order to derive the gravitational couplings we ignore for the moment the gauge
interactions and consider for simplicity just one chiral multiplet on the brane at x5 = 0.
Thus we start from Lb which for one chiral multiplet, (ϕ, χ), has the form

Lb = −e(5)∆(5) (∂µϕ∂
µϕ∗ + iχ̄σ̄µDµχ) . (5)
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In order to facilitate the discussion we have ignored at this stage superpotential and gauge
interactions. Since Lb includes dependencies on the vierbein it facilitates to write

δ0 = δ
(e)
0 + δ

(rest)
0 (6)

with δ
(e)
0 , δ

(rest)
0 denoting variations acting on the vierbein and the remaining fields respec-

tively. With this we get from (5)

δ0Lb = δ
(e)
0

[

−e(5)∆(5) (∂µϕ∂
µϕ∗ + iχ̄σ̄µ∂µχ)

]

+ e(5)∆(5) (Jµ∂
µε+ h.c.) (7)

where Jµ in (7) is the (Nöther) supercurrent given by Jµ =
√
2χσµσ̄ν∂νϕ

∗ . According
to Nöther’s procedure in order to eliminate the last term in (7) we must add a term ∆1L
while no change of SUSY transformations is required at this stage. Thus

δ1 = 0 , ∆1L = −1
2
e(5)∆(5) (Jµψ

µ + h.c.) (8)

since in our conventions δ0ψµ ∼ 2Dµε + .... Next we have to check the invariance of the
so constructed Lagrangian L0 + Lb + ∆1L and modify it accordingly if it happens to be
non-invariant under the new SUSY transformation law δs = δ0 + δ1, which however at this
stage, due to the vanishing of δ1 coincides with the original transformation δ0. Using the
gravitino transformation law one gets

δs (L0 + Lb +∆1L) = δ
(e)
0

[

−e(5)∆(5) (∂µϕ∂
µϕ∗ + iχ̄σ̄µ∂µχ)

]

− 1

2
e(5)∆(5) [(δ0Jµ)ψ

µ + h.c]

+
1√
6
e(5)∆(5) F

0
µ5̇
δ0

(

J (ϕ)µ − 1

2
J (χ)µ

)

+ δ
(e)
0

(

−1
2
e(5)∆(5)Jµψ

µ + h.c.

)

(9)

The third term in (9) follows from the second term of the gravitino transformation in (??),
as can be verified by a straightforward algebra, and J (ϕ) , J (χ) denoting the UR(1) currents
of ϕ and χ fields, given by

J (ϕ)
µ = −iϕ∗ ↔

∂µ ϕ , J (χ)
µ = χσµχ̄ (10)

Note also that we have not included the spin connection ωµmn for lack of space. Its
contribution at each stage is determined by fully covariantizing the results.

The first three terms in (9) are cancelled if we modify the SUSY transformations as it
appears below

δ2 ϕ = 0, δ2χ = −iσµε̄ (ψµχ)

δ2e
m
µ = 0, δ2ψµ =

i

2
∆(5)

(

J (ϕ)
µ ε− σµνεJ

(χ) ν
)

(11)

and add a term to the Lagrangian given by

∆2L = e(5)∆(5)

{ 1

4
J (χ)
σ

[

iEµνρσ
(

ψµσνψ̄ρ
)

+
(

ψµσ
σψ̄µ

)]

− i

4
EµνρσJ (ϕ)

σ ψµσνψ̄ρ −
1√
6

(

J (ϕ)µ − 1

2
J (χ)µ

)

F 0
µ5̇

}

, (12)
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where Eµνρσ is the four dimensional antisymmetric tensor. The last term in (12) is needed
for the cancellation of the F 0

µ5̇

(

−J (ϕ)µ + · · ·
)

term in (9). The need of introducing the

remaining terms will be clarified in the following.
We next have to check the invariance of L0+Lb+∆1L+∆2L under δs transformations.

Since δ1 = 0 we have

δs(L0+Lb+∆1L+∆2L) = δ0(L0+Lb+∆1L)+ δ0(∆2L)+ δ2(L0+Lb+∆1L+∆2L) (13)

As we have already discussed, from the transformation δ0(L0 +Lb +∆1L) + δ0(∆2L) only
the term δ

(e)
0

(

e(5)

e5̇5
Jµψ

µ + h.c.
)

survives. In fact the variation δ0(∆2L) is given by

δ0(∆2L) = 1√
6

[

−δ0
(

e(5)∆(5)F
0
µ5̇

) (

J (ϕ)µ − 1
2
J (χ)µ

)

− e(5)∆(5)F
0
µ5̇
δ0

(

J (ϕ)µ − 1
2
J (χ)µ

)]

+δ
(e)
0

{

1
4
e(5)∆(5)

[

iEµνρσ
(

ψµσνψ̄ρ
)

(

J
(χ)
σ − J

(ϕ)
σ

)

+
(

ψµσ
σψ̄µ

)

J
(χ)
σ

]}

+1
4
e(5)∆(5)

[

iEµνρσ
(

ψµσνψ̄ρ
)

δ0

(

J
(χ)
σ − J

(ϕ)
σ

)

+
(

ψµσ
σψ̄µ

)

δ0J
(χ)
σ

]

+1
4
e(5)∆(5)

[

iEµνρσ
(

J
(χ)
σ − J

(ϕ)
σ

)

δ0
(

ψµσνψ̄ρ
)

+ J
(χ)
σ δ0

(

ψµσ
σψ̄µ

)

]

(14)

The term ∼ F 0
µ5̇
δ0

(

J (ϕ)µ − 1
2
J (χ)µ

)

in (14) cancels the corresponding term in eq. (9).

Also the term in the last line cancels the first two terms of eq. (9) along with δ2 varia-
tions of the gravitino ψµ and the fermion χ kinetic terms occuring within L0 + Lb, that is
δ2

(

ǫµνρσψ̄µσ̄νDρψσ − ie(5)∆(5)χ̄σ̄
µDµχ

)

. Actually that was the reason nonvanishing vari-
ations δ2 had to be introduced for the χ and ψµ fields. However not all of the terms in
δs(L0+Lb+∆1L+∆2L) are completely cancelled. Among those terms that survive is the
δ2 variation of ∆1L in (13) which reveals an interesting feature that needs be discussed.
In fact

δ2(∆1L) = −
1

2
e(5)∆(5)Jµδ2ψ

µ + δ2

(

−1
2
e(5)∆(5)Jµ

)

ψµ + h.c. (15)

and the first term in (15), after some straightforward algebra, is brought into the form

− i

2
√
2
e(5)∆(5)

2

[

(χσµσ̄νε) J (ϕ)
µ ∂νϕ

∗ −
√
2

2
χσµσ̄ρσµνεJ

(χ)ν∂ρϕ
∗

]

+ h.c. (16)

due to the variation δ2ψµ (see eq. (11)). Since i
√
2σ̄νε∂νϕ

∗ is actually δ0χ̄ we have from

the expression (16) a contribution −1
4
e(5)∆(5)

2χσµ (δ0χ̄)
(

J
(ϕ)
µ + 1

4
J

(χ)
µ

)

+ h.c. Due to the

appearance of this we need to add a new term in the Lagrangian which includes, among
others, the aforementioned contribution that is

∆3L =
1

4
e(5)∆(5)

2J (χ)
µ

(

J (ϕ)µ +
1

4
J (χ)µ

)

+ · · · (17)
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In (17) the ellipsis denote additional terms. The terms in (17) are not new. Such terms do
appear in the derived Lagrangian completing previous derivations. In that work the δ2(x5)
terms complete a perfect square. This is not the case in our approach.

