
Prove Np not equal P using Markov Random

Field and Boolean Algebra Simplification

Sing Kuang Tan
Email: singkuangtan@gmail.com

July 12, 2021

Abstract

In this paper, we proved that Non-deterministic Polynomial time com-
plexity (NP) is not equal to Polynomial time complexity (P). We devel-
oped the Boolean algebra that will infer the solution of two variables of a
Non-deterministic Polynomial computation time Markov Random Field.
We showed that no matter how we simplified the Boolean algebra, it can
never run in Polynomial computation time (NP 6= P). We also developed
proof that all Polynomial computation time multi-layer Boolean algebra
can be transformed to another Polynomial computation time multi-layer
Boolean algebra where there are only ‘Not’ operations in the first layer.
So in the process of simplifying the Boolean algebra, we only need to con-
sider factorization operations that only assumes only ‘Not’ operations in
the first layer. We also developed Polynomial computation time Boolean
algebra for Markov Random Field Chain and 2sat problem represented in
Markov Random Field form to give examples of Polynomial computation
time Markov Random Field.

Contents

1 Introduction 3

2 Discrete Markov Random Field definition 3

3 Search for multi-layer Polynomial time complexity Boolean al-
gebra that infers the solution 5

4 How to reformat the Boolean algebra so that only the first layer
contains ‘Not’ operations 5
4.1 Proof of how to reformat the Boolean algebra using recursive

Boolean algebra equations . 6
4.2 An example of how to reformat a Boolean algebra 6
4.3 Expanding recursive Boolean algebra into sum of products and

product of sums forms . 8

1

mailto:singkuangtan@gmail.com

4.4 Represent Boolean algebra using addition and multiplication . . 9

5 A Polynomial time multi-layer Boolean algebra that solves the
Markov Random Field Chain problem 9
5.1 An example of a factorized Boolean algebra that has Polynomial

time . 9
5.2 An example of an expanded Boolean algebra that has Non-Deterministic

Polynomial time . 11

6 A six variables Non-Deterministic Polynomial time Markov Ran-
dom Field cannot be solved by Polynomial time multi-layer
Boolean algebra, therefore NP not equal P 12
6.1 Definition of the Markov Random Field 12
6.2 How to factorize the terms . 12
6.3 Only one sum of products representation of the Boolean algebra

to solve the Markov Random Field 13
6.4 Unable to factorize the terms into quadratic form (A+B+...)(C+D+...) 14
6.5 How to combine two factorized terms 15
6.6 How to expand a term by multiply (u+u’) to a term 18
6.7 How to expand a factorized term 19
6.8 Complement factor does not help to improve factorization 20
6.9 Summary of this section . 21
6.10 Example of how to factorize the Boolean algebra 22

7 Generalized to higher number of variables Markov Random
Field 25
7.1 A generalized Markov Random Field 25
7.2 How to factorize the terms . 25
7.3 How to combine factorized terms 27
7.4 How to expand a term by multiply (u+u’) to a term 30
7.5 How to expand a factorized term 30
7.6 Complement factor does not help to improve factorization 30
7.7 An analogy of the Boolean algebra factorization 31
7.8 Summary of this section . 31

8 2sat problem in Markov Random Field representation 31
8.1 2sat problem definition . 31
8.2 An algorithm to solve 2sat problem 32
8.3 How to solve a four variables 2sat problem 32
8.4 How to solve a five or more variables 2sat problem 33

9 Conclusion 34

2

1 Introduction

Non-deterministic Polynomial (NP) problem refers to problem that requires
exponential number of steps with respect to the size of the input to solve the
problem. Whereas Polynomial (P) problem refers to problem that requires
polynomial number of steps with respect to the size of the input to solve the
problem. It is an open problem which asks whether it is able to convert a NP
problem to P problem ([1–4]). We will show that in this paper that no algorithm
(represented as Boolean algebra and Markov Random Field) is able to solve NP
problem in Polynomial time as the Boolean algebra cannot be factorized into
another Boolean algebra that can be solved in Polynomial time (NP 6= P).

In this paper, the proof of NP 6= P is to show that the Boolean algebra of
Markov Random Field of a NP problem cannot be factorized into quadratic form
(A + B + . . .)(C + D + . . .) and therefore the time complexity of the Boolean
algebra cannot be simplified from NP complexity to Polynomial complexity.
Note that since the Boolean algebra cannot be factorized into quadratic form,
it also cannot be factorized into a more time efficient multi-layer Polynomial
computation time Boolean algebra. In the process of factorizing the Boolean
algebra, we use only factoring steps that assume there is only ‘Not’ operations
in the first layer and no ‘Not’ operations in the second and higher layers. We
have proved that ‘Not’ operations in second and higher layers can be simplified
into first layer without changing the computation time complexity class, where
Polynomial time complexity remains as Polynomial time complexity and NP
time complexity remains as NP time complexity.

The prerequisite knowledge to understand this paper is the understanding
of Markov Random Field, Boolean algebra and digital gates diagram in digital
electronics.

The outline of this paper is how to represent NP problem as Markov Ran-
dom Field and Boolean algebra (section 2), how to search for Boolean algebra
that infers the solution (section 3), how to reformulate the Boolean algebra so
that only the first layer contains ‘Not’ operations while keeping the time com-
plexity as Polynomial (section 4), give an example of a Polynomial computation
time multi-layer Boolean algebra for a 7 variables Markov Random Field Chain
(section 5), proof that a 6 variables Markov Random Field NP problem cannot
be simplified into Polynomial time using Boolean algebra simplification (sec-
tion 6), generalized the proof to higher number of variables (section 7), and
lastly also show how a 2sat problem can be represented in Markov Random
Field format together with Boolean algebra which can be solved in Polynomial
time (section 8). Finally, I will conclude my whole paper in section 9.

2 Discrete Markov Random Field definition

A NP problem can be represented by a discrete Markov Random Field. It has
n variables a1, a2, . . . , an.

A Markov random field with binary potential values looks something like

3

this

f(a1, a2, . . . , an) =
∏
i,j

Hi,j(ai, aj)

Hi,j(ai, aj) = 0 or 1.

For simplicity, we simply write

f(a1, a2, . . . , an) =
∏
i,j

H(ai, aj).

If f(a1 = v1, a2 = v2, . . . , an = vn) = 1 means a1 = v1, a2 = v2, . . . , an = vn
is a solution to the NP problem. Note that H(ai, aj) is the same as H(aj , ai)
and there does not exist H(ai, ai) and H(aj , aj).

We assume that each variable can take a finite number of values. E.g. vi ∈
{0, 1, . . . , 10}, in this example it can take 11 values.

