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ABSTRACT 

We show that  the e.m. field of a point charge is the acceleration part of a 

geodesic equation, in the Beltrami-Klein Ball model of hyperbolic geometry,in  

3dim velocity space.The result is obtained by assuming that the interval of 

interaction is timelike instead of null.This gives rise to a formal 4 velocity of 

interaction and a rest frame for an inertial observer moving with  the formal  

velocity.The geodesic between two points in the tangent space is given by 

projective velocity 4 vectors or bivectors.The moment of Lienard-Wiechert 

potential is the geodesic between the velocity of the source charge and the 

formal velocity of interaction,in bivector form.The Lorentz force is proportional to 

the geodesic between the velocity of the source charge and that of the 

interaction,in the rest frame of the test charge.The energy- stress tensor, the field 

Lagrangian density, the e.m energy density, the e.m. momentum density also 

have geometric meanings.The inverse of the field is related to virtual,uniformly 

accelerated motions,described by a Rindler-like coordinate system.All e.m. 

entities are finite everywhere and Lorentz covariant. 

 

1 Introduction. 

In order to describe classical electrodynamics with a timelike interval of 

interaction instead of a null one as in Maxwell’s theory (ref.1), we use a 

Minkowski spacetime foliation of hyperboloids of two sheets. Since the interval of 

interaction is timelike,there corresponds a formal 4 velocity associated with 

it.This enables us to obtain the hyperbolic distance between the formal 4 velocity 

of interaction and any other 4 velocity such as the 4 velocity of the source charge 

or the 4 velocity of the test charge.The 4 velocities are unit normals of all the 



hyperboloids of the foliation.There is an arc length between any two of these 4-

velocities.The arc length is the angle between any two 4 velocities and represents 

a geodesic segment on the hyperboloid of unit radius.The hyperbolic distance 

between any two 4 velocities is the hyperbolic tangent of the angle (refs2,3).We 

can thus define a projective relative velocity 4 vector which is simply the directed 

hyperbolic distance in the tangent space starting at any two 4 velocities and 

ending at the other (ref.4).The projective relative 4 velocity is therefore a 

geodesic distance of the  Beltrami-Klein ball model of hyperbolic geometry in 3 

dim velocity space (refs2,3,5). However,we describe the 3 dim velocity space 

entirely in terms of 4 vectors so we are dealing with a projective form of the 

Beltrami-Klein model. The geodesic distance between any two 4-velocity is a line 

representation of the geodesic distance.It is well known that projective geometry 

has also an areal form of every line.This areal form is an antisymmetric second 

rank tensor representation of the hyperbolic distance in the tangent space.It turns 

out that the moment of Lienard-Wiechert potential(refs6,7) about the interval of 

interaction is a tensorial form of the geodesic distance between the 4 velocity of 

the source charge and that of the interaction or vice-versa.To each geodesic there 

corresponds an  acceleration term in the geodesic eq, or equivalently, the 

Christoffel symbols term. We prove that the nonacceleration field of a point 

charge moving with arbitrary 3 velocity and 3 acceleration is the acceleration part 

of the geodesic between the 4 velocity of the source charge and the 4 velocity of 

interaction (or vice-versa) expressed in antisymmetric tensor form (ref5).The total 

field is also a geodesic acceleration living in a different hyperboloid.The total field 

has a conformal factor.Its geodesic is one between the 4 velocity of interaction 

and a special hyperbolic 4 velocity.We will present the results for the total field 

and the acceleration field in a separate publication due to the many subtleties 

involved in the derivation.We do show however that the derivative of the interval 

of interaction  relative to the proper time of the source charge or the test charge 

produces entities which have the same form and the same properties as the real 

total field but use the 4 velocity of the test charge instead of the special 

hyperbolic 4 velocity. We show that the field Lagrangian density is the square of 

the geodesic acceleration term and that the energy stress tensor is the square of 

the acceleration term times a classical reflection operator. Its spatial components 



represent an inversion (ref3). The   Lorentz force is proportional to a projective 

form of the expression for the Einstein composition law (addition or substraction) 

of two 3 velocities (refs2,7), the projective relative 4 velocity between that of the 

source and that of the interval of interaction. It is the acceleration part of the 

geodesic eq as viewed from an observer in the rest frame of the test charge. The 

absolute value of the electric field 4 vector described by the Lorentz force is 

essentially a projection of the geodesic into a certain transverse (meaning 

perpendicular) direction. A magnetic field 4 vector is also defined .Its absolute 

value is the acceleration part projected into the transverse direction. An energy 

density 4 vector and a Poynting momentum density 4 vector are obtained. The 

projective relative 4 velocity in the direction of the Poynting 4 vector is also 

obtained. The electric and magnetic field 4 vectors are orthogonal to each other. 

They are also orthogonal to the direction of the Poynting momentum 4 vector and 

to the 4 velocity of the test charge. Four mutually orthogonal directions are thus 

defined.This resembles ,but is not, a plane wave propagating.  

There is another foliation of Minkowski spacetime involved.It is a foliation of 

hyperboloids of one sheet which we describe using a Rindler-like coordinate 

system (refs8,9).The foliation consists of timelike hyperbolic motions representing 

virtual motions at constant accelerations.The normals of the hyperboloids of two 

sheets become the initial and the final unit tangents of the hyperbolic 

motions.The angle between them is  an arc length of the timelike hyperbolic 

motion and a geodesic arc segment of each of the hyperboloids of one sheet.The 

source charge is positioned on one of the hyperboloid at the retarded coordinate 

time and connects to another virtual trajectory at the field point or the test 

charge via the timelike interval of propagation or its projection onto the plane of 

the two trajectories.Thus is the influence transmitted.The virtual hyperbolic 

trajectories involve an inversion of the fields keeping the directions constant.The 

inverses are connected to the radii of the the hyperbolic motions and their 

duration, using coordinate times. 

1A  The notation. 



4 vectors are in capital letters.3 vectors are not.Unit 4 vectors are written with a 

caret to their right,on top.4 vectors and 3 vectors have no arrows,only their size 

differentiates them.The metric used is [1,1,1,i],to avoid using covariant and 

contravariant components.Components are used sparingly,the formulas are 

written in a coordinate independent form.Whether an index appears as a 

subscript or a superscript is irrelevant.Indices ijkl run from 1 to 4.Indices abcd run 

from 1 to 3.The summation convention for repeated indices is used,unless 

specified otherwise.Dot products are specified by a dot as in A.B or a.b.Cross 

products are specified by an old fashioned x as in (AxB)ij = (AiBj-AjBi) or in (wxv)ab   

=(wavb -wbva).When the meaning is clear, the indices are omitted as in (AxB). A^ 

,B^ are the unit 4 vectors of A and B.The speed of light will be =1 only if this does 

not lead to confusion.It will be written as c because of the need to keep track of 

units in cumbersome equations. We use total derivatives to describe partial 

derivatives or variation, letting the context give which one is used. 

1B  Preliminary formulas. 

The interval of interaction (of propagation,of influence) between the source 

charge q’ and the field point or the test charge q is: 

E= [R – R’(τ’)]  (1a); where R’ is the retarded 4 position of q’ and R is the 4 position 

of the field point or the test charge q.In the latter case R =R(τ). τ’ and τ are the 

respective proper times.In terms of component: R= [r,ict]  (1b); R’ =[r’(t’),ict’] (1c); 

r is the 3 position of the field point or the instantaneous position of the test 

charge q, t is the instantaneous time. r’(t’) is the retarded position of q’, t’ is the 

retarded time.The 4 velocity of q’ is U’ = dR’/dτ’. The 4  acceleration of q’ is 

d2R’/dτ’2 = (a’); Its 3 velocity is u’(t’) and its 3 acceleration is a’(t’).The 4 velocity 

of q and its 4 acceleration use the same notation without the primes.The same is 

true of the 3 velocity and the 3 acceleration of q. The interval of interaction is 

assumed to be timelike, not null.Thus: 

E.E= -l2   (1d) ;    Here l is an invariant length(fundamental length) which is small 

enough so that it does not contradict experimental results(ref.1). Otherwise, it is 

unspecified. In Maxwell’s theory  E.E = 0 . 



The Lienard-Wiechert (LW) 4 vector potential is: 

A= -q’/(E.U’) = [A,iφ]  ; (see refs6,7)  Where A is the 3 vector potential and φ is the 

scalar potential. 

The formal 4 velocity of the influence is: 

E/l = W/c  (1e) ; W.W/c2 = - 1 (1f); Its components are: 

[ r-r’/l, ic(t-t’)/l ]  (1g) ;   W/c = [(w/c)/(1-w2/c2)1/2, i/(1- w2/c2)1/2]    (1h); 

(r-r’)/l = (w/c)/(1- w2/c2)1/2   (1i);    ic(t-t’)/l = i/(1- w2/c2)1/2  (1j); 

Finally:  w/c = r-r’/c(t-t’)  (1k); is the 3 velocity of interaction.It must be 

emphasized that w is only a formal velocity.The interaction does not move! What 

is true is that we can find an observer which moves in a frame which has that 

particular value of this 3 velocity. In the rest frame of such an observer w=0 has a 

meaning. It turns out that such a frame has great importance because all three 

fields, the total field, the acceleration field, and the non acceleration have E and 

therefore W in their cross products. 

2 Projective relative 4 velocities. 

2A Projective relative velocity 4 vectors.  

Take a foliation of Minkowski spacetime with hyperboloids of two sheets.Take the 

future oriented hyperboloids only. One of this hyperboloid will have unit normals.  

These unit normals can be represented  by 4 velocity unit vectors issued from an 

origin O. The chosen hyperboloid is said to have radius 1 and the normals are the 

Minkowski equivalent of a circle of unit radius with the radii being the unit 4 

velocity vectors.The other hyperboloids of the foliation will simply have different 

radii.(An inverse radius being considered a radius also). The hyperbolic angle 

between any two normals i.e. any two unit 4 velocities, will be determined by the 

dot product of the two  4  velocities unit vectors. This will define the hyperbolic 

cosine of the hyperbolic angle.We will use the physicist definition of the 

hyperbolic angle. Mathematicians call it the half angle. 



Take any two 4 velocities U’/c and U/c. We will be mostly interested in the 4 

velocity of the source charge q’ and of the test charge q but in what follows they 

could be any two 4 velocities. They don’t even have to be derivatives of a 

trajectory. To 4 velocity U’ corresponds a 3 velocity u’ and to 4 velocity U 

corresponds a 3 velocity u. We have 

U’/c  = [(u’/c)/(1- u’2/c2)1/2 , i/(1 – u’2/c2)1/2 ]  (1);  

Using the metric [1,1,1,i] to avoid having to deal with covariant and contravariant 

components. 

U/c = [(u/c)/(1- u2/c2)1/2 , i/(1 – u2/c2)1/2 ]  (2) ; 

U’.U/-c2  = [1 – u’.u/c2 ]/(1 – u’2/c2)1/2 (1 – u2/c2)1/2  = coshθU’U    (3) ; θU’U  is the 

hyperbolic angle between U’ and U.   We will use the convention that the angle 

will be the same whether we’re going from U’ towards U or U towards U’. so θ 

will run from zero to infinity and never be negative. There will be exceptions later. 

We want to find  “projective”  versions of u’ and u  so that they are 4 vectors and 

not 3 vectors. The answer is: 

U’/c =  [(VU’U/c) /(1- V2
U’U/c2)1/2  + (U/c)/(1 – V2

U’U/c2)1/2    (4) ; 

U/c  = [(VUU’/c)/(1- V2
UU’/c2 )1/2  + (U’/c)/(1- V2

UU’/c2)1/2      (5) ; 

These expressions are independent of any components. They are “absolute” 4 

vectors and scalars. The order U’U  in VU’U means that the 4 velocity is centered at 

U so the normal to the hyperboloid from origin O to the hyperboloid is in the 

vertical timelike direction defined by U/c. A virtual motion from U/c to U’/c brings 

the normal to the position U’/c making an angle θU’U  with U/c.Similarly the order 

UU’ means that U’/c is now in the vertical direction and the virtual motion is from 

U’/c to U/c. The angle θ is the same. 

VU’U/c  = [ (U’/c)(-c2/U’.U) – U/c ]  (6) ;      VUU’/c = [(U/c)(- c2/U.U’) – U’/c ]  (7) ; 

Eq6 and 7 are the projective relative 4 velocities. They are spacelike 4 vectors.  



(VU’U/c).U/c = 0  (8a) ;  (VUU’/c).U’/c = 0  (8b) ;  So they lie in the tangent space of 

the hyperboloid centered at U/c and U’/c respectively. 

It is easy to check that when  u=0     (VU’U)u=0     = u’ = [u’,0]  (9) ; 

and that when u’ =0        (VUU’)u’=0  =  u = [u, 0]   (10) ;    It is in that sense that they 

are projective relative 4 velocities. 

When u=0    (U’/c)[(-c2)/U’.U ] = [VU’U +U]/c]=  [u’, ic]  (10a)  similarly  : 

(U/c)[(-c2)/U.U’]  = [VUU’ + U’]/c = [u, ic] (10b) when u’=0 ; 

 Thus VU’U   = [u’,ic] –[0,ic] =[u’,0]   (10c)  when u=0; 

 VUU’ =[u,ic] –[0,ic]=[u,0]  (10d) when u’=0; this proves eqs9,10. 

We can define the unit spacelike 4 vectors  VU’U^  and VUU’^  by 

VU’U   = |VU’U |VU’U^           and    VUU’  = |VUU’|VUU’^    

VU’U ^.VU’U^ = VUU’^.VUU’^  = 1 ;     VU’U^.U =0  ;   VUU’^.U’ = 0 ;    (11)  

We have :U’/c  = [|VU’U/c|VU’U^ +(U/c)]/(1- V2
U’U/c2)1/2 (12) ; 

U’.U/-c2 = coshθU’U  = 1/(1 – V2
U’U/c2)1/2   (13) ; similarly 

U/c  = [|VUU’/c|VUU’^  + U’/c]/(1- V2
UU’/c2)1/2    (14) ; 

U.U’/-c2 = coshθUU’  =  1/(1- V2
UU’/c2)1/2     (15) ; therefore 

ΘUU’  = θU’U   (16)  ;    coshθUU’ = coshθU’U   (17) ; 

SinhθU’U  = sinhθUU’   (18) ;    tanhθU’U  = |VU’U/c| = tanhθUU’ =|VUU’/c| (19); 

U’/c = sinhθU’U VU’U^ + coshθU’U U/c (20); 

U/c = sinhθUU’VUU’^ + coshθUU’ U’/c   (21); 

Define two spacelike unit vectors a’^  and a^  

 such that   a’^ = coshθU’U VU’U^ + sinhθU’U U/c  (22) ; 



and              a^ =  coshθUU’VUU’^  + sinhθUU’ U’/c  (23) ; 

We have     a’^.U’/c =0  (24a) ;     a^.U/c = 0  (24b) ; 

We also have   a’^  = - VUU’^     (25a);    a^ = - VU’U^   (25b) ; 

For the explanation of the minus sign draw a diagram. 

2B Projective relative velocity bivectors. 

In projective geometry, quantities have a line segment representation.This was 

described in the previous section. They also have an aerial (antisymmetric tensor) 

representation. The line segment representation is a directed line segment, a 

Minkowski 4 vector. The areal representation is a directed area, i.e. a 4x4 

antisymmetric Minkowski  tensor. We call it a bivector.  

(U/c x VU’U/c)ij   (26)  represents VU’U/c.   (U’/c x VUU’/c)ij  (27)  represents VUU’/c . 

[U/c x (VU’U/c) /(1 – V2
U’U/c2)1/2]ij   (28) represents (VU’U/c)/(1 – V2

U’U/c2)1/2 . 

[U’/c x (VUU’/c)/(1 – V2
UU’/c2)1/2]ij   (29) represents (VUU’/c)/(1 – V2

UU’/c2)1/2 . 

We observe that when u=0   eq (26) reduces to  iu’/c and when u’ = 0 

eq(27) reduces to iu/c . The i is due to our choice of the metric [1,1,1,i]. 

Similarly eq28 reduces to (iu’/c)/(1 – u’2/c2)1/2  when u=0. 

Eq29 reduces to (iu/c)/(1 – u2/c2)1/2  when u’ =0 . 

Using the definitions of VU’U  and VUU’  (eqs 6 and 7) it is easy to prove that 

[U/c x VU’U/c]ij   = - [U’/c x VUU’/c]ij    (30) ; and that 

[U/c x (VU’U/c)/(1 – V2
U’U/c2)1/2 ]ij  = - [U’/c x (VUU’/c)/(1 – V2

UU’/c2)1/2]ij   (31) ; 

3 The projective geometric meaning of the Lienard-Wiechert (LW) potential, its 

moment about the interval of propagation and other formulas. 

3A The Lienard-Wiechert (LW) potential is given by: 



ALW  = [A, iφ]  = - q’U’/E.U’  (1) ; (refs6,7)     E= lW/c  (2) ; (ref.1) 

ALW  = q’(U’/c)/(E.U’/-c)  = q’(U’/c)/l(W.U’/-c2) = (q’/l)(U’/c)[-c2/(U’.W)] (3); 

= (q’/l)[(U’/c)(-c2/U’.W) – W/c + W/c]  =  (q’/l)[VU’W /c + W/c] ; 

ALW = (q’/l)[VU’W/c + W/c] (4) ;  with  VU’W/c  = [(U’/c)(-c2/U’.W) – W/c] (5) ; 

The LW potential is proportional to projective relative 4 velocity given by eq5 plus 

an extra term involving W/c.      ALW = (q’/l)sechθU’W(U’/c)        (5a); 

Compare with the examples discussed in the previous section.  Recall that  

W/c = [(r-r’(t’))/l , ic(t-t’)/l] = [w/c, ic]/(1- w2/c2)1/2  ; w/c =(r- r’(t’))/c(t- t’) ; see 

introduction. 

When w=0    VU’W = [u’,0] (6) ;         when w=0         eq2.10a = [u’/c, i]  (7) ;      so 

ALW = (q’/l)[u’/c, i]  (8);    and     (U’/c)(-c2/U’.W) = [u’/c , i]      (9);         when w = 0 . 

We must be careful to interpret the meaning of w=0 correctly. 

It does not mean that (r-r’)/(t-t’) = 0.  It means that an inertial observer moving 

with 3 velocity w would have w=0 in its rest frame. 