The above results are easily extended in the case that the original brane action has the
structure of a general σ-model

Lb = − e(5)∆(5)

[

Kij∗Dµϕ
iDµϕ∗j + (

i

2
Kij∗χ

iσµDµχ̄
j + h.c)

+
1

2
(DiDjW χiχj + h.c.) + Kij∗DiW Dj∗W

∗ − 1

4
Rij∗kl∗ χ

iχk χ̄jχ̄l
]

(18)

where Kij∗ is the Kähler metric. In this equation Dµχ̄
j is covariant under both spacetime

and Kähler transformations. The superpotential and Yukawa terms, are also included. In
the flat case DiW = ∂iW , DiDjW = ∂i∂jW −Γkij ∂kW . Later when considering the curved
case it turns out that these include additional terms so that they are covariant with respect
to the Kähler function K as well.

The coupling of the brane fields to the gauge and the gaugino fields propagating in
the bulk is known from the flat case, so that here we will only outline the steps we fol-
low. The transformation of λa, stemming from the five dimensions is not exactly that
of a gaugino. The extra variation requires the addition to the Lagrangian of a term
g ∆(5) D

(a)fax∂5φ
x while it is known that the variation of the gaugino-fermions Yukawa

terms, given by ∆(5)

(

−ig
√
2D(a),j∗ χ̄

jλ̄a + h.c.
)

, requires the modification of the gaug-

ino transformation rule by adding a term δ′ελ
a = −ig∆(5) D

(a)ε and supersymmetry
invariance is finally restored by adding the term

− g2

2
∆(5)

2 D(a)D(a). (19)

As far as the presence of the superpotential is concerned, we already know from the
flat case it modifies the fermions supersymmetry transformation law according to

δ′εχ
i = −

√
2 Kij∗Dj∗W

∗ε , (20)

The extra variation of the fermion fields applied to the coupling of the Nöther current with
the gravitino field ∼ Jµψµ, see eq. (8), leads to modification of the gravitino transformation
law as δ′εψµ = i∆(5) Wσµε̄ , and the addition to the Lagrangian of the term

L′ = e(5) ∆(5)

[

W ∗ψµσ
µνψν +Wψ̄µσ̄

µνψ̄ν
]

. (21)

We can see in turn that its variation, due to δ′εψµ above and the supersymmetry trans-
formation for e(4) is

δ′εL′ = −3∆(5) δ
(

e(5)∆(5)

)

| W |2 (22)

which is cancelled by the addition of the known | W |2 term of the supergravity potential
which however in our case it appears multiplied by ∆(5)

2. Variations of the potential terms
Kij∗DiW Dj∗W

∗ are cancelled by the Yukawa terms ∼ DiDjWχiχj + h.c. and those
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of the | W |2 require the appearence of terms ∼ DiWχiσµψ̄µ + h.c. in the Lagrangian
for their cancellation. This procedure can be continued and in the following steps the
wellknown Kählerian exponents e K/2 appearing in the ordinary D=4 supergravity start
showing up accompanying each power of the superpotential W , or derivative of it, both
in the Lagrangian and the transformation laws. However the Kähler function K in the
exponent appears multiplied by ∆(5) = e5

5̇
δ(x5) as shown in the Lagrangian given below.

In conjuction with this we point out that the covariant derivatives of the superpotential
W are also found to depend on the Kähler function through the combination ∆(5) K ,
rather than K itself, so that Kähler invariance is indeed maintained.

Summarizing, the interactions of a set of chiral multiplets localized on the brane des-
ignated by the index i, with the bulk gravity and gauge fields are found to be

L(4) = e(5)∆(5)

[

−Kij∗Dµϕ
iDµϕ∗j − ( i

2
Kij∗χ

iσµDµχ̄
j + h.c)− ig

√
2( D(a),j∗ χ̄

jλ̄a − h.c. )

−g
2
D(a)( ψµσ

µλ̄a − ψ̄µσ̄
µλa )− 1√

2
Kij∗( Dµϕ

∗jχiσν σ̄µψν +Dµϕ
iχ̄jσ̄νσµψ̄ν )

+ i
4
Eµνρσ( J

(χ)
σ − J

(ϕ)
σ )ψµσνψ̄ρ +

1
4
J

(χ)
σ ψµσ

σψ̄µ + 1
4
∆(5) J

(χ)µ (J
(ϕ)
µ + 1

4
J

(χ)
µ )

−1
8
Rij∗kl∗ χ

iσµχ̄j χkσµχ̄
l − 1

4
(J

(ϕ)
µ − 1

2
J

(χ)
µ ) λaσµλ̄a

+ 1√
6
(−J (ϕ)µ + 1

2
J (χ)µ) F 0

µ5̇
− 1

2
g2∆(5) D(a)D(a) + gD(a)fax∂5φ

x

−e∆(5) K/2( W ∗ψµσ
µνψν +

i√
2
DiWχiσµψ̄µ +

1
2
DiDjWχiχj + h.c. )

−e∆(5) K( Kij∗ DiW Dj∗W
∗ − 3∆(5) |W |2 )

]

+ · · · (23)

where in the general case

J (ϕ)
µ = −i

(

Ki∂µϕ
i −Ki∗∂µϕ

∗i) , J (χ)
µ = Kij∗χ

iσµχ̄
j . (24)

The ellipsis in (23) stand for couplings of the brane fields with the radion multiplet, which
is even, and other even combinations of odd fields which are not presented here. The
prefactor e(5) ∆(5) in the Lagrangian above provides e

(4) upon integration with respect x5.
Note that the terms D(a)D(a), J (x)(· · ·), | W |2 and the exponents involving the Kähler
function appear multiplied by an extra power of ∆(5) whose argument can be put to zero,
due to the overall ∆(5) multiplying the Lagrangian, which is proportional to δ(x5) .

Since
∫ πR

−πR dx
5e5̇5∆(5)(x

5) = 1 and
∫ πR

−πR dx
5e5̇5 = L is the volume of the fifth dimension,

we are tempted to interpret ∆(5)(0) ≃ 1/L ≡ ML . Replacing then ∆(5)(0) by ML

and reestablishing units we find that ML enters in our formulae only through the ratio
M3

5/ML where M5 is related to the 5 - D gravitational coupling through k2
(5) = 1/M3

5 .

The 4 - D gravitational constant is k2
(4) = k2

(5)/L and the aforementioned ratio is related

to the Planck scale via M3
5/ML = M2

Planck . In doing all this the gravitino, gauge boson
and gaugino, as well as the five dimensional gauge coupling should scale appropriately as
ψµ = L−1/2ψ̂µ , A

(a)
µ = L−1/2Â

(a)
µ , λ

(a)
µ = L−1/2λ̂

(a)
µ and g = L1/2g(4) , as dictated by

the kinetic terms of these fields, in order for them to have the right normalization and the
appropriate dimensions in four dimensions. It then turns that with this interpretation the
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terms in (23) are exactly those encountered in the ordinary D=4 supergravity involving
the interactions of the chiral fields ϕi, χi among themselves and their interactions with
the gravity and gauge multiplets. Exception to it are additional terms where bulk fields,
involving F 0

µ5̇
, ∂5φ

x, the radion multiplet etc., interact with the multiplets on the brane.

This rather rough qualitative argument is only used to show the correctness of our results.
In a decent mathematical way this can be seen after replacing the bulk fields which interact
with the brane chiral multiplets by their classical equations of motion as was first done
in the model. This is the case for instance with the D - terms which complete a perfect
square, as in the flat case, involving the derivative ∂5φ

x. Eliminating this by its classical
equation of motion results to the ordinary four dimensional D - terms. The importance of
the ∆(5)(0) terms at the quantum level has been discussed.

3 Bulk Branes in Salam-Sezgin Supergravity

We present a new anomaly-free gauged N = 1 supergravity model in six dimensions. We
construct a consistent supersymmetric action for brane chiral and vector multiplets in a
six-dimensional chiral gauged supergravity. When the brane chiral multiplet is charged
under the bulk U(1)R, we obtain a nontrivial coupling to the extra component of the
U(1)R gauge field strength and a singular scalar self-interaction term.