If ∑
v1,v2,...,vn

∏
i,j

H(ai = vi, aj = vj) > 0,

then the NP problem has a a solution. For

Ĥ(ak = vk, al = vl) = H(ak = vk, al = vl)
∑

v1,v2,...,vn\vk,vl

∏
(i,j)\(k,l)

H(ai = vi, aj = vj),

if Ĥ(ak = vk, al = vl) = 0 after evaluation the above formula, it means that
ak = vk, al = vl is not part of a solution else ak = vk, al = vl is a solution to
this NP problem. Note that v1, v2, . . . , vn \ vk, vl means that all values v1 to vn
not including vk and vl. The notation is similar for (i, j) \ (k, l), which does not
include the i = k and j = l variables.

Example of a four variables 4 coloring problem in Markov Random Field
representation. The equation∑

a1,a2,a3,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4) > 0

means that there is a solution for this problem. The variable ai can take values
0,1,2 or 3.

We define

Ĥ(a1 = v1, a2 = v2)

= H(a1 = v1, a2 = v2)∑
a1=v1,a2=v2,a3=0,1,...3,a4=0,1,...3

H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4)

as the real value of H(a1 = v1, a2 = v2) after combining all the constraints
H(ai, aj). The expression

∑
a1=v1,a2=v2,a3=0,1,...,3,a4=0,1,...,3 means that a1 and

a2 can only take 1 value, a3 and a4 can take integer values between 0 to 3.

4

Ĥ(a1 = v1, a2 = v2) is the solution of this potential taking values v1 and v2,
output either a value of 0 or 1. If v1 and v2 are the solution to this Markov Ran-
dom Field, then Ĥ(a1 = v1, a2 = v2) = 1, else it is a 0. Since this is a coloring
problem, each potential is a discrete function with the following definition

H(ai, aj) =

{
0 if ai = aj

1 if ai 6= aj
.

H(ai, aj) is a discrete function with inputs of discrete ai, aj values and output a
0 or 1 value. H(ai, aj) will be different for other types of NP problem that is not
coloring problem. This Markov Random Field can represent any problem. It
can represent other problems simply by using H(ai, aj) functions with different
0 and 1 outputs different from the 4 coloring problem.

3 Search for multi-layer Polynomial time com-
plexity Boolean algebra that infers the solu-
tion

All

H(ai,aj)

Boolean

Algebra or

Circuit
��(ai,aj)

Figure 1: Multi-layer Boolean algebra that infers the solution

Figure 1 shows the Boolean algebra that will infer the solution of Ĥ(ai, aj).
This solution represents the actual value of H(ai, aj) after considering all the
constraints in Markov Random Field. So to solve the NP problem, it is to find
an optimal Boolean algebra that has the smallest computational complexity. We
can find the optimal Boolean algebra by Boolean algebra simplification. The
Boolean algebra has multi-layer operations. The computational complexity of
this Boolean algebra can be derived from the number of operations to com-
pute the final output value. If the simplified multi-layer Boolean algebra has
Polynomial computational complexity then NP = P. Otherwise, NP 6= P.

4 How to reformat the Boolean algebra so that
only the first layer contains ‘Not’ operations

5

4.1 Proof of how to reformat the Boolean algebra using
recursive Boolean algebra equations

In this section, we are going to prove the lemma below.

Lemma 4.1 A Polynomial computation time multi-layer Boolean algebra with
‘Not’ operations at the second or higher layer can be converted to another Poly-
nomial computation time multi-layer Boolean algebra with ‘Not’ operations only
at the first layer.

The multi-layer boolean algebra can be represented by multiple recursive
Boolean algebra equations with each equation in the form of

Hi =
∨
j

Hj or Hi =
∧
j

Hj or Hi = ¬
∨
j

Hj or Hi = ¬
∧
j

Hj where j < i.

And Hi = H(ak, al) for the first layer of this recursive Boolean algebra. Hi is
the output of one of the intermediate nodes in the boolean algebra or circuit.
Each node is either an ‘And’ operation or ‘Or’ operation sometimes with a ‘Not’
operation at the output of an intermediate node. The equations

Hi = ¬
∨
j

Hj or Hi = ¬
∧
j

Hj

can be simplified to

Hi =
∧
j

¬Hj or Hi =
∨
j

¬Hj

where the ‘Not’ operation is pushed to the previous layer using a De Morgan’s
theorem. Replace the simplified equations by

Hi =
∧
j

H ′j or Hi =
∨
j

H ′j .

Add additional nodes, H ′i = ¬Hi. If Hi = ¬
∨

j Hj or Hi = ¬
∧

j Hj , then
H ′i =

∨
j Hj or H ′i =

∧
j Hj . If Hi =

∨
j Hj or Hi =

∧
j Hj , then H ′i =

∧
j H
′
j

or H ′i =
∨

j H
′
j . Continue push the ‘Not’ operations until they are at the first

layer, H ′i = ¬H(ak, al). So any multi-layer Boolean algebra only need ‘Not’
operations at the first layer.

4.2 An example of how to reformat a Boolean algebra

Figure 2 shows a graphical step-by-step example of how to transform a multi-
layer Boolean algebra with ‘Not’ operations at any layers to ‘Not’ operations
only at the first layer.

6

H(a1,a2)

H(a1,a3)

H(a1,a4)

H(a2,a3)

H(a3,a4)

H(a2,a4)

��

Output

Not operation

at input or

output

Or operation

And operation

(a) Step 1

��

Output

Apply De Morgan's theorem

on some of the ‘And’ or ‘Or’

operations

H(a1,a2)

H(a1,a3)

H(a1,a4)

H(a2,a3)

H(a3,a4)

H(a2,a4)

(b) Step 2

��

Output

Remove the unnecessary ‘Not’ operations.

We can see that only the first layer needs

‘Not’ operations

H(a1,a2)

H(a1,a3)

H(a1,a4)

H(a2,a3)

H(a3,a4)

H(a2,a4)

(c) Step 3

Figure 2: Graphical example of how to push all the ‘Not’ operations from second
or higher layers into the first layer

In the figure 2, the Boolean algebra can be represented in recursive form,

H1 = H(a1, a2) , H2 = H(a1, a3) , H3 = H(a1, a4) , H4 = H(a2, a3) ,

H5 = H(a2, a4) , H6 = H(a3, a4) , H7 = ¬(H1 ∨H2) , H8 = H3 ∨H4 ,

H9 = H5 ∨H6 , H10 = H7 ∧H8 , H11 = ¬(H8 ∧H9) , H12 = ¬(H10 ∨H11)

Ĥ = H12.

The complements are

H ′1 = ¬H(a1, a2) , H ′2 = ¬H(a1, a3) , H ′3 = ¬H(a1, a4) , H ′4 = ¬H(a2, a3) ,

H ′5 = ¬H(a2, a4) , H ′6 = ¬H(a3, a4) , H ′7 = H1 ∨H2 , H ′8 = ¬(H3 ∨H4) ,

H ′9 = ¬(H5 ∨H6) , H ′10 = ¬(H7 ∧H8) , H ′11 = H8 ∧H9 , H ′12 = H10 ∨H11

Ĥ = H12.

