Discrete Noether's Theorem

Domenico Oricchio

June 12, 2021

Abstract
 Conservation law for discrete symmetry

I try to write a generalization of Noether's theorem to the discrete case. If a Lagrangian is invariant for a discrete simmetry S then there is a conservation law for each point (accessible) in the space:

$$
\begin{aligned}
& \mathcal{L}[R(q)]=\mathcal{L}(q) \\
& 0=\frac{d \mathcal{L}[S(q)]}{d t}-\frac{d \mathcal{L}(q)}{d t}=\frac{d \mathcal{L}(Q)}{d t}-\frac{d \mathcal{L}(q)}{d t}= \\
& =\frac{\partial \mathcal{L}(Q)}{\partial Q} \frac{\partial Q}{\partial q}+\frac{\partial \mathcal{L}(Q)}{\partial \dot{Q}} \frac{\partial \dot{Q}}{\partial q}-\frac{\partial \mathcal{L}(q)}{\partial q}-\frac{\partial \mathcal{L}(q)}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial q}= \\
& =\left[\frac{d}{d t} \frac{\partial \mathcal{L}(Q)}{\partial \dot{Q}}\right] \frac{\partial Q}{\partial q}+\frac{\partial \mathcal{L}(Q)}{\partial \dot{Q}} \frac{\partial \dot{Q}}{\partial q}-\left[\frac{d}{d t} \frac{\partial \mathcal{L}(q)}{\partial \dot{q}}\right]-\frac{\partial \mathcal{L}(q)}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial q}= \\
& =\frac{d}{d t}\left[\frac{\partial \mathcal{L}(Q)}{\partial \dot{Q}} \frac{\partial Q}{\partial q}-\frac{\partial \mathcal{L}(q)}{\partial \dot{q}}\right]
\end{aligned}
$$

then along the trajectory (where the Eulero-Lagrange equation $\frac{d}{d t} \frac{\partial \mathcal{L}(q)}{\partial \dot{q}}=$ $\frac{\partial \mathcal{L}(q)}{\partial q}$ is true) there is a conservation law.

This conservation law is true for each point of the trajectory, and for each discrete symmetry $Q(t)=S[q(t)]$.

The symmetry can be a linear transformation $Q_{n}= \pm A q \mp n B$ that are reflection, discrete spatial translation, discrete spatial rotation, etc.

I write some example of discrete Noether's theorem:

- discrete translation $Q_{n}=S^{n}(q)=q+n \Delta$: the derivative is $\partial_{q} Q=$ $\partial_{q} S(q)=1$, then the generalized momentum is constant $p\left(Q_{n}\right)=p(q+$ $n \Delta)$ and $q \in[0, \Delta]$: the generalized momentum is an arbitrary function in an interval $[0, \Delta]$, and it is replicated indefinitely in $[n \Delta,(n+1) \Delta]$. If $\Delta \rightarrow 0$ then there is an invariant momentum in each point of the space, the usual Noether's theorem.
- discrete rotation $\theta_{n}=S^{n}(\theta)=\theta+n 2 \pi / M$: the derivative is $\partial_{\theta} S(\theta)=$ 1 , the angular momentum is an arbitrary function in an interval $[0,2 \pi / M]$ and $p\left(\Theta_{n}\right)=p(\theta+n 2 \pi / M)$
- reflection $Q_{n}=(-1)^{n} q$: the derivative is $\partial_{q} S(q)=-1$, then the generalized momentun reverses with every reflection, but this happen only if the reflection point is on the trajectory (to satisfy the Eulero-Lagrange equation). It seem that there is an invariant in quantum mechanics (for example parity), then there is an invariant in classical mechanics. For example the classical Hamiltonian $\left.E=\frac{m}{2}\left[\dot{r}^{2}+r^{2} \dot{\theta}\right)^{2}+r^{2} \sin ^{2} \theta \phi^{2}\right]+$ $V(r)$ where $\mathcal{L}(r)=\mathcal{L}(-r)$ has the invariant $m \dot{r}(\vec{r})= \pm m \dot{r}(\overrightarrow{-r})$, that is the invariant obtained from the infinitesimal transformation $R=r-\epsilon r$ transformed in the discrete with $\epsilon=2$. The discrete Noether's theorem give the correct sign.

