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Abstract: This paper investigates Born’s statistical interpretation and the processes in
which the Schrodinger equation are constructed, and delves into the fundamental
principles of quantum mechanics. In addition, several examples and the foundation of
quantum mechanics are discussed from a new perspective.

Introduction:

As is known to all, quantization problems in the microscopic domain can be
accurately solved by calculating the Schrodinger equation, a fact that has verified the
accuracy and rationality of the equation. Nevertheless, the Schrodinger equation was
not strictly derived in a mathematical or physical level, which results in its unclear
physical essence. Moreover, although in quantum mechanics, the statistical
interpretation of the wave function, on which the construction of the Schrodinger
equation must be based, is made possible in line with the facts produced by
microscopic particle diffraction experiments, it is still impossible to fundamentally
understand the probabilistic property of microscopic particles.

Two problem-solving logics can be applied to such a difficult issue. The first is that
quantum mechanics is theoretically based on the most essential law of nature, thus
making it impossible to be derived from other theories. In other words, the
probabilistic property of microscopic particles is their intrinsic property, a fact that we
can only accept but can’t truly perceive. The second is that the probabilistic property
of microscopic particles is not the inherent property or the real property, but an
indirect manifestation of a more essential law of nature. For example, the gravity is
reflected by the phenomenon that an object thrown into the air always falls back to the
ground, but we can’t simply assume that it is an inherent property of the object.
Taking the second logic may be more of practical significance and in the spirits of
scientific exploration for interpreting the theoretical basis of quantum mechanics as
well as enhancing the theories of physics (the unity and harmony between quantum
mechanics and classical physics).

Therefore, this paper follows the second logic to explore a principle more
fundamental than the theoretical basis of quantum mechanics. The results are
hypothesized as follows: quantum mechanics will be based on rigorous mathematical
physics derivation; the foundation of quantum mechanics is only a necessary
inference of the more fundamental principles; thus, the basic problem of quantum
mechanics is solved and quantum mechanics and classical physics are harmonized
and unified.
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§1. Implications of Born’s statistical interpretation [1] and the processes of
constructing stationary Schrodinger equation [2]

In my opinion, The best way to explore the fundamental principles of quantum
mechanics is to trace back to the creation of quantum mechanics for more inspiration
and breakthroughs, that is, the initial construction process of the Schrodinger equation.
According to Schrodinger, the Schrodinger equation can be constructed from the
Hamilton-Jacobi equation in classical physics, which is also how Schrodinger initially
proposed the Schrodinger equation. For the problems of general conservative system
in classical mechanics, the classical Hamilton-Jacobi equation is as follows:

—E+L(VS)2+V=0 (1)
2m
The construction process is as follows: assuming a new unknown function

represents the action S in the Hamilton-Jacobi equation, there is:
S/h
y=e
where hi=h/27x,and h 1is the Planck constant (note that mathematically, ¥ must
be always greater than 0); According to Born's statistical interpretation to wave

function, which says that l//|2 gives the relative probability density of finding the

particle at point (x,y,z) (relative probability density is the probability that is not

normalized, and it is meaningless when S is a virtual function, so we think § isa

real function in here), relative probability density is written as @ , Therefore, this

paper obtains a relation between relative probability density @ and action S':
w=e"" has:w|,_,=1

Consequently, this is strongly reminiscent of the Boltzmann probability distribution of

classical physics in the form of mathematics, the Boltzmann probability distribution

1S:

—¢&,/ KT
w=e

,has:w|, =1
Where &, represents potential function; So we have sufficient reason to associate the
action § with the potential function &, , that is to say, we found that: the action

S which in Hamilton-Jacobi differential equation is closely related to the potential
function ¢, has:

S=(-h/2KT)e, 2)
As the paper discusses quantum mechanics, &, herein should be associated with the

microscopic domain, which is regarded as a microscopic potential function. The
differences between &, and the potential function J in the Hamilton-Jacobi

equation as well as their associations will be elaborated on in the following sections.
§2. Mathematical physics derivation of the stationary Schrodinger equation
Based on the findings in §1, the Hamilton-Jacobi equation is given a clearer

physical definition, which is associated with the microscopic domain. The

Hamilton-Jacobi equation can be a constraint equation regarding two functions,

macroscopic potential function » and microscopic potential function &, . The
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original classical Hamilton-Jacobi equation can be rewritten as:

1 h ?
—%(—%wp) +(E-V)=0 (3)

This equation is more basic than the Schrodinger equation and is associated with
classical physics as well as the microscopic domain. Moreover, all quantities in the
equation have clear physical definitions. Compared with the classic Hamiltonian
principle and Jacobi principle of least action, the equation above reveals another
principle of least action, i.e.: For microscopic systems, the real action (potential
function) is extremum in comparison with all the other actions (potential function),
has: 6¢, = 0. It is applied to the derivation of the stationary Schrodinger equation.