7

Removing the not operation in the intermediate layers

H1 = H(a1, a2) , H2 = H(a1, a3) , H3 = H(a1, a4) , H4 = H(a2, a3) ,

H5 = H(a2, a4) , H6 = H(a3, a4) , H7 = H ′1 ∧H ′2 , H8 = H3 ∨H4 ,

H9 = H5 ∨H6 , H10 = H7 ∧H8 , H11 = H ′8 ∨H ′9 , H12 = H ′10 ∧H ′11 ,

H ′1 = ¬H(a1, a2) , H ′2 = ¬H(a1, a3) , H ′3 = ¬H(a1, a4) , H ′4 = ¬H(a2, a3) ,

H ′5 = ¬H(a2, a4) , H ′6 = ¬H(a3, a4) , H ′7 = H1 ∨H2 , H ′8 = H ′3 ∧H ′4 ,

H ′9 = H ′5 ∧H ′6 , H ′10 = H ′7 ∨H ′8 , H ′11 = H8 ∧H9 , H ′12 = H10 ∨H11

Ĥ = H12.

Removing the unnecessary H terms

H1 = H(a1, a2) , H2 = H(a1, a3) , H3 = H(a1, a4) , H4 = H(a2, a3) ,

H5 = H(a2, a4) , H6 = H(a3, a4) , H8 = H3 ∨H4 , H9 = H5 ∨H6 ,

H12 = H ′10 ∧H ′11 , H ′3 = ¬H(a1, a4) , H ′4 = ¬H(a2, a3) , H ′7 = H1 ∨H2 ,

H ′8 = H ′3 ∧H ′4 , H ′10 = H ′7 ∨H ′8 , H ′11 = H8 ∧H9

Ĥ = H12.

Note that the Boolean algebras before and after removal of ‘Not’ operations
at second and above layers have Polynomial time complexity, same Polynomial
time complexity before removal.

4.3 Expanding recursive Boolean algebra into sum of prod-
ucts and product of sums forms

Using the Boolean algebra in the previous subsection,

Ĥ =
(
(H1 ∨H2) ∨ (H ′3 ∧H ′4)

)
∧
(
(H3 ∨H4) ∧ (H5 ∨H6)

)
,

we expand it out into sum of products form

Ĥ =
(
H1 ∨H2 ∨ (H ′3 ∧H ′4)

)
∧
(
(H3 ∧H5) ∨ (H3 ∧H6) ∨ (H4 ∧H5) ∨ (H4 ∧H6)

)
= (H1 ∧H3 ∧H5) ∨ (H1 ∧H3 ∧H6) ∨ (H1 ∧H4 ∧H5) ∨ (H1 ∧H4 ∧H6) ∨ (H2 ∧H3 ∧H5)

∨ (H2 ∧H3 ∧H6) ∨ (H2 ∧H4 ∧H5) ∨ (H2 ∧H4 ∧H6) ∨ (H ′3 ∧H ′4 ∧H3 ∧H5)

∨ (H ′3 ∧H ′4 ∧H3 ∧H6) ∨ (H ′3 ∧H ′4 ∧H4 ∧H5) ∨ (H ′3 ∧H ′4 ∧H4 ∧H6).

We can also expand it into product of sums form

Ĥ =
(
(H1 ∨H2 ∨H ′3) ∧ (H1 ∨H2 ∨H ′4)

)
∧ (H3 ∨H4) ∧ (H5 ∨H6)

= (H1 ∨H2 ∨H ′3) ∧ (H1 ∨H2 ∨H ′4) ∧ (H3 ∨H4) ∧ (H5 ∨H6).

So to find the recursive Boolean algebra from sum of products form or prod-
uct of sums form, we simply reverse the process of expanding the algebra by
factoring it into multi-layer Boolean algebra. The multi-layer Boolean algebra is

8

more computational efficient, and in later part of the paper, we will use it to try
to find Polynomial computation time Boolean algebra from Non-Deterministic
Polynomial computation time Boolean algebra by factoring the Boolean alge-
bra. We will show that Polynomial computation time Boolean algebra cannot
be found from Non-Deterministic Polynomial computation time Boolean alge-
bra and NP 6= P. So no matter whether we factor the sum of products form
Boolean algebra or the product of sums Boolean algebra, we still can get the
original recursive multi-layer Boolean algebra. Later we will express the Boolean
algebra to solve the Non-Deterministic Polynomial time Markov Random Field
using sum of products form as it is simpler and neater than product of sums
form.

4.4 Represent Boolean algebra using addition and multi-
plication

Boolean algebra can be represented using addition for ‘Or’ operation and mul-
tiplication for ‘And’ operation. E.g. (A ∨ B) ∧ (C ∨D). It can be written as,
if (A + B)(C + D) > 0, then the Boolean operation give us an output 1, else it
will output a 0. This addition and multiplication format is easier to read.

5 A Polynomial time multi-layer Boolean alge-
bra that solves the Markov Random Field Chain
problem

5.1 An example of a factorized Boolean algebra that has
Polynomial time

Example of a Markov Random Field Chain with each variable ai taking a value of
either 0 or 1. The Markov Random Field can be solved by a 5 layers Boolean al-
gebra. This Boolean algebra infers the value of Ĥ(a6 = 0, a7 = 0). This Boolean
algebra has Polynomial complexity. The example of a 7 variables Markov Ran-
dom Field Chain Boolean algebra is

Ĥ(a6 = 0, a7 = 0)

=

((
H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 0) + H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 0)

)
(
H(a3 = 0, a4 = 0)H(a4 = 0, a5 = 0) + H(a3 = 0, a4 = 1)H(a4 = 1, a5 = 0)

)
+
(
H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 1) + H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 1)

)
(
H(a3 = 1, a4 = 0)H(a4 = 0, a5 = 0) + H(a3 = 1, a4 = 1)H(a4 = 1, a5 = 0)

))
H(a6 = 0, a7 = 0).

When Ĥ(a6 = 0, a7 = 0) > 0, it means that a6 = 0 and a7 = 0 is the solution
to the Markov Random Field. If you treat the addition and multiplication as

9

‘Or’ and ‘And’ operations of Boolean algebra, then when Ĥ(a6 = 0, a7 = 0) = 1,
it means that a6 = 0 and a7 = 0 is the solution to the Markov Random Field.

This Markov Random Field Chain lacks of potential H terms (or constraints),
H(a1,a3),H(a1,a4),H(a1,a5),H(a2,a4),H(a2,a5),H(a3,a5) as shown in figure 3.
Because of these missing constraints, this Markov Random Field can be solved
efficiently in Polynomial computation time.

a1 a2 a3 a4 a5 a6 a7

Graphically, the Markov Random Field Chain looks like this

Figure 3: Graphical representation of a Markov Random Field Chain

H
(a

1
=
0
,a

2
=
0
)

H
(a

2
=
0
,a

3
=
0
)

H
(a

1
=
0
,a

2
=
1
)

H
(a

2
=
0
,a

3
=
1
)

H
(a

2
=
1
,a

3
=
0
)

H
(a

2
=
1
,a

3
=
1
)

H
(a

3
=
0
,a

4
=
0
)

H
(a

3
=
0
,a

4
=
1
)

H
(a

3
=
1
,a

4
=
0
)

H
(a

3
=
1
,a

4
=
1
)

H
(a

4
=
0
,a

5
=
0
)

H
(a

4
=
0
,a

5
=
1
)

H
(a

4
=
1
,a

5
=
0
)

Output

H(a6=0,a7=0)

Figure 4: The graphical form of the Polynomial time complexity Boolean algebra
that solves the Markov Random Field Chain

Figure 4 shows the graphical form of the Polynomial time complexity Boolean
algebra that solves the Markov Random Field Chain.