The six-dimensional Salam-Sezgin supergravity consists of gravity coupled to a dilaton
field φ, a Kalb-Ramond(KR) field BMN , along with the SUSY fermionic partners, the
gravitino ψM , the dilatino χ. Moreover, it also contains a bulk U(1)R vector multiplet
(AM , λ) that gauges the R-symmetry of six-dimensional supergravity. All the bulk fermions
are 6D Weyl. In order to do this analysis, we need the spinor part of the action and in
particular the part that is quadratic in fermionic terms. This is given by

e−1Lf = ψ̄MΓ
MNPDNψP + χ̄ΓMDMχ+ λ̄ΓMDMλ+ λ̄ΓMDMλ

+
1

4
(∂Mφ)(ψ̄NΓ

MΓNχ+ h.c.) +
√
2ge−

1
4
φ(iψ̄MΓ

Mλ− iχ̄λ+ h.c.) (25)

− 1

4
√
2
e

1
4
φ
{

FMN(ψ̄QΓ
MNΓQλ+ χ̄ΓMNλ) + F I

MN(ψ̄QΓ
MNΓQλI + χ̄ΓMNλI) + h.c.

}

.

The complete bulk Langrangian up to four fermion terms is

e−1
6 Lbulk = R− 1

4
(∂Mφ)

2 − 1

12
eφGMNPG

MNP − 1

4
e

1
2
φFMNF

MN − 8g2e−
1
2
φ

+ψ̄MΓ
MNPDNψP + χ̄ΓMDMχ+ λ̄ΓMDMλ+

1

4
(∂Mφ)(ψ̄NΓ

MΓNχ+ χ̄ΓNΓMψN)

+
1

24
e

1
2
φGMNP (ψ̄

RΓ[RΓ
MNPΓS]ψ

S + ψ̄RΓ
MNPΓRχ− χ̄ΓRΓMNPψR − χ̄ΓMNPχ

+λ̄ΓMNPλ)− 1

4
√
2
e

1
4
φFMN(ψ̄QΓ

MNΓQλ+ λ̄ΓQΓMNψQ + χ̄ΓMNλ− λ̄ΓMNχ)

+i
√
2ge−

1
4
φ(ψ̄MΓ

Mλ+ λ̄ΓMψM − χ̄λ+ λ̄χ). (26)
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The field strengths of the gauge and Kalb-Ramond(KR) fields are defined as

FMN = ∂MAN − ∂NAN , GMNP = 3∂[MBNP ] +
3

2
F[MNAP ], (27)

and satisfy the Bianchi identities

∂[QFMN ] = 0, ∂[QGMNP ] =
3

4
F[MNFQP ]. (28)

For δΛAM = ∂MΛ under the U(1)R, the field strength for the KR field is made gauge
invariant by allowing for BMN to transform as

δΛBMN = −1
2
ΛFMN . (29)

All the spinors have the same R charge +1, so the covariant derivative of the gravitino, for
instance, is given by

DMψN = (∂M +
1

4
ωMABΓ

AB − igAM)ψN . (30)

The local N = 2 SUSY transformations are

δeAM = −1
4
ε̄ΓAψM + h.c., δφ =

1

2
ε̄χ+ h.c.,

δBMN = A[MδAN ] +
1

4
e−

1
2
φ(ε̄ΓMψN − ε̄ΓNψM + ε̄ΓMNχ+ h.c.),

δχ = −1
4
(∂Mφ)Γ

Mε+
1

24
e

1
2
φGMNPΓ

MNP ε,

δψM = DMε+
1

48
e

1
2
φGPQRΓ

PQRΓMε, (31)

δAM =
1

2
√
2
e−

1
4
φ(ε̄ΓMλ+ h.c.), δλ =

1

4
√
2
e

1
4
φFMNΓ

MNε− i
√
2g e−

1
4
φε.

The above spinors are chiral with handednesses

Γ7ψM = +ψM , Γ7χ = −χ, Γ7λ = +λ, Γ7ε = +ε. (32)

Taking into account that Γ7 = σ3 ⊗ 1, the 6D (8-component) spinors can be decomposed
to 6D Weyl (4-component) spinors as

ψM = (ψ̃M , 0)
T , χ = (0, χ̃)T , λ = (λ̃, 0)T , ε = (ε̃, 0)T . (33)

We decompose the 6D Weyl spinor ψ̃ to ψ̃ = (ψ̃L, ψ̃R)
T , satisfying γ5(ψ̃L, 0)

T = +(ψ̃L, 0)
T

and γ5(0, ψ̃R)
T = −(0, ψ̃R)T . Henceforth we drop the tildes for simplicity.

We can show that the action for the Lagrangian (26) is invariant under the above SUSY
transformations up to the trilinear fermion terms and the Bianchi identities as follows,

δLbulk = e6

[

− 1

24
e

1
2
φ
(

∂SGMNP −
3

4
FMNFSP

)(

ψ̄RΓ
RMNPSε− χ̄ΓSMNP ε+ h.c.

)

+
1

4
√
2
e

1
4
φ
(

∂QFMN λ̄Γ
QMNε+ h.c.

)]

. (34)
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Thus, as will be seen later, the SUSY variation of the brane action can be cancelled with
the bulk variation (34) by modifying the Bianchi identities (??) and (28).

We consider a nonzero brane tension as well as brane matter multiplets: a brane chiral
multiplet (Q,ψQ), the superfield of which has an R charge −r, and a brane vector multiplet
(Wµ,Λ). The 4D chirality of the fermion in the brane chiral multiplet is taken to be right-
handed in contrast to the Z2-even gravitino and the Z2-even gaugino and the brane gaugino.
So, the conventional chiral superfield containing a left-handed fermion, (Q∗, (ψQ)

c), should
have an opposite R charge, namely, r for Q∗ and r − 1 for (ψQ)

c. Then, by employing
the Noether method for the local SUSY, we find that the supersymmetric action for the
bulk-brane system (up to four fermion terms) is composed of the original bulk action (26)
with the field strength tensors GMNP and FMN being replaced by the modified ones ĜMNP

and F̂MN , respectively, and the brane action as follows,

L = Lbulk(G→ Ĝ, F → F̂ ) + δ2(y)Lbrane (35)

with

Lbrane = e4

[

e
1
2
φ
(

− (DµQ)†DµQ+
1

2
ψ̄Qγ

µDµψQ + h.c.
)

+
√
2irge

1
4
φψ̄Qλ+Q+ h.c.

−4rg2|Q|2 − T + e
1
2
φ
(1

2
ψ̄µ+γ

νγµψQ(DνQ)
† +

1

2
ψ̄Qγ

µχ+DµQ+ h.c.
)

−1
4
WµνW

µν +
1

2
Λ̄γµDµΛ + h.c.− ie

√
2e

1
2
φQψ̄QΛ + h.c.− 1

2
e2|Q|4eφ

− 1

4
√
2
Λ̄γµγνρψµ+Wνρ −

i

2
√
2
e|Q|2e 1

2
φΛ̄γµψµ+ + h.c.

− i√
2
e|Q|2e 1

2
φχ̄+Λ + h.c.

]

. (36)

The SUSY transformations of the brane chiral multiplet are

δQ =
1

2
ε̄+ψQ , δψQ = −

1

2
γµε+DµQ . (37)

On the other hand, the SUSY transformations of the brane vector multiplet are

δWµ =
1

2
√
2
ε̄+γµΛ + h.c., δΛ =

1

4
√
2
γµνε+Wµν +

i

2
√
2
e|Q|2e 1

2
φε+. (38)

Here the brane gauge field strength is Wµν = ∂µWν − ∂νWµ and the covariant derivatives
of the brane multiplets are

DµQ = (∂µ + irgAµ − ieWµ)Q, (39)

DµψQ = (∂µ + i(r − 1)gAµ − ieWµ +
1

4
ωµαβγ

αβ)ψQ, (40)

DµΛ = (∂µ − igAµ +
1

4
ωµαβγ

αβ)Λ. (41)
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We note that the R charges of the component fields in the brane chiral multiplet are
different by +1 as known to be the case in 4D local SUSY. The gaugino of a brane vector
multiplet also has the same R charge +1 as the bulk gravitino.