Regarding the mathematical physics derivation of the stationary Schrodinger
equation, the exploration process in §1 is an attempt to obtain more inspiration from
Schrodinger’s initial process of constructing the Schrodinger equation by the
Hamilton-Jacobi equation, rather than the strict mathematical physics derivation of
the Schrodinger equation, even though such an attempt has shown that the
Schrodinger equation can be obtained from the Hamilton-Jacobi equation. Given the
confusions about the theoretical basis of quantum mechanics, it is necessary to present
the complete process of mathematical physics derivation of the Schrodinger equation.
When a lot of particles in the microscopic potential field obey Boltzmann statistics,
the function of the relative probability density @ with respect to the microscopic
potential field &, under the condition @/, ,=1 is:

¢,=—KTlnw=-KTlny’, has:o|, ,=1

Let’s plug this relation into Hamilton-Jacobi equation that is rewritten in the above,
Unlike what Schrodinger initially did to substitute the action S for 7Zlny

mathematically, or substituting the action S by analogy, the substitution operation
herein has sufficiently clear physical processes and definitions, from which the
following can be obtained:

hZ
—E(Vl///l//)z +(E-V)=0

Let the left-hand side of this equation be M , which is taken as the Lagrangian of
generalized coordinates y , Oy /0Or ; the following can be acquired by solving the

integration equation:
2
I={Mdr= j{—mh—(vw/w)z +V}dr
2m

Based on the variational problem, the extremum of / is solved (Euler-Lagrange
equation), from which we have the following equation:

o 0 ol
S N S
oy or| ooy /or)
The equation for microscopic particles regarding w is thus obtained:
2

h—V2l//+(E—V)w:0
2m

This is the stationary Schrodinger equation in quantum mechanics.
In view of this paper’s point, has: ¢ =—KT In v’ , thus, the stationary Schrodinger
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equation can also be rewritten in the following form only with ¢, and V' :

2

j_vz{e—gp/zm }+ (E_V){e—gp/ZKT}z 0 )
m

According to the physical properties of Equation (4), it is hereby named as a potential

function for easy reference in the following sections.
§3. Discussion on the physics principles revealed by the Schrodinger equation

It can be noted that the microscopic potential function ¢, is derived from the

macroscopic potential function J in the potential equation. Since the potential
function manifests the interaction between objects and the potential functional
equation contains the energy term E of the system, the potential functional equation
explicitly reveals that: (1) microscopic action &, must be simultaneously associated

with the energy £ and space r of the system, and thus ¢, = gp(E,r). (2)The

probabilistic property exhibited by microscopic particles is not an inherent property of

microscopic particles, but an indirect reflection of microscopic action, has :

AT (3) The microscopic interaction is different from the macroscopic

o=y’ =e
one. In other words, the proved classical mechanical laws used to describe the
macroscopic natural phenomena are just the limit result or approximate result of
quantum mechanics.

Several common forms of microscopic action corresponding to macroscopic action
will be obtained by solving the potential function equation, in order to prove that the
classical mechanical laws used to describe the macroscopic natural phenomena are
just the limit result or approximate result of quantum mechanics; that is, the
macroscopic action V' is the limit or approximate result of the microscopic action
£,
(1): For a one-dimensional macroscopic simple harmonic motion (SHM), its
macroscopic action is V(x)=ma)2x2/ 2 , with the potential function equation as

follows:

%vz {e—ep/ZKT }+ (E _ mwzxz/z){e—sp/zkr }= 0

Desired &, can be obtained by solving the potential function equation:

E = ha)(n +l} has: n=0,1,23,...