10

5.2 An example of an expanded Boolean algebra that has
Non-Deterministic Polynomial time

After expansion, it looks like this

H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 0)H(a3 = 0, a4 = 0)H(a4 = 0, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 0)H(a3 = 0, a4 = 1)H(a4 = 1, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 1)H(a3 = 1, a4 = 0)H(a4 = 0, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 1)H(a3 = 1, a4 = 1)H(a4 = 1, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 0)H(a3 = 0, a4 = 0)H(a4 = 0, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 0)H(a3 = 0, a4 = 1)H(a4 = 1, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 1)H(a3 = 1, a4 = 0)H(a4 = 0, a5 = 0)H(a6 = 0, a7 = 0)

+H(a1 = 0, a2 = 1)H(a2 = 1, a3 = 1)H(a3 = 1, a4 = 1)H(a4 = 1, a5 = 0)H(a6 = 0, a7 = 0).

This expanded Boolean algebra has Non-Deterministic Polynomial time com-
plexity, with exponential number of additions.

H
(a

1
=
0
,a

2
=
0
)

H
(a

2
=
0
,a

3
=
0
)

H
(a

1
=
0
,a

2
=
1
)

H
(a

2
=
0
,a

3
=
1
)

H
(a

2
=
1
,a

3
=
0
)

H
(a

2
=
1
,a

3
=
1
)

H
(a

3
=
0
,a

4
=
0
)

H
(a

3
=
0
,a

4
=
1
)

H
(a

3
=
1
,a

4
=
0
)

H
(a

3
=
1
,a

4
=
1
)

H
(a

4
=
0
,a

5
=
0
)

H
(a

4
=
0
,a

5
=
1
)

H
(a

4
=
1
,a

5
=
0
)

Output

H(a6=0,a7=0)

Figure 5: The graphical form of the NP time complexity Boolean algebra that
solves the Markov Random Field Chain

Figure 4 shows the graphical form of the NP time complexity Boolean algebra
that solves the Markov Random Field Chain.

To find the Polynomial complexity 5 layers Boolean algebra from the ex-
panded Boolean algebra, we need to factorize the expanded Boolean algebra in
the reverse order it is expanded.

11

6 A six variables Non-Deterministic Polynomial
time Markov Random Field cannot be solved
by Polynomial time multi-layer Boolean alge-
bra, therefore NP not equal P

In this section, we will prove the lemma below.

Lemma 6.1 All 6 variables Non-Deterministic Polynomial computation time
Markov Random Field Boolean algebra cannot be factorized into quadratic form
(A + B + . . .)(C + D + . . .) + . . . or more simplified multi-layer Polynomial
computation time Boolean algebra form.

6.1 Definition of the Markov Random Field

A Boolean algebra that solves a 6 variables Markov Random Field looks like
this below. This Boolean algebra infers the value of Ĥ(a5 = 0, a6 = 0),

Ĥ(a5 = 0, a6 = 0) =
∑

a1,a2,a3,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5, a6)

where
∑

a5=0,a6=0 means that a5 and a6 can only take the value 0. a5 and a6

are set to zero because the Ĥ(a5 = 0, a6 = 0) is what we want to infer. If
Ĥ(a5 = 0, a6 = 0) > 0 means that a5 = a6 = 0 is the solution to this Markov
Random Field. Else if Ĥ(a5 = 0, a6 = 0) = 0 means that a5 = a6 = 0 is not
the solution to this Markov Random Field. Note that this Boolean algebra is
in sum of products form.

6.2 How to factorize the terms

For example, some product terms of the Boolean algebra can be factorized into
this form

H(a5 = 0, a6 = 0)
∑

a1,a2,a3,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

Or

H(a1 = 0, a2 = 0)
∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5, a6).

12

The grammar to transform a set of boolean algebra terms into a factored
form is e.g. ∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1 = 0, a2 = 0)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)

H(a2, a3)H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)

H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5 = 0, a6 = 0)

=⇒
H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)

H(a2, a3)H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)

H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

(1)

6.3 Only one sum of products representation of the Boolean
algebra to solve the Markov Random Field

Given the 6 variables Markov Random Field representation of a NP problem,∑
a1,a2,a3,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5, a6).

The equation above shows the Boolean algebra to solve the Markov Random
Field using sum of products representation.

If the product term misses 1 factor, e.g. H(a1, a2), then

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)H(a2, a5)H(a2, a6)

H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5 = 0, a6 = 0)

13

term will recognize H(a1, a2) = 0 and

H(a1, a3) = H(a1, a4) = H(a1, a5) = H(a1, a6) = H(a2, a3) = H(a2, a4) = H(a2, a5) = H(a2, a6)

= H(a3, a4) = H(a3, a5) = H(a3, a6) = H(a4, a5) = H(a4, a6) = H(a5 = 0, a6 = 0) = 1

as the solution, which is incorrect as the constraint H(a1, a2) is not satisfied,
H(a1, a2) = 0. If the product term have an additional factor, e.g H(a5 = 1, a6 =
1), then

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)H(a2, a5)

H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5 = 0, a6 = 0)H(a5 = 1, a6 = 1),

it will miss out the solution

H(a1, a2) = H(a1, a3) = H(a1, a4) = H(a1, a5) = H(a1, a6) = H(a2, a3) = H(a2, a4) = H(a2, a5)

= H(a2, a6) = H(a3, a4) = H(a3, a5) = H(a3, a6) = H(a4, a5) = H(a4, a6) = H(a5 = 0, a6 = 0) = 1

as the solution when H(a5 = 1, a6 = 1) = 0.

6.4 Unable to factorize the terms into quadratic form (A+B+...)(C+D+...)

For example for factored term1 and term2,

Term1 = H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

Term2 = H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=1,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)
,

term1 and term2 cannot be factorized into this form
(
H(a1 = 0, a2 = 0)H(a5 =

0, a6 = 0) + H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)
)
(∗) because the 2 product

factors of term1 and term2 are different with a2 = 0 for term1 and a2 = 1 for
term2.(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

is not equal to(∑
a1,a2=1,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)
.

14

The gammar of not able to factorize the terms into (A+B+ . . .)(C+D+ . . .)
is shown below.