The modified field strength tensors are

Ĝµmn = Gµmn +
(

Jµ − ξAµ

)

ǫmn
δ2(y)

e2
, (42)

Ĝτρσ = Gτρσ + Jτρσ
δ2(y)

e2
, (43)

F̂mn = Fmn − (rg|Q|2 + ξ)ǫmn
δ2(y)

e2
(44)

where ξ = T
4g
is the localized FI term, ǫmn is the 2D volume form and

Jµ =
1

2
i
[

Q†DµQ− (DµQ)
†Q+

1

2
ψ̄QγµψQ −

1

2
e−

1
2
φΛ̄γµΛ

]

, (45)

Jτρσ = −1
4
ψ̄QγτρσψQ −

1

8
e−

1
2
φΛ̄γτρσΛ. (46)

Here in order to cancel the variation of the brane tension action, we needed to modify
the gauge field strength with the localized FI term proportional to the brane tension.
Moreover, the modified field strength for the KR field contains a gauge non-invariant piece
proportional to the localized FI term so the gauge transformation of the KR field needs to
be modified to

δΛBmn = Λ
(

− 1

2
Fmn + ξǫmn

δ2(y)

e2

)

. (47)

On the other hand, the SUSY transformations of the bulk fields are the same as eqs. (31)-
(32) with GMNP and FMN being replaced by ĜMNP and F̂MN , respectively, and the gauge
field AM being kept the same as in the no-brane case, with an exception that the SUSY
transformation of the extra components of the KR field has an additional term as

δBmn =
1

4
iψ̄Qε+Qǫmn

δ2(y)

e2
+ h.c.. (48)

Furthermore, for the modified field strength tensors, we obtain the Bianchi identities as
follows,

∂[µĜνmn] =
3

4
F̂[µνF̂mn] +

[ i

2
(D[µQ)

†(Dν]Q) +
1

4
e|Q|2Wµν

]

ǫmn
δ2(y)

e2
, (49)

∂[µF̂mn] = −1
3
rg∂µ|Q|2ǫmn

δ2(y)

e2
. (50)

Then, by using (34) with the modified Bianchi identities (49) and (50), we are able to
cancel all the remaining variations of the brane action given in (36).
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We can extend the result to the more general case with multiple branes. When all
the branes preserve the same 4D N = 1 SUSY, we only have to replace the delta terms
appearing in the action and the SUSY/gauge transformations: Tδ2(y) with

∑

i Tiδ
2(y−yi),

and f(Q)δ2(y) with
∑

i f(Qi)δ
2(y − yi).

We introduce a gravitino mass term on the brane. Then, the brane action is supple-
mented by the supersymmetric gravitino mass terms as

Lgmass = −e4
1

2
W0e

1
2
ψ(ψ̄µ+γ

µνCψ̄Tν+ + ψ̄1γ
µCψ̄Tµ+ + ψ̄2γ

µCψ̄Tµ+ + λ̄+Cλ̄
T
+) + h.c. (51)

where W0 is a constant parameter and

ψ1 = ψ5+ + iψ6+, ψ2 = ψ5+ − iψ6+. (52)

We also need to modify the SUSY transformations of the extra components of the gravitino
as follows,

δψ+ = W0e
1
2
ψCε̄T+

δ2(y)

e2
, δψ− = −W0e

1
2
ψCε̄T+

δ2(y)

e2
. (53)

Here eψ is the volume modulus of the extra dimensions. Thus, similarly to the ungauged
supergravity, the brane gravitino mass has a nontrivial coupling to the volume modulus of
the extra dimensions. Under the modified gravitino variations, the variation of the bulk
gravitino linear terms would have induced singular terms for a nonzero background gauge
flux. So, in order to cancel them, we needed to introduce the brane-localized gaugino mass,
which is the same as the gravitino mass. When the superpotential depends on the brane
chiral multiplets, we can infer the form of the brane F-term as

LF = −e4eψ−
1
2
φ|FQ|2 (54)

with FQ = ∂W
∂Q
. Consequently, similarly to the ungauged supergravity case, we show that

the F-term has a nontrivial coupling to the dilaton as well as the volume modulus.

4 Supersymmetrising the Brane Tension Action

In this section, we will add in the previous action codimension-two branes with nonzero
tension. With this addition, the total action is no longer invariant under the transforma-
tions (31)-(32). We will, thus, modify our action and SUSY transformations, so that the
brane-bulk system is rendered supersymmetric. With the modification that we propose,
we show that the bulk action remains supersymmetric while the brane action preserves
N = 1 SUSY.

4.1 Requirements for the Supersymmetric Brane Action

Let us add to the bulk Lagrangian a term for a brane located at the position y = yi, where
y is the internal space 2D coordinate. This brane Lagrangian will be given by

Lbrane = −e4Tiδ(2)(y − yi), (55)
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where Ti is the brane tension and the 2D delta function is defined as
∫

d2yδ(2)(y− yi) = 1.
The SUSY transformation of the brane action is non-vanishing as follows,

δLbrane = −e4
1

4
Tiδ

(2)(y − yi)(ψ̄µΓ
µε+ h.c.). (56)

On the other hand, because the gravitino is charged under U(1)R, varying the gravitino
kinetic term under (31), it contains a piece of the gauge field strength as

δLgravitino ⊃ e6ψ̄MΓ
MNPDNDP ε

= − i
2
e6gψ̄MΓ

MNP εFNP + · · · . (57)

We can utilise the above term of the gravitino vatiation to cancel the brane tension
term as following. The U(1)R field can have in principle FI localised terms parameterized
by constants ξi. We can then define a hatted field strength F̂MN

F̂µν = Fµν , F̂µm = Fµm, (58)

F̂mn = Fmn − ǫmnξi
δ(2)(y − yi)

e2
, (59)

where ǫmn is the 2D volume form, and rewrite the variation of the gravitino kinetic term
as

δLgravitino ⊃ − i
2
e6gψ̄MΓ

MNP εF̂NP

+e4gξiδ
(2)(y − yi)ψ̄µΓ

µγ5ε+ · · · , (60)

where use is made of Γmnǫmn = 2Γ56 = 2iσ3 ⊗ γ5, the 6D chirality condition, σ3 ⊗ 1ε = ε,
and e6

e2
= e4. Then, the first term cancels the variation of the bulk fermion bilinear term, if

the FMN in the fermion bilinear term is replaced with F̂MN . Most importantly, the second
term has the right form to cancel the variation of the brane tension term. The condition
for this to happen is that,

(

γ5 −
Ti
4gξi

)

ε(yi) = 0. (61)

In other words, decomposing the SUSY variation spinor as ε = (ε̃, 0)T with ε̃ = (ε̃L, ε̃R)
T ,

the following should be satisfied,

(

1− Ti
4gξi

)

ε̃L(yi) = 0, (62)

(

1 +
Ti
4gξi

)

ε̃R(yi) = 0. (63)

Thus, fixing the FI terms with the brane tensions as ξi =
Ti

4g
or −Ti

4g
, one needs to

impose that either ε̃R or ε̃L vanish on the brane. Therefore, only N = 1 SUSY can be
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preserved on the brane. For other values of ξi, both ε̃L and ε̃R must vanish at the brane,
so there would be no SUSY left. In the bulk action and the SUSY transformations, when
FMN is replaced by F̂MN , we also need to modify the field strength GMNP by ĜMNP as

Ĝµνλ = Gµνλ, (64)

Ĝµmn = 3∂[µBmn] +
3

2
F[mnAµ] − ξiAµǫmn

δ(2)(y − yi)

e2

= Ĝmnµ = Ĝnµm. (65)

On the other hand, keeping the form of terms AM to be the same as in the case with no
branes, the modified bulk action is supersymmetric up to four fermion terms.