As in the previous section,  

E.U’/-c =l(W.U’/-c2) = lcoshθU’W = lcoshθWU’ = l/(1- V2
U’W/c2)1/2   (10) ; 

|VU’W/c| =  |VWU’/c| = tanhθU’W = tanhθWU’  (11); θU’W = θWU’ (12) ; 

|VU’W/c|/(1 – V2
U’W/c2)1/2  = |VWU’/c|/(1- V2

WU’/c2)1/2 = sinhθU’W  (13) ; 

We also have: VU’W   =|VU’W|VU’W^ (14a) ;  VWU’  = |VWU’| VWU’^  (14a) ; 

U’/c = [VU’W/c + W/c]/(1- V2
U’W/c2)1/2   (15a) ; 

W/c = [VWU’/c + U’/c]/(1- V2
WU’/c2)1/2    (15b) ; 

U’/c = sinhθU’W VU’W^ + coshθU’W W/c  (15c) ; 



W/c = sinhθWU’VWU’^ +coshθWU’ U’/c  (15d); 

We can get  4 vectors reducing to r-r’ since the interval E is a 4vector. 

Since E = [r-r’(t’) , ic(t- t’)]= lsinhθWU’VWU’^ + lcoshθWU’ U’/c , we expect that  

E =[ η + (E.U’/c)U’/c] (16); where η is a 4vector orthogonal to U’/c. η therefore 

generalizes [r-r’,0].  [E.U’/-c]U’/c  generalizes [0, ic(t-t’)]. We immediately have 

(E.U’/-c)U’/c = lcoshθWU’U’/c = [0,ic(t-t’)]= l/(1- w2/c2)1/2 (17)  when u’ = 0 ; 

We can write E.U’/-c = c(Tinst – Tret)U’  (18) where inst stands for instantaneous and 

ret stands for retarded. We also write: 

E = R- R’(τ’) = η+ c(Tinst – Tret)U’U’/c (19); η can be written as η = RU’
inst – R’ (20); 

Where RU’
inst  means the position along the virtual trajectory of an observer 

moving with 4 velocity U’/c which is instantaneous with R in the rest frame of U’. 

3B Projective meaning of the moment of LW potential. 

The moment   [ExA]ij  = {Ex [-q’U’/E.U’]}ij = [Exq’(U’/c)/(E.U’/-c)]ij  (21) ; 

LW is dropped from ALW.       E=lW/c ;        (E.U’/-c) = l(U’.W/-c2)  (22) ; 

ExA  = [Ex(q’/l)(U’/c)(-c2/U’.W)] = l[(W/c)x (q’/l)(U’/c)(-c2/U’.W)] 

 = q’[(W/c)x (U’/c)(-c2/U’.W)] = q’[(W/c)x {(U’/c)(-c2/U’.W) – W/c +W/c}] 

Finally           [ExALW]ij  = q’[(W/c)x VU’W/c]ij  =  -q’[(U’/c)x VWU’/c]ij  (23) ; !! 

We have transformed the moment of potential ,from which we can derive the 

total field Ftot
ij  (see our previous article in the references),into a relative velocity 

current in tensor ( aerial) form.It is  a  projective relative  4 velocity current in 

antisymmetric tensor form.The  moment has units of angular momentum per unit 

charge,except for a factor of 1/c. By multiplying eq23 by q/c we get a kind of 

projective angular momentum. 

3C Alternate derivation of the projective meaning of the LW potential. 



We first review some formula derived in a previous article.( ref.1). 

From E = R-R’(τ’) where R is the 4 position of the field point and R’ is the retarded 

4 position of the source charge q’.Varying the fundamental length l without 

varying the field point R, it was found, writing the variation as ordinary derivatives 

 dcτ’/dl2 = c/(2E.U’) = -1/(2E.U’/-c)  (ref.1). From which we obtain: 

 dcτ’/dl2  = -1/(2lcoshθU’W) = -(1- V2
U’W/c2)1/2/2l    (24) ;      in projective form. 

From d(E.E)/dxj = d(l2)/dxj =0  (writing the partial derivatives as ordinary 

derivatives) it was found : 

dτ’/dxj = Ej/E.U’   (refs1,6) . So that 

dτ’/dxj = (lWj/c)/(lW.U’/c) = - (Wj/c)/(W.U’/-c) ; 

-dcτ’/dxJ = (Wj/c)(-c2/W.U’)  (25) ; 

-dcτ’/dxj= [(Wj/c)(-c2/W.U’) – U’j/c + U’j/c] =  [Vj
WU’ /c + U’j/c]   (26); 

We also found : dx’i/dxj =  EjU’i/E.U’  ( ref.1).  

Therefore dx’i/dxj =  (lWjU’i/c)/(lW.U’/c); 

-dx’i/dxj = (WjU’i/c2)(-c2/W.U’) (27);    dx’J/dxi = -(WiU’j/c2)(-c2/W.U’) (28) ; 

-(dx’i/dxj- dx’j/dxi) =(-c2/W.U’)[U’iWj/c2 –U’jWi/c2] (29) ; 

 (dx’i/dxj – dx’j/dxi) = (WxU’/c2)ij (-c
2/W.U’)= [W/c x VU’W/c]ij = -[U’/c x VWU’/c]ij (30); 

q’(dx’i/dxj – dx’j/dxi) = q’[W/c x VU’W/c]ij = - q’[U’/c x VWU’/c]ij = [E x ALW]ij  (31) ; 

We have used eq 23 for the moment of potential. Eq 31 shows the cameleon like 

nature of timelike electrodynamics. 

4 The non-acceleration field. 

4A  Projective form of Fij
na.      Fij

na as a Klein ball model geodesic acceleration. 



The non acceleration field Fij
nonacc of a single point charge q’ moving with arbitrary 

velocity and acceleration is : Fij
na = q’[ExU’/c]ij/[E.U’/-c]3  (1);  (ref.1)                                  

Eq1 can be written as: 

Fij
na = q’[ExU’/c]ij (-c

2/W.U’)/l[E.U’/-c]2    (2); 

= q’[W/c x(U’/c)(-c2/W.U’)]ij/[E.U’/-c]2    (3) ; 

= q’[(W/c)(-c2/W.U’)x U’/c]ij/[E.U’/-c]2     (4); 

Fij 
na = q’{(W/c)x [(U’/c)(-c2/U’.W) – W/c +W/c]}ij/[E.U’/-c]2  or   

Fij
na = -q’{(U’/c)x[(W/c)(-c2/W.U’) – U’/c + U’/c]}ij/[E.U’/-c]2   

= q’{(W/c) x[VU’W/c +W/c]}ij/[E.U’/-c]2     or 

= -q’{(U’/c)x[VWU’/c + U’/c]}ij/[E.U’/-c]2  ; finally: 

Fij
na  = q’[(W/c)x VU’W/c]/[E’U’/-c]2 = -q’[(U’/c)x VWU’/c]ij/[E.U’/-c]2  (5) ; 

We also have:  Fij
na  = [Ex ALW]ij/[E.U’/-c]2  (6); using eq31, section3 . 

We have one final steps. E.U’/-c = l/[1-V2
U’W/c2]1/2  = l/[1-V2

WU’/c2]1/2 ; 

Fij
na = (q’/l2)[(W/c)xVU’W/c]ij (1-V2

U’W/c2) =(-q’/l2)[(U’/c)xVWU’/c]ij(1-V2
WU’/c2) (7); 

This very important formula will be called the canonical projective form or 

representation of the nonacceleration field. Remember that the na field contains 

the acceleration implicitly,not explicitly,except for electrostatic or magnetostatic. 

We observe that Fij
na has a very interesting form. Besides its q’/l2 factor, 

It has (W/c x VU’W^)ij or (U’/c x VWU’ ^)ij  as bivector “directions”.Lastly it has a  

factor (V/c)[1- V2/c2), a cubic in V/c, where V= VU’W  or VWU’ . Imagine a virtual 

motion starting at the unit normal W/c of a future or past hyperboloid of two 

sheets at an angle θ=0 then through a virtual motion  reaching the final unit 

normal U’/c of the hyperboloid having moved through an angle θU’W on the 

hyperboloid along a geodesic segment θU’W of the hyperboloid. In the tangent 

space of the hyperboloid centered at W/c,the geodesic line segment is tanhθU’W  



as is well known.(refs2,3,5). The same reasoning applies if we start the virtual 

motion at U’/c and move to W/c after making an angle θWU’ .Let us write V(θ)/c = 

tanhθV^ to describe the virtual motion during the virtual transit. 

V(θ)/c = tanhθ V^ (8);  d(V/c)/dθ = sech2 θ V^ = (1- V2/c2) V^ (9);  

d2 (V/c)/dθ2   = -2(V/c)[1- V2/c2] (10); d2tanhθ/dθ2  = -2tanhθ/cosh2θ  (11) ; 

-(1/2)d2tanhθ/dθ2 V^ = (V/c)[1 – V2/c2] = tanhθ/cosh2θ V^  (12)  

We see that eqs8 to 12 must be evaluated at θU’W to give the  eq 12 term which 

appears in Fij
na .   Eqs 10,11,12 suggest that we are dealing with a covariant 

derivative. The direction of the virtual motion in the tangent space is that of unit 

spatial 4vector VU’W^ or VWU’^  which reduce to a unit 3vector in the u’/c direction 

if w/c =0 or a unit 3vector in the w/c direction if u’/c = 0.The important thing is 

that the direction is in one direction only in the tangent plane.The question is: 

Is d2(V/c)/dθ2 + 2(V/c)[1- V2/c2] = 0 the eq of a geodesic ?  

or equivalently  is   d2tanhθ/dθ2  + 2tanhθ/cosh2θ = 0 the eq of a geodesic. 

The answer is to be found in Svante Janson Riemannian Geometry 122p  3/15/20. 

In example 7.7  eq 7.92  he has the the geodesic eq for the 3dim Klein Ball model 

of hyperbolic geometry (ref.5):   

d2ϒa/dt2 = {d[log(1- ϒ2)]/dt }dϒa/dt  (13); a=1,2,3. t is a parameter, not necessarily 

time. The solution to eq13 is  ϒ(t) = tanh(t)ϒ^ (14); The components are omitted 

since the direction is constant. In 3 dim any 3 velocity  v/c = tanhα where α is the 

rapidity. Θ is the projective form of the rapidity and can be used as well.We can 

now verify that eq 13 for the geodesic is satisfied by tanhθ. 

We have: ϒ(θ) = tanhθ ϒ^ (!5);   dϒ(θ)/dθ = sech2θ ϒ^= 1/cosh2θ ϒ^(16) ; 

d[log(1- ϒ2)]/dθ = d[log(1- tanh2θ)]/dθ =  -2tanhθ (17) ;   

d2ϒ/dθ2 = -2tanhθ/cosh2θ ϒ^ = d2tanhθ/dθ2 ϒ^ (18); so we have proved it. Note 

that we have used contravariant component of ϒ in eq 13. It is instructive to 



double check that we have the correct Christoffel symbols and that we identify 

them.Svante Janson has : 

Гk
ij = [xiδjk + xjδik]/(1- x2)  his eq 7.86 . ijk=1to 3 and correspond to abc here,x2 is the 

Euclidean sum of the squares. Since the motion is rectilinear only the components 

i=j=k=1 survive. So the only Christoffel symbol that survive is Г1
11. 

Г1
11 = [x1δ11 + x1δ11]/(1- x2)  = 2x1/(1- x2) (19) ;  we use v/c instead of x so 

Г1
11 = 2(v1/c)/(1- v.v/c2)  (20); but there is only one component of v. so  

Г1
11 = 2|v/c|/(1- v2/c2)  (21); v2 is the Euclidean sum of the components v.v =v1

2 

Replacing |v/c| by tanhθ we get : 

 Г1
11 = 2tanhθcosh2θ   (22);    recall that the geodesic eq in velocity space of 3dim 

Is given in general by:         d2va/ds2  + Гa
bc (dvb/ds)(dvc/ds) = 0 (23); 

In our notation  d2tanhθ/dθ2  = - Г1
11/cosh4θ = -2tanhθ/cosh2θ  (24); 

Г1
11  = 2tanhθcosh2θ  (25); which the same as eq22. So the results are consistent. 

Fij
na  represents a bivector projective form of the contravariant component of the 

acceleration term of a geodesic of a hyperboloid of two sheet, in the tangent 

space of the hyperboloid, in the Klein ball model of 3dim hyperbolic space!!     

 Let: [d2 (V(θ)/c)/dθ2]  evaluated at θ= θU’W  = [d2|VU’W/c|/dθU’W
2]V^U’W   

or = [d2|VWU’/c|/dθWU’
2 ]V^WU’  we have: 

Fij
na = (-q’/2l2 )[(W/c)x {d2|VU’W/c|/dθU’W

2}V^U’W]ij   (26); or 

Fij
na = (q’/2l2)[(U’/c)x {d2|VWU’/c|/dθWU’

2}V^WU’]ij   (27) ; 

4B  Some projections and their geometric meanings. 

Let a general unit bivector be defined as  



Sij =[(U/c)x V^]ij (28)  with U/c being any unit 4 velocity and V^ be any spacelike 

unit vector orthogonal to it. We want  SijUj/c  and SijV^j . 

SijV^j = [(U/c)xV^]ij V^j = [UIV^j – UJV^i]V^j  = Ui/c  (29);    

SijUj/c = [(U/c)xV^]ijUj/c =[UiV^j –UjV^i]Uj/c = V^I  (30);  

Choosing U/c = W/c or U’/c and  V^ = V^U’W  or V^WU’   we get 

[(W/c)x V^U’W]ijWj/c = (V^U’W )I   (31) ;  [(U’/c)x V^WU’]ijU’j/c = (V^WU’)i  (32); 

[(W/c)x VU’W/c]ijWj/c = (VU’W/c)I  (31a) ; [(U’/c)xVWU’/c]ijU’j/c = (VWU’/c)I (32a); 

[(W/c)x V^U’W]ijV^U’W j = (W/c)I  (33);  [(U’/c)xV^WU’]ijV^WU’ j = (U’/c)I  (34); 

[(W/c)xVU’W/c]ijV^U’W j =|VU’W/c|(W/c)I (33a); 

[(U’/c)xVWU’/c]ijV^WU’ j  =|VWU’/c|(U’/c)I (34a);  

 These eqs give us a little intuition as to the meaning of the projections. 

The moment of LW potential projections are very instructive. 

[ExA]ijWj/c = q’[(W/c)xVU’W/c]ijWj/c =  q’VU’W i/c  (35)  

= -q’[(U’/c)xVWU’/c]ijWj/c  (35); 

[ExA]ijU’j/c =-q’[(U’/c)xVWU’/c]ijU’j/c = -q’VWU i/c  (36) 

= q’[(W/c)xVU’W/c]ijU’j/c  (36);   Eqs35,36  represent  projective currents in line 

form. Compare them with the same currents in bivector form given by [ExA]ij . 

[ExA]ijV^U’W j = q’[(W/c)x VU’W/c]ijV^U’W j/c = q’|VU’W/c|Wi/c  (37)      

= -q’[(U’/c)xVWU’/c]ijV^U’W j  (37); 

[ExA]ijV^WU’ j = - q’[(U’/c)x VWU’/c]IJV^WU’ j  = -q’|VWU’/c|U’i/c  (38)  

= q’[(W/c)x VU’W/c]ijV^WU’ j  (38);  



Note that adding expression like  V(θ)/c + |V(θ)/c|U/c   the sum lies on the light 

cone. This allows us to visualize expressions like |V(θ)/c|U/c. They can also be 

visualized as lying in the tangent space of a hyperboloid of one sheet. This will be 

further explored in a later section in connection with virtual timelike hyperbolic 

motions.  

The field Fij
na gives expressions similar to the previous ones such as: 

Fij
naWj/c  = (q’/l2)(VU’W  /c)i (1- V2

U’W/c2) (39); 

Fij
naU’j /c = (-q’/l2)(VWU’ /c)i (1- V2

WU’/c)  (40);      

Fij
naV^U’W j = (q’/l2)|VU’W/c|(1- V2

U’W/c2)Wi/c  (41) ; 

Fij
naV^WU’ j = (-q’/l2)|VWU’/c|(1- V2

WU’/c2)U’i/c  (42) ; 

So the projections of the field yield expressions of the form  

|d2V(θ)/dθ2|V^  and  |d2V(θ)/dθ2|U/c  whose sum is a null vector. 

 We also have the useful  relations: 

[(W/c)x (VU’W/c )/(1- V2
U’W/c2 )1/2  ]ijWj/c  = (VU’W/c)i /(1- V2

U’W/c2)1/2 (43a); 

[(U’/c)x (VWU’/c)/(1- V2
WU’/c2)1/2]ijU’j /c =  (VWU’/c)i /(1- V2

WU’/c2)1/2  (43b) ; 

Putting V^U’W instead of VU’W  in eq 43a we get  V^U’W/(1- V2
U’W/c2)1/2  (44a) ; 

Let c=1 in what follows except when required for clarity. 

Putting V^WU’  instead of VWU’  in eq 43b we get V^WU’/(!- V2
WU’)

1/2  (44b); 

We also have: 

[WxVU’W/(1- V2
U’W)1/2]ijV^U’W j = |VU’W/(1- V2

U’W)1/2|Wi   (45a);  

[U’x VWU’ /(1- V2
WU’)

1/2]ijV^WU’ j = |VWU’ /(1- V2
WU’)

1/2|U’i
       (45b); 

Putting V^U’W  instead of VU’W in eq 45a we get   Wi /(1- V2
U’W)1/2 (46a); 



Putting V^WU’ instead of VWU’ in eq45b we get U’i/(1- V2
WU’)

1/2 (46b); 

Now that we have all these projections we want to express the following relations 

in terms of them: 

U’ = [VU’W + W]/(1- V2
U’W)1/2]  (47a);  W= [VWU’ + U’]/(1- V2

WU’)
1/2  (47b);  

-V^WU’  = [V^U’W +|VU’W| W] /(!- V2
U’W)1/2  (48a); 

-V^U’W = [V^WU’ + |VWU’| U’]/(1- V2
WU’)

1/2  (48b); 

Eq 47a  =   eqs( 43a + 46a) .   Eq 47b  =  eqs( 43b + 46b ). 

Eq 48a =    eqs(44a +45a) .     Eq 48b  =  eqs(44b +45b). 

4C  Quadratic expressions of projective bivectors.Their meaning. 

Let Sij = [U/c x V^]ij = [UiV^j- UjV^i]/c  (49); U/c and V^  are any two unit timelike 

and spacelike 4 vectors, respectively, orthogonal to each other. 