H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

∧
H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=1,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

;(
H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0) + H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)

)
(∗)

(2)

6.5 How to combine two factorized terms

For another example of factored term1 and term2

Term1 = H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

Term2 = H(a2 = 0, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

15

can be combined into this form

H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 0)H(a1 = 0, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)H(a2, a5)

H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

+ H(a2 = 0, a3 = 0)H(a5 = 0, a6 = 0)∑
a1>1,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+ H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)∑
a1=0,a2=0,a3>1,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6).

Note that
∑

a1>1 means that for all values of a1 except a1 = 0. Still it cannot
be factorized into (A + B + . . .)(C + D + . . .) form (quadratic form). It is in
A(B + C + . . .) + D form.

16

The grammar to combine factorized terms is shown below.

H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

∧
H(a2 = 0, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

=⇒
H(a1 = 0, a2 = 0)H(a2 = 0, a3 = 0)H(a1 = 0, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)H(a2, a5)

H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

+ H(a2 = 0, a3 = 0)H(a5 = 0, a6 = 0)∑
a1>1,a2=0,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+ H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)∑
a1=0,a2=0,a3>1,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

(3)

17

6.6 How to expand a term by multiply (u+u’) to a term

Term1 = H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

Term2 = H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=1,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

For the term1, even if you expand the product term, e.g.(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)(
H ′(a1 = 1, a2) + H(a1 = 1, a2)

)
= H ′(a1 = 1, a2)

∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+ H(a1 = 1, a2)
∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6),

the 2 terms term1 and term2 still cannot be factored into (A+B+ . . .)(C+D+
. . .) format (quadratic format) because the a2 values are still different (term1
a2 = 0 and term2 a2 = 1). Note that H ′(ai, aj) = 1 −H(ai, aj), which means
in Boolean algebra it is a ‘Not’ operation.

18

The grammar to expand the product term is e.g.∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

=⇒(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)(

H ′(a1 = 1, a2) + H(a1 = 1, a2)
)

(4)

6.7 How to expand a factorized term

Term1 = H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)(∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

Term2 = H(a2 = 1, a3 = 0)H(a5 = 0, a6 = 0)(∑
a1,a2=1,a3=0,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

Even if you add the new term below using

Term3 = H(a1 = 0, a2 = 0)H(a5 = 0, a6 = 0)H ′(a1 = 1, a2 = 0)
(
H(a1 = 1, a2 = 0)∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)
,

19

term3 cannot be combined with term2 into the form (A+B + . . .)(C +D+ . . .)
because a2 values is 0 for term3 and 1 for term2.

Another grammar to expand a factorized term is e.g.

H ′(a1 = 1, a2 = 0)H(a5 = 0, a6 = 0)H(a1 = 0, a2 = 0)
∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

=⇒
H ′(a1 = 1, a2 = 0)H(a5 = 0, a6 = 0)H(a1 = 0, a2 = 0)

(
H(a1 = 1, a2 = 0)∑

a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)+∑
a1=0,a2=0,a3,a4,a5=0,a6=0

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)
)

(5)

6.8 Complement factor does not help to improve factor-
ization

In the previous two sections, we discovered that expanding the Boolean algebra
with complement factor H ′(ai, aj) does not help to improve factorization. The
evaluation of the Boolean algebra remains Non-Deterministic Polynomial time
complexity after expansion and factorization with complement factor.

Look in another way, if the number of values in each variable ai is fixed
and not related to the number of ai variables, for example ai ∈ {0, 1, 2},
H ′(ai = 0, aj = 0) can be replaced by H(ai = 0, aj = 1) + H(ai = 0, aj =
2) + H(ai = 1, aj = 0) + H(ai = 1, aj = 1) + H(ai = 1, aj = 2) + H(ai =

20

2, aj = 0) + H(ai = 2, aj = 1) + H(ai = 2, aj = 2). This complement factor is
replaced by a constant number of H terms and it is independent of the number
of variables in the Markov Random Field. Therefore a Polynomial time com-
plexity Markov Random Field remains as Polynomial time complexity and a
Non-Deterministic Polynomial time complexity Markov Random Field remains
as Non-Deterministic Polynomial time complexity after replacement.

For an arbitary number of values in each variable ai, H
′(ai = vi, aj = vj)

can be replaced by
∑

(vk,vl)\(vi,vj) H(ai = vk, aj = vl). It means that the sum
of H terms for all values in ai and aj , except ai = vi and aj = vj .

6.9 Summary of this section

Therefore the six variables Boolean algebra∑
a1,a2,a3,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5, a6)

can never be factorized into (A + B + . . .)(C + D + . . .) + . . . 2-layer Boolean
algebra (quadratic form), so it can also not able to factorized into 3 or higher
layers Boolean algebra. It is factorized using grammar rules from equations 1,
2, 3, 4 and 5.

The Boolean algebra can never be executed in Polynomial time as it cannot
be factorized into multi-layer Polynomial time Boolean algebra. Therefore Non-
Deterministic Polynomial time algorithm cannot be converted to Polynomial
time algorithm, and NP 6= P. This six variables case can be easily extended to
7 or higher number of variables.

21

6.10 Example of how to factorize the Boolean algebra

Example of a factorization of the 6 variables Boolean algebra is

Ĥ(a5 = 0, a6 = 0) =
∑

a1,a2,a3,a4,a5=0,a6=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)H(a5, a6)

=
∑

a1,a2,a5=0,a6=0

H(a1, a2)H(a5, a6)

∑
a3,a4

H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a1,a3,a5=0,a6=0

H(a1, a3)H(a5, a6)

∑
a2,a4

H(a1, a2)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a1,a4,a5=0,a6=0

H(a1, a4)H(a5, a6)

∑
a2,a3

H(a1, a2)H(a1, a3)H(a1, a5)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a1,a5=0,a6=0

H(a1, a5)H(a5, a6)

∑
a2,a3,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a6)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

22

+
∑

a1,a5=0,a6=0

H(a1, a6)H(a5, a6)

∑
a2,a3,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a2, a3)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a2,a3,a5=0,a6=0

H(a2, a3)H(a5, a6)

∑
a1,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a4)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a2,a4,a5=0,a6=0

H(a2, a4)H(a5, a6)

∑
a1,a3

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a2,a5=0,a6=0

H(a2, a5)H(a5, a6)

∑
a1,a3,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

23

+
∑

a2,a5=0,a6=0

H(a2, a6)H(a5, a6)

∑
a1,a3,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a3,a4,a5=0,a6=0

H(a3, a4)H(a5, a6)

∑
a1,a2

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a5)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a3,a5=0,a6=0

H(a3, a5)H(a5, a6)

∑
a1,a2,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a6)H(a4, a5)H(a4, a6)

+
∑

a3,a5=0,a6=0

H(a3, a6)H(a5, a6)

∑
a1,a2,a4

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a4, a5)H(a4, a6)

+
∑

a4,a5=0,a6=0

H(a4, a5)H(a5, a6)

∑
a1,a2,a3

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a6)

+
∑

a4,a5=0,a6=0

H(a4, a6)H(a5, a6)

∑
a1,a2,a3

H(a1, a2)H(a1, a3)H(a1, a4)H(a1, a5)H(a1, a6)H(a2, a3)

H(a2, a4)H(a2, a5)H(a2, a6)H(a3, a4)H(a3, a5)H(a3, a6)H(a4, a5).