From now on, we choose ξi =
Ti

4g
for all branes present in the internal space, so that there

is N = 1 SUSY remaining in the brane action with a SUSY parameter ε̃L non vanishing on
the branes. This choice is made to agree with the no-brane Salam-Sezgin vacuum where a
constant ε̃L is a Killing spinor.

4.2 The Supersymmetric Brane-Bulk Coupling

As a consequence of introducing the localised FI terms, we have seen that the brane tension
action is made compatible with the bulk SUSY transformations. The supersymmetric
action of the brane-bulk system up to four fermion terms is

e−1
6 LSUSY = R− 1

4
(∂Mφ)

2 − 1

12
eφĜMNP Ĝ

MNP − 1

4
e

1
2
φF̂MN F̂

MN − 8g2e−
1
2
φ

+ψ̄MΓ
MNPDNψP + χ̄ΓMDMχ+ λ̄ΓMDMλ

+
1

4
(∂Mφ)(ψ̄NΓ

MΓNχ+ χ̄ΓNΓMψN)

+
1

24
e

1
2
φĜMNP (ψ̄

RΓ[RΓ
MNPΓS]ψ

S + ψ̄RΓ
MNPΓRχ

−χ̄ΓRΓMNPψR − χ̄ΓMNPχ+ λ̄ΓMNPλ)

− 1

4
√
2
e

1
4
φF̂MN(ψ̄QΓ

MNΓQλ+ λ̄ΓQΓMNψQ + χ̄ΓMNλ− λ̄ΓMNχ)

+i
√
2ge−

1
4
φ(ψ̄MΓ

Mλ+ λ̄ΓMψM − χ̄λ+ λ̄χ)

−e4
e6
Tiδ

(2)(y − yi), (66)

where the modified gauge field strengths are

F̂MN = FMN − δmMδ
n
Nǫmnξi

δ(2)(y − yi)

e2
, (67)

ĜMNP = GMNP − 3δµ[Mδ
m
N δ

n
P ]Aµǫmnξi

δ(2)(y − yi)

e2
, (68)

with

ξi =
Ti
4g
. (69)
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All the fermionic SUSY transformations are modified as

δχ = −1
4
(∂Mφ)Γ

Mε+
1

24
e

1
2
φĜMNPΓ

MNP ε, (70)

δψM = DMε+
1

48
e

1
2
φĜPQRΓ

PQRΓMε, (71)

δλ =
1

4
√
2
e

1
4
φF̂MNΓ

MNε− i
√
2g e−

1
4
φε, (72)

but the bosonic SUSY transformations are the same as eqs. (31)-(31) and (32). The
important ingredient of the above modifications is that we have a brane term linear in FMN ,
the brane-localised FI term. In other words, there is a brane coupling to the magnetic flux,
which is proportional to the brane tension. Moreover, we get a singular correction to the
Chern-Simons term in the field strength for the KR field. We note that the modified field
strengths satisfy the Bianchi identities, ∂[QF̂MN ] = 0 and ∂[QĜMNP ] =

3
4
F̂[MN F̂QP ], even

with the singular term.

One could be worried by the squared terms of the two-dimensional delta functions ap-
pearing in the kinetic term F̂MN F̂

MN . However, SUSY requires these terms to be present
and are a usual ingredient of orbifold supersymmetric theories. The delta squared terms,
i.e., δ2(0), appear naturally in orbifolds, when bulk and brane fields are coupled supersym-
metrically. One can obtain the same form F̂MN F̂

MN in a 6D off-shell supersymmetric U(1)
theory on T 2/Z2, after the auxiliary field of the bulk vector multiplet is eliminated. It has
been known that the δ2(0) term provides counterterms, which are necessary to maintain
supersymmetry in explicit calculations on orbifolds, like the scattering amplitude and the
self-energy correction for a brane field. In our case, we have not introduced brane multi-
plets other than the tension. The case with brane multiplets will be studied elsewhere so
the usual discussion on the δ2(0) term on orbifolds is expected to hold.

There are some known anomaly-free models including the non-abelian gauge fields in
6D gauged supergravity. In these cases, an abelian flux can be also turned on in the
direction of the non-abelian gauge fields. For instance, in the model with E7×E6×U(1)R
with hyperino, the U(1) contained in E6 can also develop a nonzero flux, still maintaining
the warped solution that was obtained for the Salam-Sezgin supergravity. As a result, E6

is broken down to SO(10) in the bulk and the adjoint fermions of E6 can survive as two
chiral 16’s of SO(10). Even in this more general case, the supersymmetric brane action
obtained for the Salam-Sezgin supergravity remains the same.

Furthermore, we can always introduce arbitrary localised FI terms for any abelian factor
of the bulk gauge group other than U(1)R in a supersymmetric way because there is no
constraint from the variation of the gravitino kinetic term unlike eq. (60). We only have
to modify the field strengths appearing in both the bulk action and the fermionic SUSY
transformations like in eqs. (67), (68) and (70)-(72). Thus, it is straightforward to see that
the localised FI terms generated in 6D global SUSY case are embedded into a supergravity
theory.
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5 Brane plus Bulk Supersymmetry in D = 10

The standard formulation of D = 10 IIA and IIB supergravity has the following field
content

IIA :
{

gµν , Bµν , φ, C
(1)
µ , C(3)

µνρ, ψµ, λ
}

,

IIB :
{

gµν , Bµν , φ, C
(0), C(2)

µν , C
(4)
µνρσ, ψµ, λ

}

. (73)

In the IIA case, the massive theory contains an additional mass parameter G(0) = m. In
the IIB case, an extra self-duality condition is imposed on the field strength of the four-
form. It turns out that one can realize the N=2 supersymmetry on the R-R gauge fields of
higher rank as well. These are usually incorporated via duality relations. To treat the R-R
potentials democratically we propose a new formulation based upon a pseudo-action. This
democratic formulation describes the dynamics of the bulk supergravity in the most elegant
way. However, it turns out that this formulation is not well suited for our purposes. For
the IIA case, we therefore give a different formulation where the constant mass parameter
has been replaced by a field.

To explicitly introduce the democracy among the R-R potentials we propose a pseudo-
action whose equations of motion are supplemented by duality constraints. Of course this
enlarges the number of degrees of freedom. Since a p- and an (8− p)-form potential carry
the same number of degrees of freedom, the introduction of the dual potentials doubles
the R-R sector. Including the highest potential C(9) in IIA does not alter this, since it
carries no degrees of freedom. This 9-form potential can be seen as the potential dual to
the constant mass parameter G(0) = m. The doubling of number of degrees of freedom will
be taken care of by a constraint, relating the lower- and higher-rank potentials. This new
formulation of supersymmetry is inspired by the bosonic construction, and, in the case of
IIB supergravity, is related to the pseudo-action construction.

A pseudo-action can be used as a mnemonic to derive the equations of motion. It
differs from a usual action in the sense that not all equations of motion follow from varying
the fields in the pseudo-action. To obtain the complete set of equations of motion, an
additional constraint has to be substituted by hand into the set of equations of motion
that follow from the pseudo-action. The constraint itself does not follow from the pseudo-
action. The construction we present here generalizes the pseudo-action construction in
the sense that our construction treats the IIA and IIB case in a unified way, introducing
all R-R potentials in the pseudo-action, and (ii) describes also the massive IIA case via a
9-form potential C(9) and a constant mass parameter G(0) = m.