SijSij = [(U.U/c2)V^.V^ + (U.U/c2)V^.V^ ] = -2   (50a);  

(-1/2)SijSij = 1 (50b) ;   Let S*ij = [U/c x V/c]ij   (51);        (-1/2)S*ijS*ij  = V2/c2 (52); 

SijSik= - [UjUk/-c2 + V^jV^k] = -Pjk (53a); (-1;2) S*ijS*ik =  -Pjk V
2/c2 (53b); 

 Pjk = [UjUk/-c2 + V^jV^k] (54);  

Pjk is an operator that projects any 4 vector A  perpendicularly onto the U/c, V^  

plane. 

PjkAk = [(A.U/-c)U/c + (A.V^)V^]j = (TA)j  (55); TA is the projected A vector. The 

subscript is just to specify that it is A that is projected. Note that it is (A.U/-c)U/c 

not (A.U/c)U/c that is the projection of A along U/c. The latter is a reflection. To 

see that note that A= Aperp +Apara where perp refers to the component 

perpendicular to U/c and para is the component parallel to U/c.  

 A-Apara = Aperp = [A – (A.U/-c)U/c] = [A +(A.U/c)U/c]  (56a); To check: Aperp.U/c =0; 



Apara = (A.U/-c)U/c (56b) ; One word of caution. One must not use  

PR
ij = [UiUj/c2 +V^iV^j ] or [UiUj/c2 – V^iV^j] or [UiUj/-c2 –V^iV^j] ,they represent 

reflections. 

Now let  Qij = δij – Pij = δij –[UIUJ/-c2 +V^iV^j] (57); where δij is the Kronecker delta 

in 4 dim. We can use it because we use the metric) [1,1,1,i]. 

Qij projects any 4 vector A perpendicularly out of the (U/c,V^) plane. 

QijAj = {A- [(A.U/-c)U/c + (A.V^)V^]}I   = (DA)i        (58) ;  

 A= Aout + Ain (58a) ; in=in plane; out= out of plane.   A-Ain = Aout (58b); 

Since Aout=  {A- [(A.U/-c)U/c + (A.V^)V^]} (58c) using  eq55, it is proved. 

Sij is also an operator. It performs a similar useful function as the two previous 

ones. 

SijAj = [U/c(A.V^) – V^(A.U/c)]I  = SA  (59);   

Sij  projects any 4 vector A onto the U/c,V^ plane so that SA  is perpendicular to A. 

It must therefore be orthogonal to the two previous projected 4 vectors TA  ,DA .It 

is straightforward to show that  SA.TA= SA.DA= TA.DA = 0; so we obtain 3 mutually 

orthogonal 4 vectors by operating on any 4 vector A with Sij ,Pij  or Qij . 

The piece de resistance is the operator Kij  = δij -2Pij  (60) which is a reflection 

operator. It is closely related to the energy stress tensor of Fij
na as will be shown in 

the next subsections. 

Kij Aj = {A – 2[(A.U/-c)U/c + (A.V^)V^]}I  (61); 

We have:  

SijUj/c = V^I ;  SijV^j = Ui/c;    PijUj/c = Ui/c;   PijV^j= V^I;   QijUj/c= QijV^j =0 ; 

KijUj/c = -Ui/c ; KijV^j  = - V^I ;      as could have been expected.. 



4D Quadratic expressions of the moment of LW potential. 

[ExA]ij  = q’[W/c x VU’W/c]ij  = -q’[U’/c x VWU’/c]ij  (62);   

(-1/2)[ExA]ij[ExA]ij =  q’2V2
U’W/c2  =  q’2V2

WU’/c2   (63) ; 

[EXA]ij[ExA]ik  = - q’2 (V2
U’W/c2)[WjWk/-c2 + V^U’W, j V^U’W, k] 

 = -q’2(V2
WU’/c2)[U’JU’k/-c2 + V^WU’ j V^WU’ k]   (64); 

(-1/2){[ExA]kl[ExA]kl}δij  + [ExA]mi[ExA]mj  = q’2V2
U’W/c2{δij- [WiWj/-c2 + V^U’W I V^U’W j]} 

= q’2V2
WU’/c2{δij – [U’iU’j/-c2 +V^WU’ iV^WU’ j]}     (65); 

Remember that V2
U’WV^U’W iV^U’W j = VU’W I VU’W j .  Now the reflection: 

(-1/2){[ExA]kl[ExA]kl}δij +2[ExA]mi[ExA]mj= q’2(V2
U’W/c2){δij -2[WiWj/-c2+V^U’Wi V^U’Wj]}  

= q’2(V2
WU’/c2){δij -2[U’iU’j/-c2 + V^WU’ iV^WU’ j ]}   (66);   

Note that these are operators times the square of the  geodesics. 

4E Quadratic expressions for the field. The Lagrangian field density.The energy 

stress tensor. 

From eq 4.7, 4.26,27 we get for the field Lagrangian density. 

(-1/2)Fna
ijF

na
ij   = (q’2/l4)(V2

U’W/c2)(1- V2
U’W/c2)2 = (q’2/l4)(V2

WU’/c2)(1- V2
WU’/c2)2 

= (q’2/4l4)[d2 tanhθU’W/dθ2
U’W ]

2
 = (q’2/4l4) [ d2tanhθWU’/dθ2

WU’  ]
2 (67); 

The field Lagrangian density is proportional to the square of the geodesic 

accelerations. 

Fna
ijF

na
ik  = (-q’2/4l4)(d2tanhθU’W/dθ2

U’W )2[WjWk/-c2 + V^U’W JV^U’W k] 

= (-q’2/4l4)(d2tanhθWU’/dθ2
WU’ )

2[U’jU’k/-c2 + V^WU’ jV^WU’ k]  (68) ; 

And now for the energy stress tensor. We have, using V= VU’W or VWU’ : 



{(-1/2) (Fna
klF

na
kl)δij +2Fna

miF
na

mj} 

= (q’2/l4)(V2/c2)(1- V2/c2)2{δij -2[WiWj/-c2 + V^U’W iV^U’W j ]} 

= (q’2/l4)(V2/c2)(1- V2/c2)2{δij – 2[U’iU’j/-c2 +V^WU’ iV^U’W j ]} 

= (q’2/4l4)[d2tanhθU’W/dθ2
 U’W  ]

2{δij -2[WiWj/-c2 + V^U’W iV^U’W j]} 

= (q’2/4l4)[d2tanhθWU’/d2θWU’]
2{δij -2[U’iU’j/-c2 +V^WU’ iV^WU’ j ]} = 2Tij   (69); 

We recognize eq4.69  as being twice the energy stress tensor Tij.( refs. 6,7,8).It is 

equal to (q’2/4l4) times the square of the geodesic acceleration times ½  the 

reflection operator of eq4.69 which depends on whether the virtual motion is 

from W/c to U’/c or vice versa. The trace of Tij is determined by the reflections.  

Since δii  summed over i is =4 and  -2[ U.U/-c2 + V^.V^] = -4 , the trace is zero. In 

addition since the product of two reflections is the identity, 

TijTjk = (q’2/2l4)2[(V2/c2)(1- V2/c2)2]2δik   (70) ; let TijTij = T2 (71);δii =4 (summed over i) 

T2 =  4 [(q’2/2l4)2 (V2/c2)(1- V2/c2)2]2   

 = (4/4)[(q’2/4l4)(d2tanhθ/dθ2 )2]2    (72); see eq 4.69 for the ¼ factor. 

T = [(q’2/l4)(V2/c2)(1- V2/c2)2] = [(q’2/4l4)(d2tanhθ/dθ2)2 ]  (73); Let: 

U/c = W/c or U’/c , V^ = V^U’W or V^WU’ , V
2 = V2

U’W or V2
WU’ , θ =θU’W =θWU’ 

Tij = T{δij /2-[UiUj/-c2 + V^iV^j]= [T(δij/2) –TPij]   (74); 

Tij – T(δij/2) = -T[UiUj/-c2 + V^iV^j] = - TPij             (75); 

FijFik =  -TPij    (76);   (-1/2)FijFij  = T  (77) ;    

T= Tna ; Tij = Tna
ij ; Fij = Fna

ij ; 

 

5 The Lorentz force. The energy density. The Poynting 4 vector. 



So far, we have dealt only with two 4 velocities, namely U’ and W which 

represented two normal of a hyperboloid of two sheets. We only dealt with two 

geodesic segment VU’W  and  VWU’   and we found geometric quantities involving 

them. The Lorentz force brings a third velocity into play, the 4 velocity U of a test 

charge q on which charge q’ acts. This brings about a third tangent to the 

hyperboloid of two sheets.This means that geodesics between U and U’ and 

between U and W will appear in the tangent space centered at U. Since U 

represent a third observer, the test charge, we need to investigate how the 

previous entities appear as viewed from U. New quantities appear in profusion 

and it will be necessary to simplify the notation when things get too messy. 

5A Projective Einstein law of addition or substraction 4 vectors and tensors.Olinde 

Rodrigues-like expressions. 

What is U’.W/-c2 = coshθU’W   as viewed from U? 

Let  U’ =  [VU’U   + U]/(1- V2
U’U )1/2 (1) ;  W = [VWU + U]/(1- V2

WU )1/2 (2);  

we have omitted the c’s. Putting eqs 1,2 into the cosh we get: 

U’.W/-c2 = [1- VU’U.VWU]/(1- V2
U’U)1/2(1- V2

WU)1/2   

= coshθU’U coshθWU – sinhθU’U sinhθWU V^U’U V^WU       (3) ; 

Compare this with cosh(θA – θB) = coshθA coshθB – sinhθAsinhθB  . 

The geodesic segment VU’W    = [U’(-c2/U’.W) – W] becomes using eqs1,2,3 

VU’W /c = [eu’w
u  + (eu’w

u .W/c)W/c](1- V2
WU)1/2 (4); 

With   eu’w
u  = (VU’U   - VWU )/[1- VU’U.VWU]       (5);   similarly: 

VWU’/c = [ewu’
u + (ewu’

u .U’/c)U’/c](1- V2
U’U)1/2    (6); 

With    ewu’
u = (VWU – VU’U)/[1- VWU . VU’U ] =   - eu’w

u        (7) ; 

We can obtain the bivector form of the geodesics in term of U.  



(WxVU’W)ij = [Wx U’(-c2/U’.W)]ij  

= [(Ux eu’w
u ) +(VWUx eu’w

u )]ij  (8);  

we have used eqs1and 4 to obtain this result and omitted the c whenever this 

cannot lead to confusion.Eq8 gives the geodesic segment from W to U’.  

(U’xVWU’) = [U’xW(-c2/W.U’)]= [(Ux ewu’
u ) +(VU’Ux ewu’

u )] (9); since eq9 is the 

negative of eq8 and using the fact that eu’w
u  = - ewu’

u  we have: 

[VWUx eu’w
u ]= [VU’Ux eu’w

u ] (9a); we have omitted the subscript ij throughout. 

Eq5 and 6 are projective forms of the Einstein law of addition or subtraction of 

velocities. See V.Fock  and Landau and Lifschitz in references. 

Write   VWU = VWU pae + VWU ppe (9b) ; 

where the subscript  pae  means parallel to eu’w
u  or ewu’

u    and ppe means 

perpendicular to it. We will prove in the next section that VWU ppe = VU’U ppe (9b); 

let    eij  = (U/cx eu’w
u )ij  (10);  bij  = (VWU/c x eu’w

u )ij = (VWU ppe /c  x eu’w
u )ij  (11) 

(Wx VU’W)  = eij + bij  (12);  V2
U’W = (-1/2)( eij + bij )( eij + bij )   (13); 

[ eij bij ]= 0  (14) ;    (-1/2) eijeij = e2  (15);        (-1/2) bijbij = - V2
WU ppe e

2
  (16); 

These important formulas are obtained by using the fact that U, VWU ppe  , e
u’w

u  
are mutually orthogonal. We can call eqs 5.10 ,5.11 the electric and magnetic 

parts of the rotation tensor (or geodesic tensor) given by eq 5.12. 

V2
U’W  = e2 – V2

WU ppe e2   = e2 [1- V2
WU ppe ]  (17); to simplify the notation write pe 

instead of ppe. 

 Let  [1- V2
WU pe /c2]  = 1/cosh2θpe   (18) ; |VWUpe/c| = tanhθpe  (18a); 



V2
U’W/c2

  = e2
 /cosh2θpe = tanh2θU’W  (19a);     (V2

U’W /c2)cosh2θpe = e2
   (19b); 

(-1/2)[eijeij ] = e2 = (V2
U’W/c2)cosh2θpe   (20); 

 (-1/2)bijbij   = - V2
WU pe e

2
 = - tanh2θpe cosh2θpe V

2
U’W/c2 = - sinh2θpe V

2
U’W/c2  (21); 

We can define a magnetic pseudo 4vector  bi = (1/2)Ɛijkl UiVWU pe j ek        (22) ;  

We should have : b.b  = (V2
WUpe/c2) e2

  = sinh2 θWUpe V
2

U’W/c2      (23); 

Then                  V2
U’W/c2 =  e2

 – b2    (24) ;                e.b    = 0            (25); 

U/c, VWUpe/c, e , b  are 4 mutually orthogonal 4 vectors. 

We find         eij Uj   = ei   (26);    edual
ij Uj  = bi          (27) ;         bij Uj =0  (28); 

We recall from eq 3.31 that   

[ExALW ] =q’[Wx VU’W ] = q’[dx’i/dxj – dx’j/dxi ]=   q’( eij +  bij ) (29); 

Eq29  shows nicely how all the quantities are related: the moment of potential, 

the geodesic segment in bivector form, the rotation tensor, and the geodesic 

segment in bivector form as viewed from U, decomposed into an electric field 

part and a magnetic field part. It is noteworthy that the latter bear a close 

resemblance with some of the Olindes Rodrigues formulas for the addition of 

rotations or the decomposition of rotations.    

5B The Lorentz force and its dual. 

We observe that to go from the geodesic to the geodesic accelerations we only 

have to multiply by the factor (1- V2/c2) with V = VU’W  or  VWU’ .The fields require 

the additional factor q’/l2 . All the formulas of the previous section are therefore 

applicable with          Ɛij = eij (1- V2)   (30)   and      Bij  = bij (1- V2 )   (31);  

FijUj =  (q’/l2) eij Uj (1- V2) = Ɛi   (32);  Fdual
ijUj = (q’/l2) edual

ij Uj (1- V2) = Bi  (33) ; 



Where Ɛ is the electric field 4 vector (not the 3 vector) and B is the magnetic field 

pseudo 4 vector.    Bi   = (q’/l2) bi (1- V2)  (34) ;  b is given by eq22; 

The Lorentz Force  is   Fna
i   = qFna

ijUj/c = qq’ ei /(E.U’/-c2)2   (34); use eq26. 

Fdual 
i = qq’(1/2)ƐijklUjVwu pe k el /[E.U’/-c2]2  (35); Ɛijkl is the Levi-Civita symbol. 

Of course Ɛ = q’ e /[E.U’/-c2]2   (36);   Bi = q’ (1/2)Ɛijkl UjVWU pe k ei /[E.U’/-c2]2  (37); 

Ɛ.B =0   (38); 

5C The field Lagrangian density. 

Ɛ2 =  (q’2/l4) V2
U’W (1- V2

U’W)2cosh2 θWU pe  (39a) ;  

 B2 = (q’2/l4)V2
U’W (1- V2

U’W)2 sinh2 θWU pe     (39b);  

Ɛ2-B2 = (q’2/l4)V2
U’W(1- V2

U’W)2     

= q’2 (-1/2)[dx’I /dxj – dx’j /dxi][dx’i/dxj- dx’j/dxi]/(E.U’/-c2)2    (39c) ;using eq29. 

5D The energy density 

(1/2)[Ɛ2 + B2] = (q’2/2l4)V2
U’W(1- V2

U’W)2 [cosh2 θWU pe + sinh2 θWU pe] 

= (q’2/2l4)V2
U’W (1- V2

U’W)2 cosh2θWU pe   (40a)  

 = (q’2/2l4)[(1/4)(d2tanhθ/dθ2 )2 ] cosh2θWU pe    (40b);         θ= θWU pe    

5E The Poynting 4 vector. 

The Poynting  vector in Maxwell’s theory is (exh)ab  with a,b=1,2,3, and e and h are 

the electric and magnetic field respectively. The Poynting vector is orthogonal to e 

and h and is a pseudo-3-vector.The generalization of the Poynting vector to 4dim 

with a timelike ray of influence will involve both Ɛ  and  B with a 4dim cross 

product which will point in a direction orthogonal to U, Ɛ , B . The only direction 



left is ihe direction of the unit 4 vector V^WU pe . The 4 dim Poynting vector is a 

pseudo-4-vector. We should have: 

Poyn = |ƐxB|V^WU pe  = |Ɛ||B|V^WU pe  (41); the direction could be –V^WU pe of 

course this is just a heuristic argument. 

Poyn = (q’2/l4)V2
U’W (1- V2

U’W)2 coshθWU pe sinhθWU pe  V^WU pe      (42); 

The ratio of the Poynting vector to the energy density should give a projective 

relative 4 velocity. 

Poyn /(1/2)[Ɛ2 + B2 ]= 2sinhθWU pe coshθ WU pe /cosh2θWU pe  V^WU pe  

 = tanh2θWU pe  V^WU pe   (43); 

Poyn   = (1/2)[Ɛ2 + B2] tanh2θWU pe  V^WU pe  (44);   

The projective relativ 4 velocity is :      V(2θ)/c   =  tanh2θWU pe  V^WU pe  (45); 

We are dealing with a different model of hyperbolic geometry. 

We can form :  V(2θ)/(1 – V2 (2θ)1/2    = sinh2θ V^WU pe  (46); 

(1-V2(2θ) ) - ½  = cosh2θ  (47) ;  U(2θ) = [V(2θ) + U ]/(1- V2(2θ) )1/2 (48); 

U is the 4 velocity of test charge q. 

The  unit 4 vector V^(2θ) orthogonal to U(2θ) is: 

V^(2θ) = [cosh2θ V^WU pe  + sinh2θ U/c ]   (49); 

To check :    [ U(2θ). V^(2θ)] =  

[sinh2θWU pe V^WU pe + cosh2θ U/c ].[cosh2θ V^WU pe + sinh2θ U/c ] = 0   (50); 

It is interesting to contruct 4 vectors with the Poynting vector and the energy 

density. 

Poyn = (1/2)[Ɛ2 + B2 ]tanh2θ WU pe V^WU . pe 



Form:       |Poyn|V^WU pe  + (1/2)[Ɛ2 + B2] U/c  = Pem  (51);  Pem is a total 

electromagnetic momentum density. Its square should yield the negative of an 

e.m. mass density squared . 