This Boolean algebra is too complex to show in graphical form.

24

Another example of factorization of the 6 variables Boolean algebra is

Ĥ(a5 = 0, a6 = 0) =
∑
a1,a2

H(a1, a2)
∑
a3

H(a1, a3)H(a2, a3)

∑
a4

H(a1, a4)H(a2, a4)H(a3, a4)
∑
a5=0

H(a1, a5)H(a2, a5)H(a3, a5)H(a4, a5)

∑
a6=0

H(a1, a6)H(a2, a6)H(a3, a6)H(a4, a6)H(a5, a6).

Due to the last part of the Boolean algebra shown below,∑
a5=0

H(a1, a5)H(a2, a5)H(a3, a5)H(a4, a5)

∑
a6=0

H(a1, a6)H(a2, a6)H(a3, a6)H(a4, a6)H(a5, a6),

the evaluation of the Boolean algebra has exponential number of additions and
therefore it has Non-Deterministic Polynomial time complexity.

7 Generalized to higher number of variables Markov
Random Field

In this section, we want to prove the lemma below.

Lemma 7.1 All Non-Deterministic Polynomial computation time Markov Ran-
dom Field Boolean algebra cannot be factorized into quadratic form (A + B +
. . .)(C + D + . . .) + . . . or more simplified multi-layer Polynomial computation
time Boolean algebra form.

7.1 A generalized Markov Random Field

The equation

Ĥ(ak = vk, al = vl) = H(ak = vk, al = vl)
∑

v1,v2,...,vn\vk,vl

∏
(i,j)\(k,l)

H(ai = vi, aj = vj)

shows the Boolean algebra to determine whether ak = vk and al = vl is the
solution of the Markov Random Field. When Ĥ(ak = vk, al = vl) > 0 means
that ak = vk and al = vl is the solution, else when Ĥ(ak = vk, al = vl) = 0
means that ak = vk and al = vl is not the solution.

7.2 How to factorize the terms

All terms can be factorized using the formula below. Factorized term1 is

H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1
= viN1−1

, aiN1
= viN1

)∑
ai1

=vi1 ,...,aiN1
=viN1

,a
j
(1)
1

,...,a
j
(1)
M1

∏
i,j∈{i1,...,iN1

,j
(1)
1 ,...,j

(1)
M1
},i6=j

H(ai, aj)

25

for all l and m in ail and a
j
(1)
m

, il 6= j
(1)
m . Given another factorized term2

H(ak1 = vk1 , ak2 = vk2)H(ak3 = vk3 , ak4 = vk4) . . . H(akN2−1
= vkN2−1

, akN2
= vkN2

)∑
ak1

=vk1
,...,akN2

=vkN2
,a

j
(2)
1

,...,a
j
(2)
M2

∏
i,j∈{k1,...,kN2

,j
(2)
1 ,...,j

(2)
M2
},i6=j

H(ai, aj)

for all l and m in akl
and a

j
(2)
m

, kl 6= j
(2)
m . This two factorized term cannot be

further factorized into (A+B . . .)(C +D . . .) format (quadratic format) as long
as there is a variable ail , akm with different values vil 6= vkm where il = km. Note

that j
(1)
m and j

(2)
m are not the same index. ai, aj ∈ {ai1 , . . . , aiN1

, a
j
(2)
1

, . . . , a
j
(1)
M1

}
means that ai and aj can be one of the variables in the set {∗}.

The grammar to factorize a set of terms is shown below.∑
ai1

=vi1 ,...,aiN1
=viN1

,a
j
(1)
1

,...,a
j
(1)
M1

H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1
= viN1−1

, aiN1
= viN1

)∏
i,j∈{i1,...,iN1

,j
(1)
1 ,...,j

(1)
M1
},i6=j

H(ai, aj)

=⇒
H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1

= viN1−1
, aiN1

= viN1
)∑

ai1
=vi1 ,...,aiN1

=viN1
,a

j
(1)
1

,...,a
j
(1)
M1

∏
i,j∈{i1,...,iN1

,j
(1)
1 ,...,j

(1)
M1
},i6=j

H(ai, aj)

(6)

The grammar of not able to factorize the terms into (A+B+. . .)(B+C+. . .)

26

is shown below.

H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1
= viN1−1

, aiN1
= viN1

)∑
ai1

=vi1 ,...,aiN1
=viN1

,a
j
(1)
1

,...,a
j
(1)
M1

∏
i,j∈{i1,...,iN1

,j
(1)
1 ,...,j

(1)
M1
},i6=j

H(ai, aj)

∧
H(ak1 = vk1 , ak2 = vk2)H(ak3 = vk3 , ak4 = vk4) . . . H(akN2−1

= vkN2−1
, akN2

= vkN2
)∑

ak1
=vk1

,...,akN2
=vkN2

,a
j
(2)
1

,...,a
j
(2)
M2

∏
i,j∈{k1,...,kN2

,j
(2)
1 ,...,j

(2)
M2
},i6=j

H(ai, aj)

;(
H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1

= viN1−1
, aiN1

= viN1
)

+

H(ak1 = vk1 , ak2 = vk2)H(ak3 = vk3 , ak4 = vk4) . . . H(akN2−1
= vkN2−1

, akN2
= vkN2

)
)(

∗
)

(7)

7.3 How to combine factorized terms

If there exists pairs of variables ail = vil , akm = vkmwith il = km, and vil = vkm ,
and it does not exists pairs of variables ail = vil ,akm = vkmwith il = km, and
vil 6= vkm

, then the two factorized term can only be factorized into A(B + C +
. . .) + D format. To be specific, let us write the condition needed to factorize
the two terms (we introduce T new variables ast),

∀st,il,km
il = km = st → vil = vkm

.

27

If the above condition is True then the two factorized term can be factorized
into (∏

i,j∈{s1,s2,...,sT },i6=j

H(ai = vi, aj = vj)
)

∑
as1=vs1 ,...,asT

=vsT ,a
j
(3)
1

,...,a
j
(3)
M

∏
i,j∈{s1,...,sT ,j

(3)
1 ,...,j

(3)
M },i6=j

H(ai, aj)

+ additional terms.
Note that st ∈ ({i1, i2, . . . , iN1

}∪{k1, k2, . . . , kN2
}) and {j(3)1 , j

(3)
2 , . . . , j

(3)
M3
} ∈

({j(1)1 , j
(1)
2 , . . . , j

(1)
M1
}∩{j(2)1 , j

(2)
2 , . . . , j

(2)
M2
}). st ∈ {s1, s2, . . . , sT }, il ∈ {i1, i2, . . . , iN1

}
and km ∈ {k1, k2, . . . , iN2

}.
After combining the factorized terms, it is still unable to factorize the terms

into (A + B + . . .)(C + D + . . .) form.
The grammar to transform a set of Boolean algebra terms into a factored