Our pseudo-action has the extended field content

IIA :
{

gµν , Bµν , φ, C
(1)
µ , C(3)

µνρ, C
(5)
µ···ρ, C

(7)
µ···ρ, C

(9)
µ···ρ, ψµ, λ

}

,

IIB :
{

gµν , Bµν , φ, C
(0), C(2)

µν , C
(4)
µ···ρ, C

(6)
µ···ρ, C

(8)
µ···ρ, ψµ, λ

}

. (74)

It is understood that in the IIA case the fermions contain both chiralities, while in the IIB
case they satisfy Γ11ψµ = ψµ ,Γ11λ = −λ , (IIB). In that case they are doublets, and we
suppress the corresponding index. The explicit form of the pseudo-action is given by
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SPseudo = −
1

2κ2
10

∫

d10x
√−g

{

e−2φ
[

R(ω(e))− 4(∂φ)2 + 12H ·H

−2∂µφχ(1)
µ +H · χ(3) + 2ψ̄µΓ

µνρ∇νψρ − 2λ̄Γµ∇µλ+ 4λ̄Γµν∇µψν

]

+

5,9/2
∑

n=0,1/2

14G(2n) ·G(2n) + 12G(2n) ·Ψ(2n)
}

+ quartic fermionic terms . (75)

It is understood that the summation in the above pseudo-action is over integers (n =
0, 1, . . . , 5) in the IIA case and over half-integers (n = 1/2, 3/2, . . . , 9/2) in the IIB case. In
the summation range we will always first indicate the lowest value for the IIA case, before
the one for the IIB case. Furthermore,

1

2κ2
10

=
g2

2κ2
=

2π

(2πℓs)8
, (76)

where κ2 is the physical gravitational coupling, g is the string coupling constant and
ℓs =

√
α′ is the string length. For notational convenience we group all potentials and

field strengths in the formal sums

G =

5,9/2
∑

n=0,1/2

G(2n) , C =

5,9/2
∑

n=1,1/2

C(2n−1) . (77)

The bosonic field strengths are given by

H = dB , G = dC− dB∧C+G(0)eB , (78)

where it is understood that each equation involves only one term from the formal sums
(77). The corresponding Bianchi identities then read

dH = 0 , dG−H∧G = 0 . (79)

In this subsection G(0) = m indicates the constant mass parameter of IIA supergravity.
In the IIB theory all equations should be read with vanishing G(0). The spin connection
in the covariant derivative ∇µ is given by its zehnbein part: ω

ab
µ = ω ab

µ (e). The bosonic

fields couple to the fermions via the bilinears χ(1,3) and Ψ(2n), which read

χ(1)
µ = −2ψ̄νΓνψµ − 2λ̄ΓνΓµψν , (80)

χ(3)
µνρ = 12ψ̄αΓ

[αΓµνρΓ
β]Pψβ + λ̄Γµνρ

βPψβ − 12λ̄PΓµνρλ , (81)

Ψ(2n)
µ1···µ2n

= 1
2
e−φψ̄αΓ

[αΓµ1···µ2n
Γβ]Pnψβ + 1

2
e−φλ̄Γµ1···µ2n

ΓβPnψβ + (82)

−1
4
e−φλ̄Γ[µ1···µ2n−1PnΓµ2n]λ . (83)
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We have used the following definitions:

P = Γ11 (IIA) or − σ3 (IIB) ,

Pn = (Γ11)
n (IIA) or σ1 (n + 1/2 even), iσ2 (n + 1/2 odd) (IIB) . (84)

Note that the fermions satisfy

Ψ(2n) = (−)Int[n]+1 ⋆Ψ(10−2n) . (85)

Due to the appearance of all R-R potentials, the number of degrees of freedom in the
R-R sector has been doubled. Each R-R potential leads to a corresponding equation of
motion:

d ⋆ (G(2n) +Ψ(2n)) +H∧ ⋆ (G(2n+2) +Ψ(2n+2)) = 0 . (86)

Now, one must relate the different potentials to get the correct number of degrees of
freedom. We therefore by hand impose the following duality relations

G(2n) +Ψ(2n) = (−)Int[n] ⋆ G(10−2n) , (87)

in the equations of motion that follow from the pseudo-action (75). It is in this sense that
the action (75) cannot be considered as a true action. Instead, it should be considered as
a mnemonic to obtain the full equations of motion of the theory. As usual, the Bianchi
identities and equations of motions of the dual potentials correspond to each other when
employing the duality relation. For the above reason the democratic formulation can be
viewed as self-dual, since (87) places constraints relating the field content (74).

The pseudo-action (75) is invariant under supersymmetry provided we impose the du-
ality relations (87) after varying the action. The supersymmetry rules read

δǫeµ
a = ǭΓaψµ , (88)

δǫψµ =
(

∂µ + 14 6ωµ + 18P 6Hµ

)

ǫ+ 116eφ
5,9/2
∑

n=0,1/2

1

(2n)!
6G(2n)ΓµPnǫ , (89)

δǫBµν = −2 ǭΓ[µPψν] , (90)

δǫC
(2n−1)
µ1···µ2n−1

= −e−φ ǭΓ[µ1···µ2n−2 Pn
(

(2n− 1)ψµ2n−1] − 12Γµ2n−1]λ
)

+ (91)

+(n− 1)(2n− 1)C
(2n−3)
[µ1···µ2n−3

δǫBµ2n−2µ2n−1] , (92)

δǫλ =
(

6∂φ+ 112 6HP
)

ǫ+ 18eφ
5,9/2
∑

n=0,1/2

(−)2n5− 2n

(2n)!
6G(2n)Pnǫ , (93)

δǫφ = 12 ǭλ , (94)

where ǫ is a spinor similar to ψµ, in IIB: Γ11ǫ = ǫ. Note that for n half-integer (the IIB
case) these supersymmetry rules exactly reproduce the rules given in another publication.
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Secondly, the pseudo-action (75) is also invariant under the usual bosonic NS-NS and
R-R gauge symmetries with parameters Λ and Λ(2n) respectively:

δΛB = dΛ , δΛC = (dL−G(0)Λ)∧eB , with L =

4,7/2
∑

n=0,1/2

Λ(2n) . (95)

Finally, there is a number of Z2-symmetries. However, in the IIA case these Z2-
symmetries are only valid for G(0) = m = 0. Below we show how these symmetries of
the action act on supergravity fields. For both massless IIA and IIB there is a fermion
number symmetry (−)FL given by

{φ, gµν , Bµν} → {φ, gµν , Bµν} , (96)

{C(2n−1)
µ1···µ2n−1

} → −{C(2n−1)
µ1···µ2n−1

} , (97)

{ψµ, λ, ǫ} → +P{ψµ,−λ, ǫ} , (IIA), (98)

{ψµ, λ, ǫ} → +P{ψµ, λ, ǫ} , (IIB). (99)

In the IIB case there is an additional worldsheet parity symmetry Ω given by

{φ, gµν , Bµν} → {φ, gµν ,−Bµν} , (100)

{C(2n−1)
µ1···µ2n−1

} → (−)n+1/2{C(2n−1)
µ1···µ2n−1

} , (101)

{ψµ, λ, ǫ} → σ1{ψµ, λ, ǫ} , (102)

In the massless IIA case there is a similar I9Ω-symmetry involving an additional parity
transformation in the 9-direction. Writing µ = (µ, 9̇), the rules are given by

{φ, gµν , Bµν} → {φ, gµν ,−Bµν} , (103)

{C(2n−1)
µ1···µ2n−1

} → (−)n+1{C(2n−1)
µ1···µ2n−1

} , (104)

{ψµ, λ, ǫ} → +Γ9{ψµ,−λ, ǫ} . (105)

The parity of the fields with one or more indices in the 9̇-direction is given by the rule that
every index in the 9̇-direction gives an extra minus sign compared to the above rules.