2
g,(n,x)= —KT{ln N’ —a’x’ + ln[Hj(ax)]}
mE a 1
Where, a= | —2—, N =|———— , H (ax) are Hermite polynomials.
n(n+1/2) " (72’1/22"71!) (@) POy

When n=0 or n— 0, the microscopic potential function is approximately the

potential function form of the macroscopic SHM.
(2): For the macroscopic central gravitational field between m, and m, , its

macroscopic action is V()= —B/r, with the potential function equation as follows:



%vz e e B+ BIr e ™ =0

mm .
———; desired &,
m, +m,

Where, u is the reduced mass, which can be expressed as =

can be obtained by solving the potential function equation:

E = —%, has: n=1273,...
2n°h
2
SP (I’l,r) = _KT{IHK%NHJIIJ + ln L?:lill (,D)]2 + lnp2” - p}
2r 2h2 . . 2741 .
Where, p=——, a,=——,and N,,, are normalization factors and L*'(p) is
na, uB ’

the associated Laguerre polynomial. According to mathematical calculation, N

n,n—1
and I2'7(p) are the constants only associated with n and are irrelevant to p . It
can be clearly concluded from the mathematical form of the microscopic potential
function that, for m, and m,, when the energy of the system is £, , the minimum

of the corresponding microscopic potential function is found at » =n’q, . In other
words, when the system energy is E, , the corresponding well bottom of the
microscopic potential function is at » = n’a, ; or when the distance between m, and
m, is r=n’a,, they are immune from each other’s force, which is exactly the case

where the system can maintain stability; meanwhile, the relationship between
quantum energy E, and well bottom n’q, is that:

B B

o2’ nla,
When a, — 0, the well bottom n’a, of a series of potential wells is approximately

continuous, which is the macroscopic potential function formula as follows:

R N
n-a, r

For hydrogen-like atoms, B = Ze’/4re,, when the energy of the electrons outside the
nucleus is £, , the minimum of the corresponding microscopic potential function is at
r=n’a,. The extranuclear electrons at r=n’a, will not be affected by the nucleus.
This is where extranuclear electrons with the energy of £, should exist stably. It can

be judged from this that extranuclear electrons in atoms do not move like celestial
bodies that stay in an orbit by high-velocity motion. Instead, extranuclear electrons
are trapped by microscopic action in the potential wells around the nucleus. That’s
why classical physics cannot explain the fact of the stable existence of atoms.
Therefore, according to the discussion herein, the internal scene of an atom can be
described as follows: all positive charges are concentrated in the nucleus; extranuclear
electrons are trapped in the potential wells corresponding to their energy by
microscopic action; and the energy of extranuclear electrons can only be quantized;
the most probable condition (stable condition) is that extranuclear electrons are at the
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bottom of the potential wells corresponding to their energy; when there is a transition
in the energy of extranuclear electrons, the action from the nucleus changes
accordingly and then extranuclear electrons move to the bottom of the new potential
wells.

Conclusions: The familiar macroscopic action is only a limit or approximate result of
microcosmic action. They are constrained by the following potential function
equation:

hz -& -&

—Vz{e L J2KT }+ (E—V){e p/21<T}= 0

2u

Where, &, is microcosmic action; V' is macroscopic action; and E is system

energy. The solution of the potential function equation shows that the energy of any
system is quantized, or microscopic action is quantized; and the continuous changes
in macroscopic energy is the limit case and approximate form of quantization. The
probabilistic property of the microscopic system is not its inherent property, but an
indirect manifestation of the microscopic action.

Comments: in the course of physics, what classical physics has achieved in handing
macroscopic field is visible to all, but its limitations when being applied to the
microscopic one is also prominent. According to the spirit of scientific exploration,
we can’t simply accept the fact that classical physics is inapplicable to microscopic
field, because microscopic and macroscopic field could have been unified in theory as
microscopic and macroscopic are only relative concepts in scales and have no strict
demarcation. Therefore, the limited application of classical physics to microscopic
field proves only its laws are not sufficiently accurate or even partial in some case. We
also can’t simply accept that microscopic field is probabilistic, either. Inspired by
spirit of scientific exploration, we can keep asking why microscopic field is
probabilistic and what’s the inherent principle. The most scientific practice here is to
unveil the inherent nature of quantum mechanics. In this process, limitation of
classical physics may be solved and understood so that certain correction may be done
in this respect, quantum mechanics may be understood, quantum mechanics and
classical physics may be unified and coordinated. This is exactly what this paper
aspires to do.
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