28

form is

H(ai1 = vi1 , ai2 = vi2)H(ai3 = vi3 , ai4 = vi4) . . . H(aiN1−1
= viN1−1

, aiN1
= viN1

)∑
ai1

=vi1 ,...,aiN1
=viN1

,a
j
(1)
1

,...,a
j
(1)
M1

∏
i,j∈{i1,...,iN1

,j
(1)
1 ,...,j

(1)
M1
},i6=j

H(ai, aj)

∧
H(ak1

= vk1
, ak2

= vk2
)H(ak3

= vk3
, ak4

= vk4
) . . . H(akN2−1

= vkN2−1
, akN2

= vkN2
)∑

ak1
=vk1

,...,akN2
=vkN2

,a
j
(2)
1

,...,a
j
(2)
M2

∏
i,j∈{k1,...,kN2

,j
(2)
1 ,...,j

(2)
M2
},i6=j

H(ai, aj)

=⇒(∏
i,j∈{s1,s2,...,sT },i6=j

H(ai = vi, aj = vj)
)

∑
as1=vs1 ,...,asT

=vsT ,a
j
(3)
1

,...,a
j
(3)
M3

∏
i,j∈{s1,...,sT ,j

(3)
1 ,...,j

(3)
M3
},i6=j

H(ai, aj)

+ additional terms

where

∀st,il,km
il = km = st → vil = vkm

st ∈ {s1, s2, . . . , sT } = ({i1, i2, . . . , iN1
} ∪ {k1, k2, . . . , kN2

})

{j(3)1 , j
(3)
2 , . . . , j

(3)
M3
} ∈ ({j(1)1 , j

(1)
2 , . . . , j

(1)
M1
} ∩ {j(2)1 , j

(2)
2 , . . . , j

(2)
M2
})

st ∈ {s1, s2, . . . , sT }, il ∈ {i1, i2, . . . , iN1} and km ∈ {k1, k2, . . . , iN2}

(8)

29

7.4 How to expand a term by multiply (u+u’) to a term

Every term can be expanded by multiplying u + u′ term,

H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1
, aiN)(u + u′).

u + u′ can be e.g. H(a1 = 0, a2) + H ′(a1 = 0, a2). H ′() = 1 −H(), which is a
‘Not’ operation. Since u+u′ is always equal to 1, it can be multiplied to a term
without changing the meaning. Using this expansion, we can add complement
terms. But after expanding factorized term1 and term2, we still cannot further
factorized term1 and term2 into (A + B + . . .)(C + D + . . .) form (quadratic
form).

The grammar to expand the product term is

H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1
, aiN)

=⇒
H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1

, aiN)(u + u′).

(9)

7.5 How to expand a factorized term

Another way of expanding the factorized term is

H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1
, aiN)u′(

v × u + H(aj1 , aj2)H(aj3 , aj4) . . . H(ajM−1
, ajM)

)
.

u, u′ can be e.g. H(a1 = 0, a2), H ′(a1 = 0, a2). Using this expansion, we can
add complement terms. v can be any product sum of H() potentials as u × u′

will always be False or 0. But after expanding factorized term1 and term2, we
still cannot further factorized term1 and term2 into (A+B + . . .)(C +D + . . .)
form (quadratic form).

Another grammar to expand a factorized term is

H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1
, aiN)u′

H(aj1 , aj2)H(aj3 , aj4) . . . H(ajM−1
, ajM)

=⇒
H(ai1 , ai2)H(ai3 , ai4) . . . H(aiN−1

, aiN)u′(
v × u + (aj1 , aj2)H(aj3 , aj4) . . . H(ajM−1

, ajM)
)
.

(10)

7.6 Complement factor does not help to improve factor-
ization

Same as the 6 variables Markov Random Field case, the use of complement
factor does not help to improve factorization. (Look at section 6.8).

30

7.7 An analogy of the Boolean algebra factorization

An analogy to explain whether a Boolean algebra can or cannot be factorized
into quadratic form (A + B + . . .)(C + D + . . .) is the example below. The
equation below

AC + AD + BC + BD

= (A + B)(C + D)

can be factorized into quadratic form (A + B)(C + D). Whereas the equation
below

AC + AD + BE + BF

= A(C + D) + B(E + F)

cannot be factorized into quadratic form e.g. (A + B)(C + D).

7.8 Summary of this section

Since using grammar rules in equations 6, 7, 8, 9 and 10 cannot factorized
the Boolean algebra of a Non-Deterministic Polynomial time Markov Random
Field to quadratic form (A + B + . . .)(C + D + . . .) + . . ., Non-Deterministic
Polynomial time problem can never be converted to Polynomial time problem,
therefore NP 6= P.

8 2sat problem in Markov Random Field repre-
sentation

8.1 2sat problem definition

A 2sat problem can be defined as∧
i,j

(
(¬Ai,j ∨ ai ∨ aj) ∧ (¬Ai′,j ∨ ¬ai ∨ aj) ∧ (¬Ai,j′ ∨ ai ∨ ¬aj) ∧ (¬Ai′,j′ ∨ ¬ai ∨ ¬aj)

)
where Ai,j , Ai′,j , Ai,j′ and Ai′,j′ determine whether the terms exist or not. E.g.
if Ai,j = 0 (which means false), the term (ai∨aj) does not exist. Else if Ai,j = 1
means that the term (ai ∨ aj) exists. In our paper, True or False can also be
represented as 1 or 0. An example a 2sat problem instance is

(¬a1 ∨ a2) ∧ (¬a2 ∨ ¬a3) ∧ (a3 ∨ a4) ∧ (¬a4 ∨ a5)

can be represented with

A1′,2 = 1, A2′,3′ = 1, A3,4 = 1, A4′,5 = 1

and other Ai,j = 0 for (i, j) 6∈ {(1′, 2), (2′, 3′), (3, 4), (4′, 5)}.

31

8.2 An algorithm to solve 2sat problem

2sat problem can be solved using the algorithm 1 below. This is the standard
algorithm to solve it.

Algorithm 1: 2sat problem algorithm

Result: Return a True or False whether a 2sat problem has solution
1 for ai in {a1, a2, . . . , an} do
2 for ai =True or False do
3 Set values of all other variables to unknown (neither True or

False) except ai;
4 Then using the 2sat clauses, try to infer other variables values;
5 if there is a contradiction, e.g. variable a1 is both True and

False then
6 The 2sat has no solution, return False;

7 end

8 end
9 The 2sat has a solution, return True;

8.3 How to solve a four variables 2sat problem

For a four variables 2 values Markov Random Field problem, it is the same as
a 2sat problem. The 2sat problem can be represented as

Ĥ(a3 = 0, a4 = 0) =
∑

a1,a2,a3=0,a4=0

H(a1, a2)H(a1, a3)H(a1, a4)H(a2, a3)H(a2, a4)H(a3, a4),

where a1, a2, a3, a4 can only take values of either 0 or 1. It can be simplified to(∑
a1,a2,a3=0,a4=0

H(a1, a2)H(a2, a3)H(a3, a4)H(a1, a4)
)

×
(∑
a1,a2,a3=0,a4=0

H(a1, a3)H(a3, a4)H(a2, a4)H(a1, a2)
)

×
(∑
a1,a2,a3=0,a4=0

H(a1, a3)H(a2, a3)H(a2, a4)H(a1, a4)
)

×
(∑
a1,a2,a3=0

H(a1, a2)H(a2, a3)H(a1, a3)
)

×
(∑
a2,a3=0,a4=0

H(a2, a3)H(a3, a4)H(a2, a4)
)

×
(∑
a1,a3=0,a4=0

H(a3, a4)H(a1, a4)H(a1, a3)
)

×
(∑
a1,a2,a4=0

H(a1, a2)H(a2, a4)H(a1, a4)
)

where the above equation represents all loop constraints.