Form:   (1/2)[Ɛ2 + B2]V^WU pe + |Poyn|U/c =   Wem  (52) ;  Pem. Wem =0 ; 

5F The energy stress tensor and its projections in the U, V^WU pe , Ɛ^,B^ directions. 

Using the eqs 12 to16 and 29to31 of the previous subsections we have: 

2 Tij = {(-1/2)[Ɛlm Ɛlm + Blm Blm ]δij + 2[(Ɛik + Bik)(Ɛjk + Bjk)]}   (53); 

[(Ɛik + Bik)(Ɛjk + Bjk) = [(ƐikƐjk) +(BikBjk) + (ƐikBjk + ƐjkBik)]  (54) ; 

ƐikBjk  = UiV^pe j |V pe|Ɛ2   (55a);      ƐjkBik  = Uj V^pe I |Vpe|Ɛ2  (55b) ; 

(ƐikBjk + ƐjkBik)  = [ Ui V^pe j + Uj V^pe i ]|Vpe|Ɛ2   (56) ;  

(ƐikƐjk) =   -[ UiUj/-c2 +Ɛ^iƐ^j ]Ɛ
2  (57);   (BikBjk ) = [ V^pe i V^pe j + Ɛ^iƐj]V

2
pe Ɛ

2  (58); 

(-1/2)ƐlmƐlm = Ɛ2   (59a);      (-1/2)BlmBlm =     - (V2
WU pe /c2)Ɛ2  =     - B2          (59b) ; 

(-1/2)(ƐlmƐlm + BlmBlm) = (Ɛ2 – B2)   (59c) ; 

2Tij   = (Ɛ2- B2)δij  +2{-[(UiUj/-c2) + Ɛ^iƐ^j]Ɛ
2 +[V^pe I V^pe j + Ɛ^iƐ^j]V

2 pe Ɛ
2  

+ [UiV^pe j   + UjV^pe i  ]|Vpe/c|Ɛ2 }   (60); 

We need to take every projections in the U, VWU pe , Ɛ  and B directions to get a 

feeling for the meaning of the energy stress tensor and see whether we get back 

the results of the previous subsections. 

Tij = (Ɛ2 - B2)δij /2  +{ -[(UiUj/-c2) + Ɛ^iƐ^j]Ɛ
2 + [V^pe I V^pe j + Ɛ^I Ɛ^j ]V

2
pe Ɛ

2   

+ [ (Ui /c)V^pe j + (Uj/c)V^pe I ]|Vpe /c|Ɛ2 }   (61); 

The B^ projections are the easiest since they involve only the delta function. 

Tij B^j  = (1/2)[Ɛ2 – B2]B^I  (62a);         Tij B^j B^I = (1/2)[Ɛ2 – B2 ]   (62b) ; 



Tij Uj/c = {(1/2)[Ɛ2 – B2]Ui /c + [-(Ui Uj /-c2)(Uj /c)Ɛ2  + (Uj Uj/c2 )V^pe i|Vpe | Ɛ2 ]} 

= (1/2)[Ɛ2 – B2]Ui/c + [- Ɛ2 Ui /c – V^pe i |Vpe /c2|Ɛ2] 

= [(1/2)Ɛ2 – Ɛ2 ]Ui /c + (-1/2)B2 Ui /c  - V^pe i [|Vpe /c2|Ɛ2 ] 

= (-1/2)Ɛ2 Ui /c  + (-1/2)B2 Ui /c – V^pe i [|Vpe /c2|Ɛ2 ] 

=  (-1/2)[Ɛ2 + B2 ]Ui /c  - V^pe i [|VWU pe /c2 | Ɛ2 ]   (63); we recognize the first term as 

the energy density in the direction – Ui /c what about the second term? 

Recall that |Ɛx B|V^WU pe I is  Poyn i, the Poynting vector (4dim not 3dim); 

The final result is: 

TijUj /c  = (-1/2)[Ɛ2 + B2 ]Ui /c   - |ƐxB|V^WU pe I         (64);  

this is exactly the negative of eq51 which we called Pem . 

Tij Uj /c =  -Pem I  (65);        Tij (Uj Ui /c2 )  = (1/2)[Ɛ2 + B2 ]           (66); 

In eq66 should we use Uj Ui /-c2   instead Uj Ui /c2 ? Not clear at this time. 

The projections in the Ɛ^ directions are easier. 

Tij Ɛ^j  = (1/2)[Ɛ2 – B2 ]Ɛ^i  + [ - Ɛ2 Ɛ^I   + B2 Ɛ^i ] ; 

Tij Ɛ^j   = (-1/2)[Ɛ2 - B2 ]Ɛ^i      (67) ;   

 Eq 67 brings the field Lagrangian density into the -Ɛ^ direction. 

Tij Ɛ^j Ɛ^I  = (-1/2)[Ɛ2 - B2]         (68);            

Tij V^pe j  = (1/2)[Ɛ2 – B2]V^pe i + V^pe i B
2 + (Ui/c)|ƐxB| ; 

Tij V^pe j  = (1/2)[Ɛ2 + B2]V ^pe i  + (Ui /c)|ƐxB|      (69) ; 

Tij V^pe j (Ui/c) =  - |ƐxB|        (70) ; 

Notice that we are not getting |ƐxB|V^pe   directly, from these projections. 



Note also that eq69 equals Wem of eq 52 and that eq64 equals –Pem they are 

perpendicular. 

It is interesting to get the double angle velocities in terms of the single angle ones. 

Let V(2θWU pe)/c   = |V’’|V^pe     and VWU pe /c = |V|V^pe       

tanh2θ = 2|V|/(1 + V2) = |V”|  (71a) ;  

cosh2θ = (1 + V2)/(1-  V2)=  1/( 1- V”2)1/2     (71b); 

sinh2θ =  2|V|/(1-  V2 ) =  |V”|/(1- V”2)1/2          (71c) ; 

U(2θ)/c =   {[ 2|V| /(1- V2)] V^pe + [(1+ V2)/(1- V2)](U/c) }  (72) ; 

V^(2θ) = { [(1 + V2)/(1- V2)]V^pe + [ 2|V|/(1- V2)](U/c) }   (73) ; 

Compare with eq 48,49. 

 

6  Introducing the 4 velocity Uo  as a special observer to simplify formulas. 

6A Obtaining Uo  as a projection of U onto the W, U’ plane. Various formulas. 

It turns out that all the formulas derived in the previous sections simplify by  

projecting the 4 velocity U perpendicularly onto the W, U’ plane. The projection 

gives us the direction of a new 4 velocity Uo  and we have:         

 U = [VU,Uo  + Uo ]/(1- V2
U,Uo)1/2  (1);  

We are interested in simplifying  eu’w
u = (VU’U – VWU)/[1- VU’U .VWU ]. It turns out 

that Uo  will do the job but the derivation is somewhat intricate and the geometry 

a little difficult. The method is perfectly general and does not depend on e.m.We 

first separate the relative 4 velocities into components parallel (pa) and 

perpendicular (pp) to eu’w
u .  

VWU  = [VWU pp + VWU pa ]   (2a);   VU’U = [VU’U pp + VU’U pa ]  (2b) ; 



[VU’U – VWU ] = [VU’U pa – VWU pa ]  (3a);           VU’U pp =VWU pp          (3b); 

Eq (3b) is very important. 

[1- VU’U.VWU] = [1- (VU’U pp + VU’U pa).(VWU pp + VWU pa)] 

= [1 – VU’U pp VWU pp – VU’U pa VWU pa ] = [1 – V2
WU pp – VU’U paVWU pa ] 

= [1- V2
WU pp ][1 -  VU’U pa VWU pa /(1- V2

WU pp )]    (4) ;  

So  eu’w
u = (VU’U pa  - VWU pa )/{(1- V2

WU pp)[1- VU’U pa VWU pa/(1- V2
WU pp)]}   (5) ; 

This suggest that the expressions VU’U pa /(1- V2
WU pp)1/2 and VWU pa/(1- V2

WU pp)1/2 

have special significance.  

To get the connection with the projection that gave us Uo  observe that  

[ U+VWU  ]= W(-c2/W.U ) (6a);       [U + VU’U ]= U’(-c2/U’U) (6b); 

This was discussed in the section on the Lienard-Wiechert potential.  

(6b) – (6a) = VU’U – VWU = VU’U pa – VWU pa . This means that eq6a and 6b lie on a line 

in the U’, W plane in the direction of  eu’w
u .That line must intersect Uo at a point 

kUo/c. 

To find k note that       U/c + VWU pp /c = kUo/c  (7); a little thought makes us realize 

that                 VWU pp = VUo,U  (8a) ;   VU’U pp  = VUo,U   (8b) ; 

Since   U/c + VUo,U /c = Uo (-c
2/Uo .U)    (9) ;        k = (-c2/U.Uo) (10) ;  

We must have:    U0(-c2/Uo .U) + VWU pa = W(-c2/W.U)  (11) ; 

W.U/-c2  = [1- VWUo .VUUo ]/(1- V2
WUo )1/2 (1- V2

UUo )1/2  (12); 

VWUo .VUUo = 0   (13);    don’t confuse VUo,U  with VU,Uo  They both lie in the same 

plane which is perpendicular to the plane wherein VWUo lies. 

W.U/-c2 =       (1- V2
WUo )

-1/2 (1- V2
UUo)-1/2       (14);  eq11 becomes 



Uo (1- V2
Uo,U )1/2 + VWU pa  =  W(1- V2

Uo,U )1/2 (1-V2
WUo )

1/2 (14a); the right hand term is 

=[VWUo + Uo ](1- V2
WUo )1/2 (1- V2

Uo,U )
1/2 /(1- V2

WUo  )
1/2  = [VWUo + Uo ](1- V2

Uo,U)1/2 (15); 

Putting eq15 into eq 14a.             VWU pa  = VWUo (1- V2
Uo,U)1/2       (16);  

VWUo  =    VWU pa / (1- V2
Uo,U )1/2          (17);                        in the same way,we get: 

VU’Uo =      VU’U pa /(1- V2
Uo,U )1/2          (18);        

which is what we guessed earlier.see eq5,8a,8b.  

Eq5 becomes:  eu’w
u   = {(VU’,Uo – VWUo )/[1- VU’Uo VWUo ]}/(1- V2

Uo,U )1/2  (19) ; 

We recognize eq19 as representing:   eu’w
u = eu’w

uo /(1- V2
Uo,U )1/2  (20); 

With  eu’w
uo  = (VU’Uo – VWUo )/[1 – VU’Uo VWUo ]      (21); and 

1/(1 – V2
Uo,U )1/2  = 1/(1- V2

WU pp)1/2  = 1/(1 – V2
U’U pp )1/2  (22) ; 

We also have : V^U’Uo = V^WUo =  eu’w
u ^  =  eu’w

uo ^  (23);  

The 4 directions are the same. The angle between U and Uo  is : 

ΘUo,U = θWU ppe = θU’U ppe            ( 24);  where we have put back ppe instead of pp to 

remind us that we are dealing with the mysterious angle of section 5 involving the 

Poynting vector, the energy density, the electric field 4 vector and the magnetic 

field pseudo 4 vector. It is simply the angle between U and Uo  which is also the 

angle between U and the W, U’ plane.  

Eq 21 can be rewritten as : 

( eu’w
uo ) = (tanhθU’Uo   - tanhθWUo )V^ WUo  /[1- tanhθU’Uo tanhθWUo]  

= tanh(θU’Uo – θWUo )V^WUo    (25a); 

Also  ew,u’
uo  = (tanhθWUo -tanhθU’Uo  )V^WUo  /[1- tanhθWUo tanhθU’Uo] 



= tanh(θWUo  - θU’Uo )V^WUo      (25b);    

we have kept the  direction the same for eq 25a and 25b so it is the angle 

differences which are the negative of each other. 

Eq 20 can be rewritten as:  eu’w
u   = coshθUo,U tanh(θU’Uo  -θWUo )V^WUo   (26); 

U’.W/-c2  =   [1- VU’Uo VWUo ]/(1- V2 U’Uo   )
1/2 (1- V2

WUo )1/2  

 = coshθU’Uo  coshθWUo   - sinhθU’Uo  sinhθWUo  =  cosh(θU’Uo -θWUo )    (27); 

(U’.W/-c2) eu’w
uo  =  sinh(θU’Uo - θWUo )V^WUo     (28); 

What does the geodesic line segment look like as viewed from Uo  ? 

VU’W    = [ eu’w
uo + ( eu’w

uo .W)W](1- V2
WUo )1/2        (29); 

VU’W  = tanh(θU’Uo  -θWUo )[V^U’Uo  + (V^U’Uo .W)W]/coshθWUo  (30); 

this is the appearance of the geodesic segment from W to U’ as viewed from Uo . 

The geodesic bivector gives a simple result. 

[Wx VU’W ] = (Uo x eu’w
uo ) + (VWUo x eu’w

uo )  (31);  

 the 2nd term is zero because both terms are in the VWUo  direction. 

[Wx VU’W ] = (Uo x eu’w
uo ) = (Uo x V^WUo ) tanh(θU’Uo - θWUo )      (32a); 

[U’x VWU’ ] = (Uo x ewu’
uo ) = (U0 x V^WU0) tanh(θWUo - θWUo )        (32b); 

Again we have kept the same direction V^WUo  in eq 32a and 32b and let the 

angles give the negative sign.The reader may wonder under what conditions do 

the angles add instead of subtract.We have seen so far expressions like: 

U’.W/-c2  = [1- VU’U.VWU ]/(1- V2
U’U )

1/2 (1- V2
WU )1/2 ; with 

U’ = [VU’U + U]/(1- V2
U’U )1/2 ;  W= [VWU  + U ]/(1- V2

WU )
1/2 ; 



Take U’R = [-VU’U  + U]/(1- V2
U’,U)1/2    (33a);       VU’R,U = -VU’U  (33b); 

U’R .W/-c2  = [1 + VU’U .VWU/c2 ]/(1- V2
U’U /c2)1/2 (1- V2

WU )1/2  (34) ; 

This is a projective form of Einstein law of addition of velocities (see V.Fock). We 

dealt so far with Einstein’s law of substraction of velocities.Note that 

VWU  reduces to [w,0] when u=0 and –VU’U  reduces to [ –u’,0]  when u=0, so the 

interpretation is reasonable. As a second example take: 

U’R* = [ -VU’Uo + Uo ]/(1- V2
U’Uo )1/2  (35a);  W= [VWUo  + Uo ]/(1- V2

WUo )
1/2  (35b); 

U’R* .W/-c2 =  [1 + VU’Uo VWUo /c2 ]/(1- V2
U’Uo /c2)1/2 (1- V2

WUo )1/2   (36a); 

U’R* .W/-c2  = cosh(θU’Uo + θWUo )    (36b) ;  VUR*,Uo  =  -VU’Uo   (36c); 

 eu’r,w
 u    = [VUR,U  - VWU ]/[ 1- VU’R,U .VWU ]   (37a); 

 eu’r,w
u   = - [VU’U  + VWU ]/[1 + VU’U.VWU ]     (37b); 

eu’r*,w
uo   = [VU’R*,Uo – VWUo ]/[1- VU’R*,Uo .VWUo ] (38a); 

eu’r*,w
uo   = - [ VU’Uo  + VWUo ]/[1 + VU’Uo VWUo ]   (38b); 

eu’r*,w
uo   = - tanh(θU’Uo + θWUo )V^WUo          (38c); 

6B The LW potential as viewed from W, U, Uo . 

A = q’(U’/c) /(E.U’/-c) = (q’/l)[VU’W + W]/c   (39a); this was obtained in an earlier 

section and gives the potential as viewed from W. As viewed from U we have 

A = (q’/l){[VU’U + U]coshθU’U /c coshθU’W  } (39b) ;  

 compared to eq39a , the form is the essentially same but there is the factor 

coshθU’U/coshθU’W  .       As viewed from Uo  we have: 

A = (q’/l)[ VU’Uo + Uo ]coshθU’Uo /cosh(θU’Uo – θWUo )    (39c) ; we used eq6.27 here.  



It is sometimes useful to absorb the inverse of the factors in l in eq 39a and b and 

pretend that the length is modified by “conformal” factors used to keep the form 

the same. 

6C  The geodesic bivector as viewed from Uo .Quadratic expressions.Tij projections 

From eq6.32a,  [WxVU’W]ij   = [Uo x eu’w
uo ]ij  = S* ij  ; 

(- 1/2)S*ij S*ij  = V2
U’W/c2  = e2 U’W

Uo  = tanh2(θU’Uo - θWUo)  = tanh2 θU’W  (40); 

tanhθU’W  = tanh(θU’Uo - θWUo)  (41);        θU’W = θU’Uo – θWUo  (42); 

|VU’W/c| = | eu’w
uo | (43);  | eu’w

u | = coshθUUo | eu’w
uo |  (44); this surprising 

result tells us there is no magnetic field term,as viewed from Uo because the 

problem is 2 dimensional just as it is with the W, U’plane so it is in the Uo ,VWUo 

plane,which are the same plane. We can now compute the quadratic eqs for the 

fields. 

(-1/2)FijFij   = [q’2/(E.U’/-c)4]V2
U’W/c2  = [q’2/(E.U’/-c)4]tanh2(θU’Uo - θWUo ) (45); 

it is also equal to   Ɛ2 – B2 as viewed from U, of course,and we have 4 mutually 

orthogonal direction in that case. In this case only 2 directions are involved. 

Since T= [q’2/(E.U’/-c)4 ]tanh2 (θU’Uo  - θWUo )   (45a); (we used eq 4.73) . 

FijFkj = T[Uo x V^WUo]ij [Uo x V^WUo ]kj  =  -T[(Ui
o U

k
o /-c2 + V^WUo

i V^WUo
k ]  (46); 

2Tij  = T{δij -2[ (Ui
o U

j
o/-c2) + V^WUo

i V^WUo
j ]}  (47); 

2TijU
j
o/c  = - TUi

o /c       (48a);       TijU
j
o /c = (-1/2)TUi

o/c    (48b); 

2Tij U
j
o Ui

o/c2 = - TUi
o Ui

o/c2  = T  (49a);    TijU
j
o

 Ui
o/c2   = (1/2) T      (49b); 

2TijV^WUo
j    = -TV^WUo

i    (50a) ;           TijV^WUo
j  = (-1/2)TV^WUo

i   (50b); 

2TijV^WUo
jV^WUo

i   = -T    (51a);           TijV^WUo
jV^WUo

i   = (-1/2)T     (51b); 

2TijV^WUo
jUi

o/c   = 0    (52);         no mixed components 



The projection of 2Tij  = T{δij -2[WiWj/-c2 + V^U’W
i V^U’W

j ]}  of section4, eqs4.69 and 

4.74  have exactly the same form and give similar results, the problem is similar 

and involves only the geodesic between W and U’. No magnetic term appears. 