In both IIA and IIB there is also the obvious symmetry of interchanging all fermions
by minus the fermions, leaving the bosons invariant.

The Z2-symmetries are used for the construction of superstring theories with sixteen
supercharges. (−)FL gives a projection to the E8 × E8 heterotic superstring (IIA) or the
SO(32) heterotic superstring theory (IIB). Ω is used to reduce the IIB theory to the SO(32)
Type I superstring, while the I9Ω-symmetry reduces the IIA theory to the Type I′ SO(16)×
SO(16) superstring theory.

One might wonder at the advantages of the generalized pseudo-action (75) above the
standard supergravity formulation. At the cost of an extra duality relation we were able
to realize the R-R democracy in the action. Note that only kinetic terms are present; by
allowing for a larger field content the Chern–Simons term is eliminated. Under T-duality
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all kinetic terms are easily seen to transform into each other. The same goes for the
duality constraints. This formulation is elegant and comprises all potentials. However, it
is impossible to construct a proper action in this formulation due to the doubling of the
degrees of freedom. Therefore, to add brane actions to the bulk system, the democratic
formulation is not suitable. This is due to two reasons. First, the I9Ω symmetry is only
valid for G(0) = 0, but we will need this symmetry in our construction of the bulk & 8-brane
system. Secondly, to describe a charged domain wall, we would like to have opposite values
for G(0) at the two sides of the domain wall, i.e. we want to allow for a mass parameter
that is only piecewise constant. The R-R democracy has to be broken to accommodate for
an action and this will be discussed in the next subsection.

We will present here the new dual formulation with action, available for the IIA case
only. A proper action will be constructed in this formulation. It is this formulation that
we will apply in our construction of the bulk & brane system. We will call this the dual
formulation.

The independent fields in this formulation are
{

eaµ, Bµν , φ,G
(0), G(2)

µν , G
(4)
µ1···µ4

, A(5)
µ1···µ5

, A(7)
µ1···µ7

, A(9)
µ1···µ9

, ψµ, λ
}

. (106)

The bulk action reads

Sbulk = −
1

2κ2
10

∫

d10x
√−g

{

e−2φ[R(ω(e))− 4(∂φ)2 + 12H ·H − 2∂µφχ(1)
µ +H · χ(3)

+2ψ̄µΓ
µνρ∇νψρ − 2λ̄Γµ∇µλ+ 4λ̄Γµν∇µψν ] +

∑

n=0,1,2

12G(2n) ·G(2n) +G(2n) ·Ψ(2n)

− ⋆ [12G(4)G(4)B − 12G(2)G(4)B2 + 16G(2)2B3 + 16G(0)G(4)B3 − 18G(0)G(2)B4

+140G(0)2B5 + e−BGd(A(5) − A(7) + A(9))]
}

+ quartic fermionic terms , (107)

where all ∧’s have been omitted in the last two lines. In the last term a projection on the
10-form is understood. Here G is defined as in (77) but where G(0), G(2) and G(4) are now
independent fields (which we will call black boxes) and are no longer given by (78). Note
that their Bianchi identities are imposed by the Lagrange multipliers A(9), A(7) and A(5).
The NS-NS three-form field strength is given by (78). Note that the standard action for
IIA supergravity can be obtained by integrating out the dual potentials in (107).

The symmetries of the action are similar to those of the democratic formulation with
some small changes. In the supersymmetry transformations of gravitino and gaugino, the
sums now extend only over n = 0, 1, 2:

δǫeµ
a = ǭΓaψµ , (108)

δǫψµ =
(

∂µ + 14 6ωµ + 18Γ11 6Hµ

)

ǫ+ 18eφ
∑

n=0,1,2

1

(2n)!
6G(2n)Γµ(Γ11)

nǫ , (109)

δǫBµν = −2 ǭΓ[µΓ11ψν] , (110)

δǫλ =
(

6∂φ− 112Γ11 6H
)

ǫ+ 14eφ
∑

n=0,1,2

5− 2n

(2n)!
6G(2n)(Γ11)

nǫ ,
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δǫφ = 12 ǭλ ,

δǫA = e−B
∧E ,

δǫG = dE+G∧δǫB −H∧E , (111)

with E(2n−1)
µ1···µ2n−1

≡ −e−φ ǭΓ[µ1···µ2n−2 (Γ11)
n
(

(2n− 1)ψµ2n−1] − 12Γµ2n−1]λ
)

. (112)

The transformation of the black boxesG follow from the requirement that e−BG transforms
in a total derivative. Here the formal sums

A =
5

∑

n=1

A(2n−1) , E =
5

∑

n=1

E(2n−1) , G =
5

∑

n=0

G(2n) , (113)

have been used. Note that the first formal sum in (113) contains fields, A(1) and A(3), that
do not occur in the action. The same applies to G, which contains the extra fields G(6), G(8)

and G(10). Although these fields do not occur in the action, one can nevertheless show that
the supersymmetry algebra is realized on them. To do so one must use the supersymmetry
rules of (112) and the equations of motion that follow from the action (107).

The gauge symmetries with parameters Λ and Λ(2n) are

δΛB = dΛ , δΛA = dL−G(0)Λ − dΛ∧A ,

δΛG = dΛ∧(G− eB∧(dA+G(0))) + eB∧Λ∧dG(0) . (114)

Note that, with respect to the R-R gauge symmetry, the A potentials transform as a total
derivative while the black boxes are invariant.

Finally, there are Z2-symmetries, (−)FL and I9Ω, which leave the action invariant. In
contrast to the democratic formulation these two Z2-symmetries are valid symmetries even
for G(0) 6= 0. The (−)FL-symmetry is given by

{φ, gµν , Bµν} → {φ, gµν , Bµν} , (115)

{G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} → −{G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} , (116)

{ψµ, λ, ǫ} → +Γ11{ψµ,−λ, ǫ} , (117)

while the second I9Ω-symmetry reads

{φ, gµν , Bµν} → {φ, gµν ,−Bµν} , (118)

{G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} → (−)n+1{G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} , (119)

{ψµ, λ, ǫ} → +Γ9{ψµ,−λ, ǫ} . (120)

Having established supersymmetry in the bulk, we now turn to supersymmetry on
the brane. As mentioned in the introduction, our main interest is in one-dimensional
orbifold constructions with 8-branes at the orbifold points. Using the techniques of the
three-brane on the orbifold in five dimensions, we want to construct an orientifold using
a Z2-symmetry of the bulk action. On the fixed points we insert brane actions, which
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will turn out to be invariant under the reduced (N = 1) supersymmetry. For the moment
we will not restrict to domain walls (in this case eight-branes) since our brane analysis
is similar for orientifolds of lower dimension. In the previous section we have seen that
our bulk action possesses a number of symmetries, among which a parity operation. To
construct an orientifold, the relevant Z2-symmetry must contain parity operations in the
transverse directions. Furthermore, in order to construct a charged domain wall, we want
for a p-brane the (p+1)-form R-R potential to be even. For the 8-brane the I9Ω symmetry
satisfies the desired properties. For the other p-branes, it would seem natural to use the
Z2-symmetry

I9,8,...,p+1Ω ≡ (I9Ω)(I8Ω) · · · (Ip+1Ω) , (121)

where IqΩ is the transformation (105) with 9 replaced by q, and Iq and Ω commute.
However, for some p-branes (p = 2, 3, 6, 7) the corresponding C(p+1) R-R-potential is odd
under this Z2-symmetry. To obtain the correct parity one must include an extra (−)FL

transformation in these cases, which also follows from T-duality.
Thus the correct Z2-symmetry for a general IIA Op-plane is given by

((−)FL)p/2I9,8,...,p+1Ω . (122)

The effect of this Z2-symmetry on the bulk fields reads (the underlined indices refer to the
worldvolume directions, µ = (µ, p+ 1, . . . , 9)

{xp+1, . . . , x9} → −{xp+1, . . . , x9} , (123)

{φ, gµν , Bµν} → {φ, gµν ,−Bµν} , (124)

{A(5)
µ1···µ5

, A(9)
µ1···µ9

, G(2)
µν} → (−)p2{A(5)

µ1···µ5
, A(9)

µ1···µ9
, G(2)

µν} , (125)

{A(7)
µ1···µ7

, G(0), G(4)
µ1···µ4

} → (−)p2+1{A(7)
µ1···µ7

, G(0), G(4)
µ1···µ4

} , (126)

{ψµ, ǫ} → −αΓp+1···9(−Γ11)
p2{ψµ, ǫ} , (127)

{λ} → +αΓp+1···9(+Γ11)
p2{λ} , (128)

and for fields with other indices there is an extra minus sign for each replacement of a
worldvolume index µ by an index in a transverse direction. We have left open the possibility
of combining the symmetry with the sign change of all fermions. This possibility introduces
a number α = ±1 in the above rules. This symmetry will be used for the orientifold
construction.