32

Loop constraints can be represented in graphical form of Markov Random
Field.

a
1

a
2

a
3a

4

a
1

a
2

a
3a

4

a
1

a
2

a
3a

4

a
1

a
2

a
4

a
1

a
3a

4

a
2

a
3a

4

a
1

a
2

a
3

Figure 6: Graphical representation of all possible loops in the Markov Random
Field

Figure 6 shows a graphical representation of all possible loops that can be
extracted for the Markov Random Field. A 2sat problem can be simplified into
solving a set of Markov Random Field loops.

A product term can be solved using dynamic programming∑
a1,a2,a3,a4

H(a1, a2)H(a2, a3)H(a3, a4)H(a1, a4)

=
∑
a1,a2

H(a1, a2)
∑
a3

H(a2, a3)H(a1, a3)
∑
a4

H(a3, a4)H(a1, a4).

We ignored a3 = a4 = 0 in this example to explain the idea better. a3 = a4 = 0
can be added without any problem. This can be further written into a dynamic
programming multi-layer Boolean algebra

H0(ai, aj) = H(ai, aj)

H l(ai, aj) = H l−1(ai, aj)
∑
ak

H l−1(ai, ak)H l−1(aj , ak)

where 1 <= l <= 4.

Note that H0(), H l() and H l−1() are the indexes of H (does not mean H is
raised to the power of 0, l or l − 1).

8.4 How to solve a five or more variables 2sat problem

The generalized loop constraint for 5 or more variables is

H(ai1 , ai2)H(ai2 , ai3) . . . H(aiN−1
, aiN)H(aiN , ai1)

33

or some cases

H(ai1 , ai2)H(ai2 , aiN−1)H(aiN−1
, aiN)H(aiN , ai1),

H(ai1 , aiN−1
)H(aiN−1

, aiN)H(aiN , ai1).

Each loop constraint can be solved by dynamic programming

H(ai1 , ai2) = H(ai1 , ai2)
∑
ai3

H(ai2 , ai3)H(ai1 , ai3)

. . .
∑

aiN−1

H(aiN−2
, aiN−1

)H(ai1 , aiN−1
)

∑
aiN

H(aiN−1
, aiN)H(ai1 , aiN).

This can be further written into a dynamic programming multi-layer Boolean
algebra

H0(ai, aj) = H(ai, aj)

H l(ai, aj) = H l−1(ai, aj)
∑
ak

H l−1(ai, ak)H l−1(aj , ak)

where 1 <= l <= n.

Note that H0(), H l() and H l−1() are the indexes of H (does not mean H is
raised to the power of 0, l or l − 1). n is the number of ai variables.

9 Conclusion

We have proved Lemma 4.1 and Lemma 7.1, therefore NP 6= P. To make the
Boolean algebra simplification proof possible, we have explained how to repre-
sent NP problem using Discrete Markov Random Field, solve Markov Random
Field using Boolean algebra operations, and reformulate the Boolean algebra so
that only the first layer contains ‘Not’ operations while keeping the time com-
plexity of the Boolean algebra to Polynomial time. To make the proof more
complete, we have shown example of how a 6 variables NP problem represented
in Markov Random Field can be factored and why the factored form is still
NP in terms of time complexity, have shown how to factor a Polynomial time
Markov Random Field Chain, and have shown algorithm of how to solve a 2sat
(represented as Markov Random Field problem with only 2 possible values for
each variable) in Polynomial time.

A quick explanation of why a Non-Deterministic Polynomial time Boolean
algebra cannot be factorized into Polynomial time Boolean algebra, you can
look at subsection 6.10. This Boolean algebra cannot be factorized into (A +
B + . . .)(C + D + . . .) form and therefore it cannot be factorized into higher
order factorized Polynomial time form.

34

References

[1] S. Cook, “The p versus np problem,” The millennium prize problems, pp.
87–104, 2006.

[2] L. Fortnow, “The status of the p versus np problem,” Communications of
the ACM, vol. 52, no. 9, pp. 78–86, 2009.

[3] S. Aaronson, “P
?
= NP,” in Open problems in mathematics. Springer, 2016,

pp. 1–122.

[4] M. Sipser, “The history and status of the p versus np question,” in Proceed-
ings of the twenty-fourth annual ACM symposium on Theory of computing,
1992, pp. 603–618.

35

	Introduction
	Discrete Markov Random Field definition
	Search for multi-layer Polynomial time complexity Boolean algebra that infers the solution
	How to reformat the Boolean algebra so that only the first layer contains `Not' operations
	Proof of how to reformat the Boolean algebra using recursive Boolean algebra equations
	An example of how to reformat a Boolean algebra
	Expanding recursive Boolean algebra into sum of products and product of sums forms
	Represent Boolean algebra using addition and multiplication

	A Polynomial time multi-layer Boolean algebra that solves the Markov Random Field Chain problem
	An example of a factorized Boolean algebra that has Polynomial time
	An example of an expanded Boolean algebra that has Non-Deterministic Polynomial time

	A six variables Non-Deterministic Polynomial time Markov Random Field cannot be solved by Polynomial time multi-layer Boolean algebra, therefore NP not equal P
	Definition of the Markov Random Field
	How to factorize the terms
	Only one sum of products representation of the Boolean algebra to solve the Markov Random Field
	Unable to factorize the terms into quadratic form (A+B+...)(C+D+...)
	How to combine two factorized terms
	How to expand a term by multiply (u+u') to a term
	How to expand a factorized term
	Complement factor does not help to improve factorization
	Summary of this section
	Example of how to factorize the Boolean algebra

	Generalized to higher number of variables Markov Random Field
	A generalized Markov Random Field
	How to factorize the terms
	How to combine factorized terms
	How to expand a term by multiply (u+u') to a term
	How to expand a factorized term
	Complement factor does not help to improve factorization
	An analogy of the Boolean algebra factorization
	Summary of this section

	2sat problem in Markov Random Field representation
	2sat problem definition
	An algorithm to solve 2sat problem
	How to solve a four variables 2sat problem
	How to solve a five or more variables 2sat problem

	Conclusion