6D The Lorentz force 

We already know that the Lorentz force will involve the projection of the geodesic 

acceleration between the points described by the initial normal W and the final 

normal U’. The Lorentz force is the projection in the U direction. Writing 

everything in terms of Uo , VWUo , VUUo  we get: 

Using K = [q’/(E.U’/-c)2] tanh(θU’Uo - θWUo )     (53); 

FijUj/c   = K [Uo x V^WUo ]ij [VUUo + Uo ]j /(1- V2
UUo )1/2     (54); 

= K[Uo x V^WUo ]ij V^UUo j sinhθUUo + K[Uo x V^WUo ]ij Uo j coshθUUo    (55); 

the first term is =0 because [Uo x V^WUo ]ijV^UUo j  =Uo
i (V^WUo .V^UUo ) =0    (56a); 

since V^WUo  is orthogonal to VUUo .  The second term  

K[Uo x V^WUo ]ij Uo j coshθUUo  = KV^WUo i coshθUUo    (56b);  

qFijUj = [qq’/(E.U’/-c)2]tanh(θU’Uo – θWUo )coshθUUo V^WUo   (57);  

The last result is consistent with the previous results. 

6E  Quadratic expressions involving Uo , VUUo , V^WUo , b^i  =(1/2)Ɛijkl Uoj V^UUo k 

V^WUo I    .The energy stress tensor T”ik and its projections. 

The previous subsection leaves us with a puzzling problem,namely, how do we 

construct quantities involving the four mutually orthogonal directions Uo , V^UUo 

V^WUo , b^ , and how to get expressions resembling the electric and magnetic 

field. Try       Dij   = [(Uo + VUUo )x V^WUo ]ij   (58);         Dij  is made up of 3 orthogonal  

4 vectors.   

 Dij coshθUUo |VU’W| =  [U x V^WUo ]ij|VU’W| (59) ;     

The 4 vector |VU’W|V^WUo  lies in the  U, V^WUo plane and represents a new relative 

4 velocity . To that new relative 4 velocity corresponds a new 4 velocity. 



U’’/c  =  [ |VU’W|V^WUo + U/c]/(1- V2
U’W/c2)1/2          (60); 

V^U’’U   = V^WUo       (61);   U’’ = [ VU’’U + U ]/(1- V2
U’’U )1/2    (62); 

VU’’U  =  |VU’W|V^WUo     (63);  e^u’w
u = e^u’w

uo =V^U’Uo =V^WUo =V^U’’U (64); 

Eq 64 shows the equivalences getting more and more crowded. 

We want to form        T*’ik    = {(-1/2)(DlmDlm)δik /2 + DijDkj }V
2

U’W/c2   (65); 

{[Uo x V^WUo]ij + [VUUo x V^WUo ]ij }{[Uo x V^WUo ]kj + [VUUo x V^WUo ]kj } 

= {- [(Uo
i Uo

k/-c2) + V^WUo
i V^WUo

k ] + [ V^UUo
i V^UUo

k + V^WUo
i V^WUo

k ]V2
UUo/c2 

+ [(Uo
i/c)V^UUo

k + (Uo
k/c)V^UUo

i ]|VUUo/c|}  = DijDkj    (66); 

Setting  i=k we get:  (-1/2)DlmDlm =  [1 - V2
UUo/c2]  =   1/cosh2 θUUo      (67); 

So we do need the coshθUUo of eq 59 in the definition of T’ik. Define: 

T*”ik  = {(-1/2)(DlmDlm)δik /2+ DijDkj }cosh2 θUUo V2
U’W/c2}       (68); the term: 

-[(Uo
i Uo

k/-c2) + V^WUo
i  V^WUo

k  ]cosh2 θUUo V2
U’W/c2   (69a); is the real electric field  

squared when  multiplied by  q’2/(E.U’/-c)4  = K’ times a Pik. The term: 

{[V^UUo
i V^UUo

k  + V^WUo
iV^WUo

k ]tanh2 θUUo  cosh2 θUUo V2
U’W/c2  (69b);   is the real 

magnetic field term squared when  multiplied by K’ times another Pik. The term: 

{[(Uo
i/c)V^UUo

k  + (Uo
k/c)V^UUo

i ]tanhθUUo  cosh2 θUUo V2
U’W/c2     (69c);  is the 

absolute value of the real Poynting 4 vector when multiplied by K’ the operator 

described in eq69c. 

Let            T”ik   = K’T*”ik            (70);                    be the full energy stress tensor. 

We are now ready to find the projections using eqs69a,69b,69c and 67, and the 

fact that        K’[(-1/2)DlmDlmcosh2θUUoV2
U’W/c2 ]δik/2 = [Ɛ2-B2]δik/2 

 

T”ikUo
k/c  = (-1/2)[Ɛ2 +B2]Uo

i/c –   ƐBV^UUo i             (70a);  using eq69a,69c 



T”ik Uo
k/c  = (-1/2)[Ɛ2 + B2]Uo

i/c  - |Ɛx B|V^UUo
i        (70b); 

T”ikUo
kUo

i/c2   = (1/2)[Ɛ2 + B2 ]                          (70c); 

T”ik (Uo
k/c)V^i 

UUo   =  - |ƐxB|                            (70d); 

T”ik V^UUo
k  = (1/2)[Ɛ2 – B2]V^UUo

i  + B2 V^UUo
i  + ƐBUo

i/c    (71a); using 69b,69c 

T”ik V^UUo
k  =  (1/2)[Ɛ2 + B2]V^UUo

i   + |ƐxB|Uo
i/c   (71b); 

T”ik V^UUo
kV^UUo

i  =  (1/2)[Ɛ2 + B2 ]    (71c); 

T”ik V^UUo
k Uo

i/c  =  - |ƐxB|                (71d);         same as eq70d of course. 

T”ik V^WUo
k  =  (1/2)[Ɛ2 – B2]V^WUo

i  +B2 V^WUo
i – Ɛ2 V^WUo

i     (72a); 

T”ik V^WUo
k  = (-1/2)[Ɛ2 – B2]V^ WUo

i     (72b);    using eqs69b,69a in (72a). 

T”ik V^WUo
k V^WUo

i  =   (-1/2)[Ɛ2 – B2]    (72c); 

We also have the two obvious projections: 

T”ik B^uo
k    = (1/2)[Ɛ2 – B2]B^Uo

i                   (73a); 

T”ik B^Uo
K B^Uo

i   = (1/2)[Ɛ2 – B2 ]  (73b); 

where B^Uo
i  = (1/2)Ɛijkl (Uo

j/c)V^UUo
k V^WUo

l    (74a); 

To differentiate it from  B^U
i   = (1/2)Ɛijkl (Uj/c)V^UoU

k V^WUo
l   (74b); 

A comparison between the present projections and those of the 

ordinary energy stress tensor Tik of section5F  shows that they are the same with 

U replaced by Uo ,   V^UoU is replaced by V^UUo  , V^WUo  is the same. 

B^U is replaced by B^Uo   .  Moreover the electric and magnetic fields have  

The same magnitude in both cases. Ɛ^ = V^WUo  so it has the same direction 

In both cases. 

6F Total e.m. momentum density and its dual, e.m mass density, revisited. 



In section 5, we defined an electromagnetic momentum density 4 vector: 

Pem  = (1/2){[Ɛ2 + B2 ]U/c  +2|ƐxB|V^UoU }      (75a);           and its “dual” 

Wem  = (1/2){[Ɛ2 + B2 ]V^UoU  +2|ƐxB|U/c }     (75b); 

We want to define a em mass density  such that  

Pem .Pem = -Mem
2 c4/V3

2       ( 76a ); Wem .Wem = Mem
2c4/V3

2      (76b); 

[Ɛ2 + B2]  = (q’2/l4)[cosh2θUoU  (V2
U’W/c2)(1- V2

U’W /c2  )2 ]              ( 77a); 

2|ƐxB|   = (q’2/l4)[sinh2θUoU  (V
2

U’W/c2 )(1- V2
U’W/c2 )2]             ( 77b); 

Wem . Wem  = (1/4)(q’2/l4)2[cosh2 2θUoU  - sinh2 2θUoU ]{V
2

U’W (1- V2
U’W )2 }2 

= (1/4)T2  = Mem
2c4/V3

2        ( 78 a);      T/2 = Mem c2/V3   
   ( 78b ); 

T = 2Mem c2/V3     = (q’2/l4)V2
U’W (1- V2

U’W)2             ( 79 );  

We don’t have much choice here if we want to specify V3 . If we are willing to 

believe that V3  = l3  and  q’2/2l  which has the right units is also to be chosen then: 

Mem c
2/l3 = T/2      ( 80);    Mem c2  = (T/2)l3  = (q’2/2l)V2

U’W (1- V2
U’W )  (81 );  write: 

Mem c2/l3  = ρc2  = (q’2/2l4)V2
U’W  (1- V2

U’W )2    = T/2            ( 82) ; 

 The desired em mass density is ρ  . We can also have :                                                                                       

P”em  =      (1/2){[Ɛ2 + B2 ]Uo/c + 2|ƐxB|V^UUo }            (83a); 

W”em    =  (1/2){[Ɛ2 + B2 ]V^UUo   +2|ƐxB|Uo/c }             (83b); 

Fortunately the previous derivations show that 

T” =T   (84a);    M”em   = Mem  (84b)      ;  ρ” = ρ    (84c) ;  V”3  = V3   = l3  (84d); 

We can write: 

2Tij  = ρc2{δij  -2[WiWj/-c2 + V^U’W
i V^U’W

j ]}                (85a);  

2T”ij = ρc2 {δij – 2[Uo
i Uo

j /-c2  + V^WUo
i V^WUo

j ]}         (85b); 



It is worthy of note that  that the  2Pij  terms in eqs85a,85b  can be written  

In terms of null vectors. 

Let V^ = V^U’W   ;  

(Wi/c + V^I )(Wk/c + V^k ) =[Wi Wk /c2 + V^I V^k ] +[ (Wi /c) V^k + (Wk /c) V^I ](86); 

We want to eliminate the second term and get the negative of the first. 

[Wi/c – V^i][Wk/c + V^k ] = [Wi Wk/c2 – V^iV^k ] +[(Wi/c)V^k – (Wk/c)V^i] (87); 

[-Wi/c –V^i][-Wk/c + V^k] =[WiWk/c2 – V^iV^k ] + [(-Wi/c)V^k +(Wk/c)V^I ] (88); 

Adding eqs87 and 88 we get: 

[Wi/c –V^i][Wk/c + V^k]+[-Wi/c –V^i][-Wk/c +V^k] = -2[WiWk/-c2 +V^iV^k ] (89); 

[Wi/c –V^i][Wk/c +V^k]+[Wi/c +V^i][Wk/c –V^k] = -2[WiWk/-c2 +V^iV^k ] (90); 

This is the desired result.  

Let    N++
U’W    = [W/c + V^U’W ]    (91a);    N+ -

U’W = [W/c – V^U’W]  (91b); 

2Tij  = ρc2[δij + Ni ++
U’W Nj + -

U’W + Nj ++
U’W Ni + -

U’W ]       (92); 

N++
WUo

       =[Uo/c + V^WUo ]    (93a);    N+ - WUo     = [Uo/c – V^WUo ]       (93b); 

2T”ij = ρc2 [δij + Ni ++
WUo Nj + -

WUo + Nj ++
WUo Ni + -

WUo ]       (94); 

7 Foliation of hyperboloids of one sheet in Minkowski spacetime.Virtual 

timelike hyperbolic trajectories. 

In the previous sections it was shown that the nonacceleration field represents 

the acceleration term of a geodesic in the tangent space of  a hyperboloid of two 

sheets belonging to a foliation of hyperboloids of 2 sheets in Minkowski space 

time. A virtual motion, from one normal to another, traced a geodesic on a 

hyperboloid of two sheets .It also traced a geodesic in the tangent space of either 

normal. Those are geodesics of the 3dim Klein Ball model of hyperbolic geometry 

in velocity space. The purpose of this section is to show that these geodesics have  



a counterpart in a foliation of Minkowski spacetime by hyperboloids of one sheet. 

Two virtual  timelike hyperbolic trajectories, obtained using an inversion of the 

field,  are connected by the interval of propagation or a projection of it. This gives 

a different way to interpret the way curvature is transmitted from the source 

charge to the field point or the test charge. 

7A Preliminaries. Review of timelike hyperbolic trajectories with constant 

acceleration. 

We have:      u(t)/(1- u2/c2)1/2  = gt  (1) ;  g =     d [dr(t)/dτ]/dt   (2); 

τ is the proper time. g is a constant of the motion. The motion is rectilinear.Let 

the initial time ti = 0; the initial 3 velocity ui = 0;  

g=  [u(t)/t]/(1- u2/c2)1/2   (3);  for all t’s including the initial time.We will be mostly 

interested in the various quantities evaluated at the final time tf .In particular  

g = uf (tf)/(1- uf
2/c2)1/2     (4);   from eq1, it is easy to see that : 

[1/(1- u2)1/2  ]  =  [1+ (gt/c)2 ]1/2   (5);   u(t)  = gt/[1+ (gt/c)2 ]1/2  (6) ; 

Let a = du/dt = d2r/dt2  be the 3 acceleration. From eq6 we get: 

 a(t) = gt/[1+ (gt/c)2]3/2  (7);  the initial acceleration ai =0. 

We will be interested in the final acceleration af = gtf/[1+ (gtf/c)2]3/2  (7a); 

We can express a in terms of u.           a(t) =  (u(t)/t)[1- u2/c2]    (8); 

Eq8 is the important formula. We will be mostly interested in 

a(tf ) = (uf/tf)[1- uf
2/c2]  (8a); 

since  u= dx/dt   (writing x(t) instead of r(t) ). 

dx(t)/dt = gt/[1+ (gt/c)2]1/2  .  x(t) = (c2/g){[1 + (gt/c)2]1/2 -1} (9);   eq9 implies that 

the initial position xi  =0; 

from eq9 we have:          [1 + (g/c2)x(t)] = [1 + (gt/c)2 ]1/2    (10); 



[1 +(g/c2)x ]2 = [1 + (gt/c)2]    (10a);    [1+ (g/c2)x ]2 – (gt/c)2  = 1   (10b) ; 

coshθ =   |[1 + (g/c2)x ]|          (11a) ;          sinhθ   =  [ gt/c ]   (11b) ;  

we can also have :          x2 – (ct)2  =  (c2/g)2   (12a);  

(gx/c2)2 – (gt/c)2  = 1     (12b);    (gx/c2)2  = [1+ (gt/c)2]     (12c); 

[gx/c2 ]  =  [1 + (gt/c)2 ]1/2    (12d);         eqs12a  to 12d  imply  xi = c2 /g  .  

We can also set , using eq12b.   gx/c2 = coshθ’   (13a) ;  (gt/c) = sinhθ’ (13b); 

Since coshθ’  > or = to 1,   x > or = c2/g   which is consistent.  We also have: 

x = (c2/g)coshθ’  (13c);   ct = (c2 /g) sinhθ’  (13d); 

7B Identifying the elements of the trajectories. 

Fij = (q’/l2)[(W/c)x VU’W/c]ij (1- V2
U’W/c2) = q’[(W/lc)x (VU’W/lc)](1- V2

U’W/c2]ij (14a); 

Similarly : Fij = -q’[(U’/lc)x VWU’/lc]ij(1- V2
WU’/c2) (14b); 

We recognize the expressions as familiar from the previous subsection. 

Let    αw  /c2  =     (VU’W/lc )(1- V2
U’W/c2)         (15a); 

And   αu’ /c2  =     (VWU’/lc)(1- V2
WU’/c2)          (15b);  

Compare eqs 15a and 15b with eq8a  for af i.e.  af/c2 = (uf/ctf )(1- uf
2/c2) (15c); 

We identify     ctf  = l    (16a);  uf  = VU’W  (16b); in eq15a.  uf = VWU’  (16c); in eq 15b. 

And  af  = αw   (17a) ; in eq15a.        af = αu’    (17b);  in eq15b. 

We also have    ui  = VWW  = 0  (18a);  in eq 15a.  ui = VU’U’ =0 (18b); in eq15b. 

To get ai  =0 simply put VWW in eq15a and VU’U’  in eq 15b. Therefore: 

(  αwi  )= (  αu’i  ) = 0  (18c);   note that the two   α ‘s have the same magnitudes 

but different directions.  We have identified a timelike hyperbolic motion in 

projective form hidden within the nonacceleration field. 



ctf  =  l  ;     tf  =l/c   (19);   finally  

g/c2 = (VU’W/lc)/(1- V2
U’W/c2)1/2 = sinhθU’W V^U’W /l   (20a); 

or  g/c2 = (VWU’/lc)/(1- V2
WU’/c2)1/2  = sinhθWU’V^WU’ /l  (20b);   

7C Constructing the  timelike hyperbolic motions of the foliation.  

Eqs 12c,13a,b  which describe hyperbolic motion involve c2/g .We will use a 

Rindler-like coordinate system. (refs8,9)   

We want timelike hyperbolic trajectories, which are part of a foliation, with the 

following properties.The virtual motion from W to U’ or from U’ to W will be 

described on the hyperboloid of one sheet as initial and final unit tangents during 

the virtual motion.The tangents of the hyperboloid of two sheets become the 

normals of the hyperboloid of one sheet. The hyperbolic angle traversed will be 

the same for both types of hyperboloid.To find the radius of each of the two 

timelike hyperbolic motions ,which are two geodesic segments of two 

hyperboloids of one sheet ,is not obvious and requires subtle maneuvering. 

Another requirement is that we should have the interval of propagation E connect 

one hyperboloid at 4 position R’(τ’) of charge q’ to another hyperboloid at  

position R of the field point or R(τ) of a test charge q.This is possible in the rest 

frame of q’.In general,it is not possible. 

Since the field only involves the starting and ending points of each entities and 

not the details of the virtual motion we will write θf  instead of θU’W  or θWU’ . 

Fij = q’[(W/lc)xV^U’W  tanhθf/lcosh2 θf ]ij      (21a); 

-Fij  = q’[(U’/lc)x V^WU’ tanhθf /lcosh2 θf ]ij    (21b);  

 We have only distributed the 1/l term among the two directions ,one timelike 

and the other spacelike in each eq. It turns out that the physical meaning of the 

trajectories as viewed from U’, the rest frame of q’, is much easier to understand 

than those in the rest frame of the influence,i.e. W. Eq21b is the best to start 

with. We begin with inversion of Fij .Notice the minus sign.It is easier to work 

with.We invert without changing the directions. 