For this purpose we choose spacetime to be Mp+1 × T 9−p with radii Rµ of the torus
that may depend on the world-volume coordinates. All fields satisfy

Φ(xµ) = Φ(xµ + 2πRµ) , (129)

with µ = (p + 1, . . . , 9). The parity symmetry (122) relates the fields in the bulk at xµ

and −xµ. At the fixed point of the orientifolds, however, this relation is local and projects
out half the fields. This means that we are left with only N = 1 supersymmetry on the
fixed points, where the branes will be inserted. Consider for example a nine-dimensional
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orientifold. The projection truncates our bulk N = 2 supersymmetry to N = 1 on the
brane, only half of the 32 components of ǫ are even under (128). The original field content,
a D = 10, (128 + 128), N = 2 supergravity multiplet, gets truncated on the brane to
a reducible D = 9, (64 + 64), N = 1 theory consisting of a supergravity plus a vector
multiplet. One may further restrict to a constant torus. This particular choice of spacetime
then projects out a N = 1 (8 + 8) vector multiplet (containing e9̇

9), leaving us with the
irreducibleD = 9, (56+56), N = 1 supergravity multiplet. Similar truncations are possible
in lower dimensional orientifolds, on which the (64 + 64) N = 1 theory also consists of a
number of multiplets.

We propose the p-brane action (p = 0, 2, 4, 6, 8) to be proportional to

Lp = −e
−φ√−g(p+1) − α1(p+ 1)!ε(p+1)C(p+1) , with ε(p+1)C(p+1) ≡ ε(p+1)

µ0···µp
C(p+1)µ0···µp ,

(130)

with ε(p+1) µ0···µp = ε(10) µ0···µp
˙p+1···9̇, which follows from eµ

a = 0 (being odd). Here the
underlined indices are (p + 1)-dimensional and refer to the world-volume. The parameter
α is the same that appears in (128) and takes the values α = +1 for branes, which are
defined to have tension and charge with the same sign in our conventions, and α = −1 for
anti-branes, which are defined to have tension and charge of opposite signs. Note that due
to the vanishing of B on the brane the potentials C(p+1) and A(p+1) are equal. The p-brane
action can easily be shown to be invariant under the appropriate N = 1 supersymmetry:

δǫLp = −e
−φ√−g(p+1) ǭ(1− αΓp+1···9(Γ11)

p2) Γµ (ψµ − 118Γµλ) . (131)

The above variation vanishes due to the projection under (128) that selects branes or anti-
branes depending on the sign of α (+1 or −1 respectively). In the following discussions we
will assume α = 1 but the other case just amounts to replacing branes by anti-branes.

By truncating our theory we are able to construct a brane action that only consists
of bosons and yet is separately supersymmetric. Having these at our disposal, we can
introduce source terms for the various potentials. In general there are 29−p fixed points.
The compactness of the transverse space implies that the total charge must vanish. Thus
the total action will read

L = Lbulk + kpLp∆p , (132)

∆p ≡ (δ(xp+1)− δ(xp+1 − πRp+1)) · · · (δ(x9)− δ(x9 − πR9)) (133)

where the branes at all fixed points have a tension and a charge proportional to ±kp, a
parameter of dimension 1/[length]p+1. Since anti-branes do not satisfy the supersymmetry
condition, we need both positive and negative tension branes to accomplish vanishing total
charge. The main new results of this paper of general nature are the new formulations
of Type II D = 10 supergravity. For both Type IIA and IIB theories, we constructed
democratic bulk theories with a unified treatment of all R-R potentials. Due to the doubling
of R-R degrees of freedom one had to impose extra duality constraints and thus a proper
action was not possible. A so-called pseudo-action, containing kinetic terms for all R-R
potentials but without Chern-Simons terms. In general, an elegant solution is difficult to
find, but in the eight-brane case the situation simplifies.
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6 Conclusion

In the context of D = 5, N = 2, Yang-Mills Supergavity compactified on S1/Z2 we consider
the supersymmetric coupling of matter fields propagating on the brane. Working in the on-
shell scheme we have derived the terms of the brane action which are relevant for studying
the mechanisms of supersymmetry and gauge symmetry breaking. The omitted radion
multiplet couplings, as well as other couplings to the brane fields, can be derived, if desired,
using the Nöther procedure which we followed in this paper. In order to check if this is
indeed the case higher order interactions, in the gravitational constant k(5), of the brane
fields with the five-dimensional gravity multiplet have to be derived in the on-shell scheme
we have adopted. This rather complicated task, along with the derivation of additional
terms coupling the brane fields to the radion multiplet, and other even combination of odd
fields, which complete the Lagrangian. The complete brane action including these terms
and the mechanisms of supersymmetry and the gauge symmetry breaking in particular
unified models, in which both Gravity and Gauge forces propagate in the bulk.

We have constructed a consistent SUSY action for brane matter multiplets in a 6D chiral
gauged supergravity. Introducing brane chiral multiplets charged under the U(1)R, we
derived the supersymmetric U(1)R coupling to the brane by modifying both the gauge field
strength and the field strength for the KR field together with the necessary modifications of
the fermionic SUSY transformations. We also notify that the modified field strength for the
KR field is consistent with SUSY and U(1)R symmetry only at the expense of modifying the
SUSY and gauge transformations of the KR field with the singular terms, respectively. In
the present paper, we discussed the spectrum of the gravitino of the six-dimensional gauged
supergravity model with gauge group E7×E6×U(1)R, where a gauge flux is turned on in
the U(1) ⊂ E6 and the U(1)R directions. We studied in detail the spectrum in the general
warped background where codimension-two branes were supporting the necessary conical
singularities. The above property for the massless gravitino and its mass suppression with
extra operators, should also hold for the other fermionic states of the spectrum which we
did not consider in the present paper. In particular the gauginos which correspond to the
directions of isometry of the internal space should have the same feature. This procedure
offers an alternative way to obtain light fermions in models with extra dimensions.

We have constructed new formulations of Type II D = 10 supergravity. For both
Type IIA and IIB theories, we constructed democratic bulk theories with a unified treat-
ment of all R-R potentials. Due to the doubling of R-R degrees of freedom one had to
impose extra duality constraints and thus a proper action was not possible. A so-called
pseudo-action, containing kinetic terms for all R-R potentials but without Chern-Simons
terms, was discussed. Furthermore, we have broken the self-duality explicitly in the IIA
case, allowing for a proper action. Instead of all R-R potentials only half of the C(p)’s occur
in these theories. Both the standard (p = 1, 3) as well as the dual (p = 5, 7, 9) formulations
were discussed. Using these actions all bulk & brane systems can be described. Apart from
being a tool to understand the supersymmetric domain walls we were interested, it can be
expected that the new effective theories of D = 10 supersymmetry will have more general
applications in the future.
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