-Fij
inversion = (1/q’)[(lU’/c)x V^WU’ lcosh2 θf /tanhθf ]ij  (22a); 

Fij
inversion   = (1/q’)[(IW/c)x V^U’W lcosh2 θf /tanhθf ]ij   (22b); 

-Fij
inv  =  -Fij/[(-1/2)FmnFmn ]   (23a);      Fij

inv  =  Fij /[(-1/2)FmnFmn]   (23b); 

We could use eqs22a,b to obtain a hyperbolic trajectory which would have a 

radius of lcosh2 θf/tanhθf   with initial tangent U’/c or W/c and final tangent W/c 

or U’/c respectively and with the initial unit normal V^WU’  or V^U’W  

respectively.The problem with that is we want two hyperbolic tractories,one for 

the origin of the influence at q’, the other for the field point or the test charge 

receiving the influence.The only exception is in the case of self effects,in that case 

only one trajectory is needed in general because one part of the trajectory 

influences the other part via the ray of influence.We also want the times [E.U’/-c] 

i.e.  c(t-t’) to be somehow  involved in the duration of the hyperbolic motions. 

Try to distribute the two terms in a different way namely: 

Fij  = q’[(W/clcoshθf)x V^U’W (tanhθf/lcoshθf)]ij     (24a); 

-Fij = q’[(U’/clcoshθf)x V^WU’(tanhθf/lcoshθf ]ij       (24b); 

 

-Fij
inv  = (1/q’)[lcoshθf U’/c x (lcoshθf/tanhθf)V^WU’  ]ij    (25a); 

Fij
inv  = (1/q’)[Icoshθf W/c x (lcoshθf/tanhθf)V^U’W ]ij      (25b); 

Note that      lcoshθf  = [E.U’/-c]  the covariant form of c(t-t’).This will turn out to 

be the correct way to get the desired trajectories. 

7D Setting up to construct the needed trajectories.   a) point of view of q’. 

We will start with the trajectories as viewed from the source charge q’. 

Take a point O as an origin. Use the label Rc  to describe O. C means center. 

Rc  will be the center of the foliation of hyperboloids of one sheet.Let the vertical 

axis be in the direction U’/c which will also be the initial unit tangent of all the 



hyperboloids. U’/c  represents the initial unit tangent Uhi/c of the foliation.Only 

the future oriented part of the hyperboloids will be needed.The horizontal axis 

will be in the direction of the unit spacelike vector V^WU’ .This unit vector is the 

initial spatial direction ahi^ of the foliation. It is the direction of the initial 4 

acceleration of the virtual motion for the entire foliation.The final spatial direction 

will be labeled ahf^ . It is also the same for all members of the foliation. 

Remember that   -V^U’W  =   ahf^  ; since –V^U’W  is confusing to use, better use 

ahf^.We now have the center,the horizontal and vertical axes.The angle between 

the initial horizontal axis and the final axis is θf  for the entire foliation.This looks 

very similar to a Rindler coordinate system but it is used in a different way.The  

inverse of the acceleration g/c2 will be the radius of the first trajectory.The second 

trajectory will use the inverse of a g*/c2 acceleration, the third trajectory will use 

g**/c2,the 4th will use g***/c2 and so on. The following list will be used. 

g/c2 = sinhθf/l;  g*/c2 = tanhθf/l ; g**/c2 = tanhθf/lcoshθf    (26a,b,c); 

g***/c2 = tanhθf/lcosh2θf  (26d);  The accelerations remain constant throughout 

the virtual motions from initial to final. The absolute values of the g’s are used. 

The radii will be the inverses of these gs. Let Rhi ,R*hi ,R**hi ,R***  the initial 

position of the 1st, 2nd,3rd,4th ,hyperbola respectively all on the horizontal axis. 

c2/g  = l/sinhθf ; c
2/g* = l/tanhθf ; c

2/g** = lcoshθf /tanhθf ; (27a,b,c);               

 c2/g*** = lcosh2θf/tanhθf  (27d); 

We have:        |Rhi –Rc |= l/sinhθf ;        |Rhi* –Rc |= l/tanhθf  ;     (28a,b); 

|R**hi  -Rc |= lcoshθf /tanhθf;  |R***hi –Rc |= lcosh2 θf/tanhθf ;   (28c,d);  

We have omitted the directions in eqs28a,b,c,d .They are all in direction V^WU’ . 

|Rhf – Rc |= l/sinhθf ; |R*hf – Rc | = l/tanhθf  ;         (29a,b); 

|R**hf – Rc | = lcoshθf /tanhθf ; |R***hf – Rc | = lcosh2 θf /tanhθf ;    (29c,d); 

Eqs29a,b,c,d are all in the same direction a^ hf  = - V^U’W  (30a); 



as was mentioned before.    a^hf    = [sinhθf a^hi + coshθf U’/c]   (30b); 

 a^hi  = V^WU’    (30c); as was also mentioned before.We now need the coordinate 

times during which the virtual motions occur on the vertical U’ axis. 

Let   Thf  be the final time and Thi be the initial time for the first hyperbola.Let the 

symbols *,**, *** refer to the times of the 2nd,3rd,4th, hyperbolas respectively.The 

difference in time during which the virtual motion last for the first hyperbola.  

Thf – Thi = Tfi  (31);   we have: 

cTfi  = l ;  cT*fi  = lcoshθf ; cT**fi   = lcosh2 θf  ; cT***fi  = lcosh3 θf ; (32a,b,c,d); 

We notice that the times are stretched by the factor coshθf .The proper times of 

each hyperbola are obtained from the relation: 

Θ = (g/c)τ   (33); so   cτfi  =  [l/sinhθfi ]θf ; cτ*fi = [l/tanhθf]θf ; 

   cτ**fi  = [lcoshθf /tanhθf]θf ;   cτ***fi = [lcosh2 θf /tanhθf]θf  ;etc. (34a,b,c,d). 

It may seem strange to use a radius such as lcoshθf /tanhθf  as a constant radius 

since it is a function of θ but there is no problem. During the virtual motion,we 

have: cτ = [lcoshθf /tanhθf ]θ  (35) ; and so on. We vary τ and θ but not coshθf or 

tanhθf .  We notice that the proper times are also stretched by the factor coshθf . 

This is suggestive of red shifts or something akin to it. 

We still don’t know where to put the source charge, on which hyperbola, nor do 

we know on which hyperbola to place the field point or the point charge. We only 

know that they must be connected by the ray of influence E = lW/c. The answer is  

not difficult to find. Try    R*hf – Rhi  . 

R*hf – Rhi = [R*hf – Rc]- [Rhi – Rc ]. (36);        [Rhi –Rc ] = [l/sinhθf]V^WU’  (36a); 

[R*hf – Rc ] = [R**hi  - Rc ] + [lcoshθf ]U’/c   

= [lcosh θf /tanhθf ]V^WU’ +[lcoshθf ]U’/c   (36b); 

[R*hf – Rhi ] = {[lcoshθf/tanhθf  - l/sinhθf ]V^WU’  +[lcoshθf ]U’/c }  (37); 



=  {[lcosh2θf /sinhθf  - l/sinhθf ]V^WU’  + [lcoshθf ]U’/c }  (37a); 

=  [lsinh2 θf /sinhθf ]V^WU’  + [lcoshθf ]U’/c ;   

[R*hf - Rhi ]    =     [lsinhθf V^WU’ + lcoshθf U’/c] =   lW/c  = E           (38)  

This is the desired result. It shows that we must place R’(τ’), the 4 position of 

source charge q’, at Rhi . We must place the field point or the test charge q at R*hf . 

Thus:             R’(τ’) = Rhi      (39a);     R or R(τ) = R*hf   (39b); 

Note that the trajectory is traversed in the time E.U’/-c2 which is what we 

expected. 

7D b)Virtual timelike trajectory construction. Point of view of the ray of influence. 

We have the same construction as before except that the vertical axis is in the 

W/c direction.The initial unit tangent is W/c.The final unit tangent is U’/c.The 

horizontal axis is in the V^U’W direction and is an initial unit  normal to the 

hyperbola.It is also a line of constant initial time. The final normal to the 

trajectories is now in the -V^WU’ direction and is also a line of  constant final time, 

not to be confused with final coordinate time. Time in the Rindler coordinate 

sense.  

We take a center Rc as before. We have the same initial and final angle θf . We 

have the same g, g*,g**,g***,  … divided by c2. We have the same proper times 

τ,τ*,τ**, etc. We have Rhi ,R*hi ,R**hi ,R***hi  whose distances from the center Rc 

are the same as before.Only the direction in the V^U’W. is different. Same thing 

with Rhf , R*hf , R**hf ,etc are the same distance as before, only the final direction 

is -V^WU’ is different. Lastly, the coordinate times during which the various 

trajectories are in virtual motion, Tfi ,T*fi , T**fi , etc. , are the same as before but 

in the direction W/c. This innocuous looking change makes a very big difference 

however, since it makes the physical interpretation difficult. Geometrically 

everything is fine. 

 Possible Interpretations. 1)           use         [Rhi - Rc ] = [l/sinhθf ]V^U’W    (40a); 

 [Rhf – Rc ] = [R*hi – Rc ] + IW/c = [l/tanhθf ]V^U’W + lW/c   (40b); 



The construction requires: R*hi  = R’(τ’)  (40c);  Rhf = R or R(τ)  (40d); 

This means that a virtual trajectory leaves Rhi and arrives at Rhf at coord time l 

Along the V^U’W axis, which is the coord time zero axis, the virtual motion is from 

Rhi to R*hi . At the same time as the first hyperbola leaves Rhi , a second hyperbola 

leaves R*hi  and through a virtual motion reaches R*hf at coord time lcoshθf while 

on the horizontal axis the virtual motion is from R*hi  to R**hi .This means that a 

first hyperbola leave Rhi to influence the field point  or the test charge q at R, 

while at the same time a second hyperbola leaves the position R’ of the source 

charge q’ and arrive at a later coord time , of duration lcoshθf = E.U’/-c ,reaches 

the point R*hf to give exactly the right curvature because 

[R*hf – Rc] = [lcoshθf /tanhθf]V^U’W  + lcoshθf W/c . Such a way for q’ to influence R 

is difficult to understand physically even though it gives something like a correct 

answer.  

2) Observe that if we take the difference     R*hf - Rhi  just as we did in section 7D 

eq 38 except that instead of      lW/c = E , we get lU’/c. We cannot interpret that 

as a ray of influence leaving Rhi  and reaching R*hf having length l because Rhi is not 

R’(τ’) and R*hf is not R. There is no obvious connection with the physics, it is just 

one of the many rays in the foliation. 

3) We could simply choose R’(τ’) = Rhi ;  R= Rhf ;  with  Rhf – Rhi = lW/c .Then there is 

no need for hyperbolas it is just a vertical line of length l, but then E.U’/-c does 

not appear .If we want it to appear we need to take R*hf – R**hi  = lcoshθfW/c.But 

then we can’t identify R’ and R.Without the timelike hyperbolas the connection 

with the field curvatures is also lost. There is no clear way of deciding between 

these possibilities at this time.Only experience with a variety of situations can 

decide. 

  



7D c) Point of view of Uo/c. 

Since W and U’ both lie in the Uo /c, V^WUo   plane it is reasonable to ask whether 

one can form virtual hyperbolic trajectory which might give some sensible results. 

Take the vertical time axis be in the Uo direction and the horizontal axis in the 

direction V^WUo . Let Let the angle be θ and the final angle θf  be θWUo  .Let the 

initial unit tangent be Uo and the final unit tangent be W/c. 

Set the initial hyperbolas be Rhi , R*hi ,R**hi , etc. Let the final positions be as 

before : Rhf , R*hf , R**hf , etc. all at the final time given by the final direction 

 –V^UoW  each taken from a center Rc . The radii are l/sinhθWUo , l/tanhθWUo  , 

lcoshθWUo /tanhθWUo etc. By the same procedure described in section 7D eq 38 

we get:  R*hf – Rhi = lsinhθWUo V^WUo + lcoshθWUo Uo/c = lW/c   (41); 

This is reasonable if we assume that, from the point of view of Uo , Rhi takes the 

place of R’(τ’) and R*hf takes the place of R or R(τ); 

One can be tempted to use the angle θWU’  = θU’Uo – θWUo instead of θWUo  keeping 

the same axes Uo , V^WUo  ,  - V^UoW , as before we get: 

R*hf – Rhi  = lsinhθWU’ V^WUo + lcoshθWU’ Uo/c  (42); this is not lW/c so the 

interpretation does not work. 

It is interesting to derive the following useful formula which gives some insight 

into the situation. We want to show that : 

[(U’/c)x V^WU’]  = [(Uo/c)x V^U’Uo ]   (43); 

Since V^WU’ = [V^U’Uo + (V^U’Uo .U’)U’/c2]/coshθU’Uo   (44); 

[U’/c x V^WU’] = [U’/c x V^U’Uo ]/coshθU’Uo   

= {[sinhθU’Uo V^U’Uo + coshθU’Uo Uo/c]x V^U’Uo }/coshθU’Uo = [Uo/c x V^U’Uo ]; 

So eq 43 is proved. Since V^U’Uo  = V^WUo . We also have: 



[U’/c x V^WU’] = [Uo/c xV^WUo ]  (45);  

7E Inversion of the energy stress tensor. 

 7E a) Various inversions. 

Since  Tij  = [ (-1/2)FmnFmn] δij /2  + Fik Fjk , it is reasonable to define its inversion by 

replacing its Fij with  Finv
ij  = Fij /[(-1/2)Fmn Fmn ]  from eq7.23a . 

Tinv
ij  =  {[(-1/2)FmnFmn ]δij/2 + Fik Fjk } /[(-1/2)FmnFmn]2

     (46); 

Tinv
ij  = Tij /[(-1/2)FmnFmn ]

2  (46a);  since T = (-1/2)FmnFmn  , 

Tinv ij  = Tij/T2  (46b);  The inversion of the field Lagrangian density is 1/T   (47); 

Inversions of the form: 1/|TijU
iUj/c2|, 1/|TijV^iV^j|, 1/|TijV^iUj/c| with V^= V^UoU 

will give the inverse of the energy density or the absolute value of the Poynting 

vector  for example. If we want to impart directions we can use expressions such 

as TijV^UoU j /[TmnV^UoU mUn /c]2 for example. All the projections of Tinv can easily be 

obtained by dividing those of Tij by T2 . The electromagnetic momentum density: 

Pem  = (1/2)[Ɛ2 + B2]U/c + |ƐxB|V^UoU      gives            Pem
inv  = Pem/-Pem .Pem  ;   

Its “dual” Wem gives    Wem
inv = Wem/Wem .Wem .  

Tij
inv  = Tij/T2  = Tij/4ρ2c4    (48);  using eq6.85a .  

Another interesting inverse is :  

[Ɛ2 + B2]/2|ƐxB| = 1/tanh2θUoU  (49); using eqs 6.77a and 77b . 

So      [ tanh2θUoU V^UoU ]inv   =    [1/tanh2θUoU]V^UoU    (50); 

7E b) Generators of inversions. 

Let v be a 3 vector. Its inverse u is given by : u = v/v.v   (51a); 

In components :  ua = va/v.v    (51b) ;     a=1to 3    u^a = v^a   (51c); we can also 

reverse the formulas.     v = u/u.u    (52a) ;   va  = ua/u.u   (52b); we can also write 

u= vinv    (53a);   v = uinv    (53b); 



dua/dvb  = δab/v.v  -2[va vc dvc/dvb]/(v.v)2  ( 54a) ;     dvc/dvb  = δbc   (54b); 

dua/dvb  = δab /v.v   -2vavb/(v.v)2  = [δab – 2v^a v^b ]/(v.v)   (55);  v^ = v/|v|  . 

dua/dvb  = u.u[ δab – 2u^a u^b ] = dva inv/dvb    (56);  

similarly: dva/dub = [δab -2u^au^b]/(u.u)     (57);  u^ = u/|u|. 

dva/dub  = v.v[δab – 2v^av^b ] = dua inv/dub   (58); 

we can easily prove : dua/dvb = dub/dva  (59a);  dva/dub = dvb/dva  (59b); 

We are now ready to generalize these results using projective velocity 4 vectors 

and then compare the results with the expressions for Tij . 

Let V = VU’W  (60a) ;          Vinv  =   VU’W /VU’W .VU’W   (60b); 

 Let       Uij  = [VU’W.VU’W δij – 2VU’W I VU’W j ]/c2  (61) ;       using  K = q’2/[E.U’/-c]4 

2Tij  = KUij   (62);    Uab  = [VU’W .VU’W δab – 2Va
U’W Vb

U’W ]/c2  (63); 

In a frame moving with 3 velocity w eq 63 becomes: 

(Uab)w=0  = [u’.u’ δab  - 2u’a u’b ]/c2   =  (u’.u’)[δab – 2 u’^a u’^b ]/c2   (63a);  

Eq63a is identical with eqs56 and 58.  

 let      Uinv
ij =  Uij /[VU’W .VU’W]2 =  [δij – 2V^i

U’W V^j U’W]/[VU’W.VU’W]                                                       

= [δij  – 2V^inv
iV^inv

j  ]V
inv.Vinv   (64);   Uinv ab = [δab – 2V^a

U’W V^b
U’W/[VU’W.VU’W]  (64a); 

(Uinv
ab)w=0  =  [δab – 2u’^a u’^b ]/[u’u’/c2] =    u’inv.u’inv [δab – 2u’inv

au’inv
b ]/c2    (64b); 

u’inv/c = (u’/c)/[u’.u’/c2]   (64c); 

U4a  = [VU’W.VU’W δ4a - 2VU’W 
4VU’W

a ]/c2    (65);  

(U4a)w=0  =0  (65a);   since both δ4a and VU’W 4 vanish. So (Uinv
4a)w=0  = 0 (65b)  

U44  = [VU’W.VU’W δ44 – 2VU’W 4VU’W 4 ]/c2   (66);  (U44)w=0   = (u’.u’/c2)    (66a); 

Uinv
44 = [δ44 – 2V^U’W 4V^U’W 4]/[V2

U’W/c2]  (67);  (Uinv
44)w=0  = 1/(u’2/c2) (67a); 



So we have an extra term the U44  and its inverse.If we want to get rid of it we 

must multiply by a projection operator. 

Let     hij = [δij + WiWj/c2 ]     (68);  

hijUjk =[δij + WiWj/c2]Ujk = [Uik + (UjkWj)W
i/c2]  (69); 

UjkWj/c = [V2
U’W δjk – 2 VU’W jVU’W k]Wj/c3 = (V2

U’W/c2)Wk /c  (69a); 

UjkWjWi/c2  = (V2
U’W/c2)WkWi/c2    (69b); 

hijUjk ={(V2
U’W/c2)[δik  +WiWk/c2]–2VU’W iVU’W k } (70);hijU

inv
jk = [hijUjk]/(V2

U’W/c2) (70a) 

so we have simply replaced the original delta function by hik . Nothing is changed 

with the spatial components a,b when w=0. Nothing is changed with the 4,a 

comonents when w=0. The 44 components however now give δ44 +icic/c2 =0 so 

we have eliminated the 44 component.  

Tij = (K/2)Uij    (71);  Tinv
ij  = (1/2K)Uinv

ij   (72);  Uij U
inv

jk  = δik  (73a); TijT
inv

jk = δik  (73b); 

hijUjk hklU
inv lm = [(δik  + WiWk/c2) -2V^U’W iV^U’W k][(δkm + WkWm/c2) -2V^U’W kV^U’W m] 

= (δik + WiWk/c2)(δkm + WkWm/c2) = (δim + WiWm/c2)  (73c);     this reduces to δab 

when w=0 as expected. We could of course have used eqs63a and 64b 

[(Uab)(Uinv
bc)]w=0  = (u’.u’/c2)[δab -2u^au^b][δbc -2u’^bu’^c]/(u’.u’/c2) = δac  (74); 

With Tij , V
2

U’W /c2  is replaced by  (V2
U’W/c2)(1- V2

U’W/c2)2  and its inverse for Tinv
ij . 

This means that  eq56    dua /dvb = u.u[δab – 2u^au^b]  should be interpreted  as: 

dua/dvb  = (u’.u’/c2)[1- u’.u’/c2]2{δab – 2u’^a u’^b }  (75);  to make this more clear: 

ϒ = ϒinv/(ϒinv.ϒinv )     (76a) ϒinv = ϒ/(ϒ.ϒ)   (76b);    

ϒ = (VU’W/c)[1- V2
U’W/c2] (76c);  ϒinv = V^U’W/(|VU’W/c|)[1- V2

U’W/c2]  (76d); 

(ϒ)w=0 = (u’/c)[1- u’.u’/c2]   (77a); (ϒinv)w=0  = (u’^/c)/|u’/c|[1- u’.u’/c2]  (77b); 



eq56 becomes   d(ϒ)a
w=0/d(ϒinv)b

w=0  = dua/dvb   (78);   hopefully this makes the 

procedure clearer. If we use VWU’  instead of VU’W  ,u’ is replaced by w, u’^ by w^, 

[δij+WiWj/c2] by [δij + U’iU’j/c2]. 

7F Inverse of the Lorentz force. 

Fi  = qFijUj/c   (79). Finv
i = Fi /F.F  = [FijUj/c]/q[FlmUmFlnUn/c2]  (80); 

Finv
i  = {(qq’/l 2 )|VU’W/c|(1- V2

U’W/c2)coshθuo u V^WUo i }/(F.F)     (81a);  

Finv
i  = V^WUo i /(qq’/l 2)[|VU’W/c |(1- V2

U’W/c2)coshθUoU]    (81b); but 

 [qFijUj/c]/q2[(-1/2)FlmFlm] = coshθUoU V^WUo/(qq’/l2)[|VU’W/c|(1- V2
U’W/c2)]    

(82);  so one must be careful. 

8 The interval of propagation E connects the trajectories of the source charge 

and the test charge for all times.  

8A Some curious projective formulas involving dE/cdτ’ and d(W/c)/cdτ’. 

Let E = R(τ) – R’(τ’)  . Since this formula must be true during the existence of q’ and 

q the proper times must be related. Thus τ’ is a function of τ and vice versa.We 

are interested in taking derivatives of E without changing the length l.We will be 

interested in taking dE/dτ’, dE/dτ , dR/dτ’, dR/dτ , dR’/dτ’, dR’/dτ, dτ’/dτ, 

dτ/dτ’,dW/dτ’, dW/dτ. We will not take second derivatives because they will be 

discussed in a future article on the total field and the acceleration field. 

dE/dτ’ =  [dR/dτ’ – dR’/dτ’]=  [(dR/dτ)dτ/dτ’ – U’]  =  [U(dτ/dτ’) – U’]   (1); 

d(E.E)/dτ’ =  0  = 2E.dE/dτ’ = 2E.[U(dτ/dτ’) – U’]   (2);  E.U(dτ/dτ’) = E.U’  (3); 

dτ/dτ’ = E.U’/E.U   (4);    dτ’/dτ = E.U/E.U’  (4a);       (E.U)dτ = (E.U’)dτ’        (5); 

dE/dτ’ = U[(E.U’)/(E.U)] – U’ =  [U(E.U’) – U’(E.U)]/[E.U]    (6); 

dEi /dτ’ = [Ux U’]ijEj /(E.U) = [(U/c)x(U’/c)]ijEj/(E.U/c2)=[(U’/c)x(U/c)]ijEj/(E.U/-c2) (7); 

with  U’ = [VU’W  + W]/(1- V2
U’W)1/2 and U= [VUW + W]/(1- V2

UW)1/2  eq 7 becomes: 



dEi/cdτ’ = [VU’W  +W]x[VUW +W]ijWj(U’.W/-c2)(U.W/-c2)/(U.W/-c2) (8); 

dEi/cdτ’={[Wx (VUW -VU’W)]ijWj /(1-V2
U’W)1/2  

 + [VU’W x (VUW – VU’W)]ijWj/(1- V2
U’W)1/2 }  ; 

dEi/cdτ’ = [VUW – VU’W]/(1- V2
U’W)1/2   (9);   

d(W/c)/dcτ’ = [VUW – VU’W]/cl(1-V2 
U’W /c2

 )
1/2 (10); 

eq10 is full of hidden meaning as will be explained shortly,but before we derive 

another  equally meaningful equivalent expression. 

(-c2/U.U’)(dEi/dcτ’) = [(U’/c)x (U/c)(-c2/U.U’)]ij (Wj /c) (- c2/U.W)  

= [U’x VUU’]ij Wj /coshθUW  (10);       dEi/cdτ’  = {[U’xVUU’]ijWj }coshθUU’/coshθUW  (11); 

d(W/c)/cdτ’ = {[(U’/c) x (VUU’/c)/lcoshθUW (1- V2
UU’/c2)1/2 ]}ijWj/c      (12); 

eq12 is also filled with hidden meaning. We now proceed to explain. 

Define αuu’
w /c2 (1- VU’W/c2)3/2  = [VUW – VU’W]/cl(1- V2

U’W/c2)1/2  = (dW/c)/dcτ’   (13); 

So   αuu’
w /c2  = [VUW –VU’W](1- V2

U’W/c2)/cl  = (1-V2
U’W/c2)3/2 (dW/c)/dcτ’  (14);                                                           

Eq14 resembles the difference of two geodesic accelerations.The term in VU’W is a 

geodesic acceleration part for the geodesic VU’W . The  VUW  doesn’t have quite the 

right form. 

VUW (1- V2
UW) = VUW (1-V2

UW)[(1- V2
U’W)/(1- V2

UW)]      (15);  

Eq15 is a geodesic acceleration with a “conformal” factor 

 k2     = [coshθUW/coshθU’W]2  (16);     let us go back to eq12. 

Define  : auu’ /c2   = (VUU’/c)/lcoshθUW (1- V2
UU’/c2)1/2   (16); 

d(W/c)/cdτ’  = [(U’/c)x auu’
/c2]ijWj/c = [ αuu’

w
  
/c2]/(1- V2

U’W/c2)3/2 (17); 



we also want to prove:   auu’
/c2 = (1/l){(VUW – VU’W)/c +[(VUW – VU’W).U’/c2  ]U’/c}   

(17a); but first  we explain below the reasons for all these definitions. 

The definitions offered by eq14 and 16 are not arbitrarily given . The true 4 

acceleration    d2R/dτ2 =[a/(1- u2/c2) + (a.u/c2)u/(1- u2/c2)2 ,i(a.u/c)/(1- u2/c2)2 ];If 

we replace u by  VUU’  we get: 

d2R/dτ2 = {[a/(1- V2
UW/c2) + (a.VUW/c2)VUW/(1- V2

UW/c2)2 ] 

+[(W/c)(a.VUW/c) /(1- V2
UW/c2)2 ]}       (18);  this expression cannot be correct since 

a is a 3vector whereas the other terms are 4 vectors which reduce to u and i when 

w=0. We need a covariant generalization of a, a 4 vector which reduces to a when 

w=0. This 4 vector must be orthogonal to W. 

Let  αu
w  be this 4 vector.    It is a  3-acceleration 4 vector! 

d2R/dτ2 ={[ α /(1- V2
UW/c2) + ( α.VUW/c2)VUW/(1- V2

UW/c2)2]  

+ (W/c)[( α.VUW/c)/(1- V2
UW/c2)2]}    (19);  it is not difficult to verify that: 

d2R/dτ2  = [ α +  (α.U/c2)U/c]/(1- V2
UW/c2)   (20);  we have omitted the superscript 

and subscript of α . We could just as easily have used VUU’  and U’ in eqs19 and 20 

with αu
u’ . Using eq 20, it is easy to show that : 

[(U/c)x d2R/dτ2]ijWj/c   =   αu
w/(1- V2

UW/c2)3/2        (21);                                           

d(W/c)/cdτ’  has the form  of eq21 with d2R/dτ2 replaced by auu’
.   See eq17.  To 

be sure that auu’
 represents an acceleration it should also satisfy eq 20 with auu’

w 

of    eq14 inserted in eq20 . It should also satisfy eq 17a. 

VUU’/c = [ euu’
w  +( euu’

w .U’/c2 )U’](1- V2
U’W/c2)1/2        (22a); 

(VUU’/c)/(1- V2
UU’/c2)1/2   = [ euu’

w + ( euu’
w .U’/c2)U’ ][1-VUW.VU’W/c2]coshθUW  

= {(VUW  -VU’W)/c + [(VUW –VU’W).U’/c2]U’}coshθUW         (22b); 



[(VUU’/c)/(1- V2
UU’/c2)1/2]/lcoshθUW =  {(VUW – VU’W)/c + [(VUW –VU’W).U’/c2]U’}/l  

=  [ αuu’
w + ( αuu’

w .U’/c2)U’] /c2 (1- V2
U’W/c2)  = auu’

w /c2   (23);  eq17a is proved. 

The most important thing about section 8 is that if we replace U by a different 

velocity Uh which can be obtained from the total field all the expressions obtained 

thus far are identical to those which relate to the true total field, the true 

acceleration field, the true nonacceleration field.This is strange and must have 

some deep meaning. The full properties of the total field and the  acceleration 

field will be developed in a future article but unexpectedly, they are duplicated 

here by changing Uh into U.  

Before we proceed further, we want to prove an interesting formula namely: 

( euu’
w ) = [ l( αuu’

w /c2)/(1- V2
U’W/c2)][coshθUW coshθU’W]/coshθUU’ ]        (24); 

 d(W/c)/dcτ’ = {[VUW – VU’W]/cl}coshθU’W = [coshθUU’/lcoshθUW ]( euu’
w )  (25); 

d(W/c)/dcτ’ = ( αuu’
w/c2)cosh3 θU’W  = [coshθUU’/lcoshθUW]( euu’

w )          (26); 

( αuu’
w /c2)cosh2 θU’W  = [coshθUU’/lcoshθU’W coshθUW]( euu’

w ) (27); same as eq24. 

8B  Field like entities.Geodesic accelerations. 

Define:       Ftotal  uu’
ij   =  (q’/l2)[(W/c) x(VUW /c) (1- V2

U’W/c2)]ij   (28a); 

                    Fnonacc  uu’
ij  = (q’/l2)[(W/c) x(VU’W/c)(1- V2

U’W/c2)]ij    (28b); 

                    Facc uu’
ij      = (q’/l)[(W/c) x( αuu’

w/c2)]ij                      (28c); 

These definitions,as explained before,are made because they have exactly the 

same form as the real total field,nonacceleration field and acceleration field. 

Ftot uu’
ij – Fna uu’

ij  = Facc uu’
ij    (30); can be rewritten as: 

(q’/l2 ){(W/c) x[(VUW – VU’W)/c](1- V2
U’W/c2)}ij  = (q’/l)[(W/c)x( αuu’

w/c2)]ij  (31); 

This is a fundamental relation when dealing with the real fields. 



The moment of dE/dcτ’ is: 

[Ex dE/dcτ’]= l2[(W/c)xd(W/c)/dcτ’]=l2[(W/c)x(VUW –VU’W)/lc]coshθU’W   

=[(W/c)x(VUW  -VU’W)/c]lcoshθU’W                                  (32); 

[ExdE/dcτ’](-c/E.U’)3 =(1/l2)[(W/c)x(VUW –VU’W)/c](1- V2
U’W/c2) 

= (1/l)[(W/c)x ( αuu’
w /c2)]                                            (33) ; 

q’[ExdE/cdτ’](-c/E.U’)3  = Ftot uu’
ij  - F

na uu’
ij  = Facc uu’

ij    (34); 

These remarkable formulas show that something deep is going on and the 

importance of taking moments.It suggests that something similar might be 

possible with the true fields but it is not yet clear .   We have: 

Ftot uu’
ij = [q’/(-c/E.U’)2] [(W/c)xVUW/c]ij = q’(-c/E.U)2[(W/c)xVUW/c](E.U/E.U’)2  (35a); 

The geodesic acceleration term is (q’/l2)(VUW/c) (1- V2
UW/c2) times the factor 

(E.U/E.U’)2 .That factor shows that it does not lie on the same hyperboloid of two 

sheets as the non acceleration field.Apparently, the acceleration field makes it 

jump to a new member of the foliation as well as changing its plane from WxVU’W  

to Wx VUW .    

Fnonacc uu’
ij = q’(-c/E.U’)2[(W/c)x (VU’W/c)]ij    (35b)       also given by      (28b); 

Note that        Fna
ij  = Fnonacc uu’

ij       (36);   the two fields are identical!  Only the total 

field and the acceleration field differ from the real ones .  

There is another geodesic and therefore a geodesic acceleration that we need to 

deal with.  VUU’  and (U’x VUU’ ) should give rise to another field FUU’. 

FUU’
ij  =  (q’/l2)[(U’/c)x (VUU’/c)(1- V2

UU’/c2)]ij      (37); eq37 is different from the 

total,acceleration or nonacceleration fields but it does represent a geodesic 

acceleration.It does have a counterpart with real fields when U is replaced with 

Uh.It plays an important part which will be explain in the future. It is interesting to 

project eq37 in the U direction as we did to get the Lorentz force.The problem is 

very different however. 



FUU’ijUj/c = (q’/l2)[tanhθUU’/cosh2θUU’][(U’/c)(V^UU’.U/c)+(U’.U/-c2)V^UU’]I   (38); 

It brings the geodesic acceleration in a direction in the U’ , V^UU’ plane orthogonal 

to U. Doing the same thing to Ftot uu’
ij and Fna uu’

ij  give similar results. 

Ftot uu’
ijUj/c = (q’/l2)[tanhθUW/cosh2θU’W][(W/c)(V^UW.U/c)+(W.U/-c2)V^UW]I  (39); 

Fna uu’
ijUj/c  = (q’/l2)[tanhθU’W/cosh2 θU’W][(W/c)(V^U’W.U/c)+(W.U/-c2)V^U’W]I  (40); 

Eq40 times q is of course the real Lorentz force.We also have from previous 

sections. 

Fna
ijUj/c  =(q’/l2 )(eu’w

u )i/cosh2θU’W = (q’/l2)[tanhθU’W/cosh2θU’W]coshθUoU V^U’Uo ; 

So:    [(W/c)(V^U’W.U/c)+(W.U/-c2)V^U’W]=coshθUoU V^U’Uo  (41);  

Since (Wx V^U’W ) =(UoxV^U’Uo] and V^U’Uo .V^UUo =0, eq 41 is easily proved as we 

showed previously.          We can also project  Facc uu’
ij.  : 

Facc uu’
ijUj/c = [(αuu’

w/lc2)][(W/c)(αuu’
w ^.U/c)+(W.U/-c2)(αuu’

w^)]I (42); 

It is possible to simplify many results by projecting W onto the U,U’ plane to get a 

new 4 velocity U*o  which must not be confused with Uo which is the projection of 

U onto the U’, W plane as discussed in the previous sections. 

8C Virtual timelike hyperbolic trajectories in the U,U’ plane. 

The Rindlerlike construction will be a little different than in the previous 

sections.We take the center O of the coordinate and call it Rc . The vertical time 

direction will be in direction U’/c.The horizontal spacelike direction will be 

V^UU’.The final spacelike direction will be in the direction –V^UU’  and represent a 

line of final equal time whereas V^UU’  represent a line of initial time.The initial and 

final lines will make an angle θUU’  between them. U’ will be the initial tangent to 

the timelike hyperbolas of the foliation.U will be its final tangent. V^UU’ will also 

represent the initial 4acceleration unit 4 vector  auu’
^ , -V^U’U  will be the direction 

of the final acceleration unit 4vector.The angle θUU’ is labeled using the initial and 

final 4 velocities tangents instead of the angle between the initial and final 



acceleration unit 4 vectors.Both angles are the same. The accelerations are 

normal to the timelike hyperbolas of the foliation.The first hyperbola will start at 

a position Rhi on the V^UU’  ,a distance c2/( auu’
) from the center Rc. 

|Rhi – Rc |= c2/|auu’
| = lcoshθWU/sinhθUU’  (43);  Rhi =R’(τ’)  (44); 

the final position on this hyperbola is labeled Rhf .|Rhf –Rc| =|Rhi –Rc|(45); the 

coordinate time difference  is :         c(Thf – Thi)= lcoshθWU = E.U/-c (46) ; the second 

hyperbola will start at position R*hi  and end at R*hf .We want the interval of 

propagation to start at R’ = Rhi .Can the interval end at R*hf ? No! this is because E 

does not necessarily lie in the U, U’ plane (which is the U’, V^UU’  plane).What we 

need is the projection of E onto the U’,V^UU’ plane. 

Let Tuu’ = (E.V^UU’)V^UU’ + (E.U’/-c)U’/c      (46a);  the position R(τ) is projected to 

the point R*hf. We have:  Rhi – Rc + Tuu’ = R*hf - Rc     (46b);   E = Tuu’ +Duu’  (47);    Duu’ 

is perpendicular to the U’, V^UU’  plane. The coordinate time difference of R*hf – Rc  

must be:     c(T*hf – T*hi) = (E.U’/-c)   (48);      |R*hi –Rc| = |R*hf – Rc| (49); the ratio  

(E.U’/-c)/(E.U/-c) = k = coshθU’W/coshθUW    (50);     |R*hi – Rc|/|Rhi –Rc| =k  (51)  

|R*hi –Rc|= k|Rhi –Rc|= [(E.U’/-c)/(E.U/-c)][(E.U/-c)/sinhθUU’]=(E.U’/-c)/sinhθUU’(52) 

the acceleration at the second trajectory is: |auu’
*/c2| = sinhθUU’/(E.U’/-c ) (53a); 

at the first trajectory as we know, it is:   |auu’
/c2| = sinhθUU’/(E.U/-c)   (53b);again, 

the reason for going through all these tedious steps is because the true total field 

and acceleration field will require them. 

8D New 4 velocity U*o  from projecting W onto the U, U’ plane. 

This new 4 velocity will simplify the results in the same way as the projection of U 

onto the U’,W plane which gave us Uo .It turns out that it is also closely related to 

the virtual timelike hyperbolas of the previous subsection. 

d(W/c)/cdτ’ = [VUW –VU’W]coshθU’W/cl = ( αuu’
w/c2)/(1- V2

U’W/c2)3/2   

=[coshθUU’/lcoshθUW]( euu’
w )  ;     using eq24,25. A unit vector in the direction of 

dW/dcτ’ which is in direction of unit vectors  αuu’
w ^  = euu’

w ^ . We will have: 



VUW perp = VU’W perp = VU*o W  (54); VU’W par =U’/coshU’W – U*o/coshθU’U*o  (55); 

Since     coshθU’W  = coshθU’U*o coshθWU*o  (56); because VU’U*o.VWU*o  =0 (57); 

We obtain :  VUW par = [VU’U*o/coshθWU*o ]  (58); in the same way:                                          

coshθUW  =coshθUU*o coshθWU*o  (59); VUW par = VUU*o/coshWU*o  (60); 

The unit vectors V^UU*o = V^U’U*o = αuu’
w ^ =  euu’

w ^ = euu’
u*o ^   (61); 

d(W/c)/dcτ’ = [VUU*o – VU’U*o ]coshθU’U*o coshθWU*o/lc coshθWU*o   (62a); 

d(W/c)/cdτ’ = [VUU*o – VU’U*o]/cl(1- V2
U’U*o/c2)1/2  (62b); 

d(W/c)/dcτ’ = [tanhθUU*o – tanhθU’U*o]V ^U’U*o/l(1- V2
U’U*o/c2)1/2   (62c) 

 d(W/c)/dcτ’   = {tanh(θUU*o-θU’U*o)V^U’U*o [coshθUU’/lcoshθUU*o]}  (63); 

The accelerations yield important results. 

(auu’
w/c2) = [ αuu’

w/c2 + ( αuu’
w .U’/c2)U’]/(1- V2

U’W/c2)  

= [ αuu’
U*o /c2 +( αuu’

U*o .U’/c2)U’]/(1- VU’U*o/c2)  (64); 

[(U’/c)x ( auu’
w/c2)]ijU*o j/c =[(U’/c)x ( αuu’

w/c2)/(1- V2
U’W/c2)]ijU*o j/c 

= [(U’/c)x ( αuu’
u*o/c2)/(1- V2

U’U*o/c2)]ijU*o j/c   (65); 

Using U’ = (VU’U*o  + U*o)coshθU’U*o  and the fact that VU’U*o  is parallel to ( αuu’
w)  

[(U’/c)x ( αuu’
u*o/c2)/(1- V2

U’U*o/c2)]ijU*o j/c = ( αuu’
u*o/c2)i /(1- V2

U’U*o)3/2  (66); 

[(U’/c)x ( αuu’
w/c2)/(1- V2

U’W/c2)]ijU*o j/c = ( αuu’
w/c2)cosh2 θU’W coshθU’U*o  (67); 

( αuu’
u*o/c2)cosh3θU’U*o = ( αuu’

w/c2)cosh2θWU*o cosh2θU’U*o coshθU’U*o    (68); 

( αuu’
w/c2)cosh2θWU*o    = ( αuu’

u*o/c2)     (69);   note that coshθU*o W is a constant 

during the virtual motion from U’ to U along the straight line in the direction 

V^U’U*o   which is perpendicular to V^U*o W.Multiplying eq69 by cosh2θU’U*o  we get: 



( αuu’
w/c2)/(1- V2

U’W/c2)   =  ( αuu’
u*o/c2)/(1- V2

U’U*o/c2)      (70); 

This is an important formula.As in the previous section with Uo  the angle 

θUU’  = θUU*o – θU’U*o      (71);  |VUU’/c| = | euu’
u*o| (72);  

|VUU’/c|coshθU*o W   = | euu’
w|  (73);  we are now able to understand the virtual 

trajectories in the U’, V^UU’ . The projection of W perpendicular to the U,U’ plane 

which is of course the U’, V^UU’  plane is in the direction U*o as mentioned 

previously.The projection is: TUU’ = (E.V^UU’)V^UU’ +(E.U’/-c2)U’ eq45. 

TUU’ = lcoshθU*oW U*0/c   (74a);DUU’ = lsinhθU*o W V^WU*o   (74b); 

E= l[sinhθU*oWV^WU*o  +coshθU*oW U*o/c ]      (74c);  

The meaning of  TUU’ + DUU’ = E  of eq47 is therefore clarified. 

8E Virtual timelike trajectories in the U,W plane for the total field Fuu’tot
ij . 

Until now, we have dealt only with virtual trajectories in the U’,W plane or in the 

U’,U plane and while the ray of influence did not necessarily connect with the 

trajectories,at least the ray started in the present and ended in the future.In the 

U’,W plane for example it left the point charge q’ at R’ to influence a future field 

point R or a test charge q at R. The trajectory that we want to describe now have 

a different character because from the point of W, U is into its future, i.e the 

influence of q’ issuing from W reaches q at U in the future of W . From the point 

of view of U (charge q ), W is in its past,coming from charge q’ in its past.The 

formalism,however makes no distinction as we will presently show,so describing 

the trajectories correctly is delicate.There is also a problem arising from the 

conformal factors which appear. 

Fuu’ tot
ij =  (q’/l2)[WxVUW (1- V2

U’W)]= -(q’/l2)[UxVWU (1- V2
WU’)]     (75); we will only 

deal with the right hand side of eq75 and only describe the virtual hyperbolas 

from the point of view of q at U and not the first term on the left of eq75. 

Fuu’ tot
ij = (-q’/l2)[UxVWU (1- V2

WU)(1- V2
WU’)/(1- V2

WU)]  (76); 



Let    k = coshθWU’/coshθWU   (77a);     let l* = kl              (77b); 

Fuu’ tot
ij = (-q’/l*2)[UxVWU (1- V2

WU)]           (78);        eq78 has the same form as that 

of the nonacceleration field Fna
ij  whose trajectories were discussed in detail 

earlier.The nonacc field had U’ instead of U and l instead of l*.We do not 

necessarily imply that l is transformed into l*, rather it should conservatively 

looked at as a gimmick to get eq78 to resemble the eq for the nonacc field whose 

trajectories we know how to obtain and interpret physically.The absorption of the 

conformal factor into l makes it more difficult to interpret because E=lW/c . 

E* = l*W/c   (79); cannot really be interpreted as beginning at R’ and ending at 

R.The second problem has already been mentioned, the fact that U must look 

back at q’ via –E or – E* . There is also the – sign in front of q’. We will ignore all 

these problems and use the same procedure as for the nonacc field.We will see 

how we can adjust, later.  

Take the vertical time axis in the U direction and the horizontal initial time 

direction as VWU^. Take a center Rc as the origin along the horizontal VWU^ 

direction. The final direction will be in the –VUW^ making an angle θWU with VWU^. 

The angle θWU will be the final angle θf   of the trajectory. The initial tangent to the 

hyperbola of the foliation is U/c.The final tangent is W/c.The initial unit normal to 

the hyperbolas is VWU^ .The final unit normal is –VUW^. The motion on the first 

hyperbola starts at Rhi on the horizontal axis and ends at Rhf on the –VUW^ axis.The 

motion on the second starts at R*hi ends at R*hf.The motion on the 3rd starts at 

R**hi ends at R**hf  etc.We have using the results for the nonacc field: 

|Rhi –Rc| = l*/sinhθf  (80a); |R*hi –Rc| = l*/tanhθf (80b); 

|R**hi –Rc| =l*coshθf/tanhθf  (80c);  l*W/ c = l*[sinhθfVWU^ +coshθf U/c] (81); 

The coord time differences along the vertical U/c axis  are : 

 cTfi  = l*  (82a); for the 1st hyperbola. cT*fi = l*coshθf (82b); eq81 shows that this is 

the time needed and it occurs at the second trajectory, but at T*initial the 3rd 

trajectory starts at R**hi on the horizontal axis. We have: 

(R**hi -Rc )-(Rhi-Rc)= [l*coshθf/tanhθf – l*/sinhθf ]V^WU = l*sinhθfV^WU     (83); 



From which we get: [R*hf –Rhi ]=[l*sinhθWU V^WU + l*coshθWU U/c] = l*W/c   (84); 

This shows that the trajectory starts at Rhi and ends at R*hf but we cannot equate 

the start Rhi with R’ and R*hf with R as was the case with the non acceleration 

field.To take into account that U sees W as in its past not its future, it seems that 

we should reverse the trajectories. In other word put –U/c for the initial tangent,    

-W/c  for its final, -V^WU for the initial unit normal.V^UW for the final unit 

normal.Put –Rhi ,-R*hi , -R**hi ,-Rhf ,-R*hf , etc. The times Ti ,T*I,T**I ,would be less 

negative than the Tf , T*f ,T**f ,etc.Whether this is correct will require more 

experience with the various trajectories.We are dealing with various 

reflections.We will not discuss the proper times or other aspects in order not to 

lengthen this article unduly. 

8F The “conformal” 4 velocity U* = kU and Fuu’ tot
ij . 

Fuu’ nonacc
ij = Fna

ij  = [q’/(E.U’/-c)3][ExU’/c]ij  ; 

Fuu’ acc
ij =(q’/l)[(W/c)x ( αuu’

w/c2)] =[q’/(E.U’/-c)3][ExdE/cdτ’]ij   (85); 

We want to put the total field in a similar form. 

Fuu’ tot
ij = [q’/(E.U’/-c)2][(W/c)xVUW] =[q’/(E.U’/-c)2][(W/c)xU/c]/coshθUW  

=[q’/(E.U’/-c)2][(W/c)x(U/c)/coshθU’W](coshθU’W/coshθUW) 

=[q’/(E.U’/-c)3][ExkU/c]ij  (86);   

k= [coshθU’W/coshθUW] eq 77a is the conformal factor that was used in the 

definition of  l*=kl, in the previous subsection when we discussed the hyperbolic 

trajectories.        Set        U* =kU (87);    we get for     Fuu’ tot
ij= Fna

ij +Fuu’ acc
ij 

[q’/(E.U’/-c)3][ExU*/c]= [q’/(E.U’/-c)3][ExU’/c]+[q’/(E.U’/-c)3 ][ExdE/cdτ’] (88); 

We can set : U*/c= [U’/c + dE/dcτ’]   (89);  

Since dE/cdτ’ = (U’/c)x(auu’
/c2)ijEj       =   [(E.auu’

/c2)U’/c +(auu’
/c2)(E.U’/-c)] ; 

U*/c = U’/c + [(E.auu’
/c2)U’/c + (auu’

/c2)(E.U’/-c)]  (90);   E.U* = E.U’  (91); 



The purpose of this exercise is to show that we get exactly the same form with 

these new fields as we get with the real total and acceleration field as was 

mentioned before.Now we have the exact equations.We only need to substitute a 

4 velocity U’h for U, and put the real  4 acceleration a’ of q’ and the generalization 

of the real 3 acceleration a’(t’) instead of  αuu’
w/c2  . Deriving U’h from the real 

total field, however is tricky and will be done in the next article. 

8G  dE/dcτ .     It is not necessary to redo all the previous calculations.It suffices to 

use the relation dE/cdτ = (dE/cdτ’)dτ’/dτ =(1/k)dE/cdτ’ with k=E.U’/E.U 

=coshθU’W/coshθUW .From eq8.85 : 

Fuu’ acc
ij = [q’/(E.U’/-c)3][ExdE/dcτ’]; 

[q’/(E.U’/-c)3][ExdE/cdτ] = (1/k)Fuu’ acc
ij        (92); to be consistent we must take 

(1/k)Fuu’na
ij = (1/k)Fna

ij =[q’/(E.U’/-c)3][Ex(1/k)U’/c]ij    (93); 

(1/k)Fuu’tot
ij = [q’/(E.U’/-c)3][ExU/c]ij     (94);     we have used eq8.86. 

(1/k)Fuu’acc
ij =     (1/k) Fuu’tot

ij – (1/k)Fuu’na
ij     (95); 

[q’/(E.U’/-c)3][ExdE/cdτ] = [q’/(E.U’/-c)3][ExU/c]- [q’/(E.U’/-c)3][Ex(1/k)U’/c] (96); 

This is the desired formula.Remember that dE/cdτ =[VUW –VU’W]/c(1-V2
UW/c2)1/2 

We can recalculate all the entities discussed in the previous subsection from 

that.There are a few more things worth noting. 

dτ’ =(1-v’2/c2)1/2dt’  and  dτ= (1-v2/c2)1/2dt can be generalized. 

Let     dτ’=(1-V2
U’W)1/2dTu’w   (97a);   dτ = (1-V2

UW/c2)1/2dTuw  (97b); 

coshθU’Wdcτ’ = cdTu’w    (98a);    coshθUWdcτ = cdTuw    (98b); 

dE/coshθU’Wdcτ’ = dE/cdTu’w = (VUW –VU’W)/c   (99a); 

dE/coshθUWdcτ = dE/cdTuw  = (VUW – VU’W)/c    (99b); dTu’w =dTuw (100); 

d(W/c)/cdTu’w = d(W/c)/cdTuw =(VUW-VU’W)/cl =( αuu’
w/c2)/(1-V2

U’W/c2)(101); 



One can obtain the LW potential. 

dR’/dcTu’w = (dR’/cdτ’)(dτ’/dTu’w)= (U’/c)(-c2/U’.W)  (101a); 

(q’/l)dR’/cdTu’w =q’(U’/c)/(E.U’/-c)= -q’[U’/E.U’]=ALW  (101b); 

dR/cTuw  = (dR/cdτ)(dτ/dTuw) = (U/c)(-c2/U.W)          (101c); 

(q/l)dR/cdTuw = q(U/c)/(E.U/-c) =-q[U/E.U] = ALW
u   (101d); 

We will not discuss the 2nd derivatives d2E/dτ’2,d2E/dτ2,d2E/dτdτ’ because the 4 

accelerations of q and q’ are entangled in a complicated way which makes it 

difficult to easily interpret them.A detailed exposition will be left to a future 

article.The same is true of the 2nd derivatives with respect to Tuw and Tu’w . 

8H Quadratic expressions. 

We will only briefly discuss the energy stress tensor of the total field Fuu’tot
ij.F

na
ij 

has already been discussed in details. What needs to be pointed out is some 

profound difference between the real total field , the real acceleration field and 

the formal fields and energy stress tensor.If there is no acceleration, the total 

field becomes the nonacceleration field and the the same is true of their 

respective energy stress tensor.No such thing accurs with the formal field , the 

total formal field does not merge into the nonacceleration field.The physical 

meaning of the formal total field is unclear, yet it closely resembles the real total 

field in a formal way.For the real total field ,its projection on U/c is of major 

importance but here it has only geometrical meaning.The importance of the 

formal fields seem to lie in their geometrical meaning.This may change in the 

future as they are better understood.We can write the total formal field as: 

Fuu’tot
ij = (q’/l*2)[(W/c)x(VUW/c)(1-V2

UW/c2)]=(-q’/l*2)[(U/c)x(VWU/c)(1-V2
WU/c2) 

=(q’/l*2)[tanhθUW/cosh2θUW][(W/c)xV^UW]; l* = kl; 

Tuu’tot
ij =    (1/2)Tuu’tot[δij -2[(WiWj/-c2) +V^i

UWV^j
UW] 

= (1/2)Tuu’tot[δij -2[(UiUj/-c2) + V^i
WUV^j

WU] (102); 



Tuu’tot =  (q’2/l*4)(1/4)[(d2tanhθ/dθ2)θ=θuw]2  

= (q’2/l*4)[tanhθUW/cosh2θUW]2     (103); 

We can project W onto the U,U’ plane and obtain a 4 velocity which we could 

label Uuu’,w
o .By comparison U projected onto the U’,W plane which we used for 

the Lorentz force and which we called Uo =Uu’w,u
o.We can project U’ onto the U,W 

plane.We  shall skip the details of these projections in this article. 

  9 Conclusion. 

We have shown that it is possible to have a consistent electrodynamics with a 

timelike interval of interaction and that electromagnetism becomes deeply 

connected with the geodesics of the Beltrami Klein model of 3 dim hyperbolic 

geometry in velocity space.A Minkowski space-time foliation of hyperboloids of 

two sheets describes the hyperbolic geometry.The unit normal of the 

hyperboloids (which are 4 velocities) determine the initial and final points of the 

geodesics segments between any two 4 velocities,including the formal 4 velocity 

of interaction. Electromagnetism seems to be interested in the geodesic distances 

in the tangent space of the hyperboloids and in the accelerations of these 

geodesics (the acceleration term).The acceleration terms are the fields.The 

inverse of the fields also have meanings and are connected with a foliation of 

hyperboloids of one sheet described by a Rindler-like coordinate system, with the 

4-velocities representing the initial and final tangents of virtual timelike 

hyperbolic motions.The interval of propagation or its projections connect one 

timelike hyperbolic motion to another and can be thought of having transmitted 

the influence from the source charge to the field point or the test charge.It must 

be emphasized that we are not dealing with emission of virtual particles, we are 

dealing with geodesic segments and the acceleration part of the geodesic 

segments.Can these be connected to emissions and annihilations of particles? 

This is not obvious at this time but see refs10,11.The existence of a timelike e.m. 

does not seem to have been considered by other authors.The results presented in 

this work and in a previous one (ref.1) indicate that there is a serious gap in our 

understanding of electromagnetism and that this will eventually transfer to our 

understanding of cosmology and particle physics.The geometric methods 



developed here are powerful and completely general. They could be used in 

hyperbolic geometry and  even in relativistic scattering cross sections of binary 

systems. (refs10,11). 
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