Linear and non-linear refractive indices in Riemannian and topological spaces
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The refractive index and curved space relation is formulated using the Riemann-Christoffel curvature tensor.
As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, the refractive index
should be a second rank tensor. The second rank tensor of the refractive index describes a linear optics.
In case of a non-linear optics, if susceptibility is a fourth rank tensor, then the refractive index is a sixth
rank tensor. In a topological space, the linear and non-linear refractive indices are related to the Euler-
Poincare characteristic. Because the Euler-Poincare characteristic is a topological invariant then the linear
and non-linear refractive indices are also topological invariants.

l. INTRODUCTION

What is really happened if light passes through a medi-
um? This question becomes more interesting nowadays
related to conceptual development and technological in-
novation. One of the very important idea to understand
this question is the refractive index, i.e. a measure of the
bending of a ray of light when passing from one medium
into another'. The refractive index of a medium is an
optical parameter, since it exhibits the optical properties
of the material”.

The refractive index, n, is defined as velocity of light of
a given wavelength in empty space or vacuum (c¢) divided
by its velocity in a substance, v
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It describes how matter affects light propagation,

through the electric permittivity, €, and the magnetic
permeability, u
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where €p and pg are the permittivity and the permeabil-
ity of vacuum respectively, €, and pu,. is relative permit-
tivity and relative permeability of non-vacuum medium
respectively, which the values are relative i.e. they de-
pend on the characteristics of medium".

In the most substrates, the refractive index decreases
by increasing temperature’. A denser material generally
tends to have a larger refraction index’. The refractive
index in an fibre optic can be changed due to external
forces such as the tensile force, the bending force".

Mathematically, the refractive index is a zeroth rank
tensor (scalar) and it can not be a first rank tensor (vec-
tor), but it can be a second rank tensor, a third rank
tensor or a higher rank tensor (which is well known as
non-linear phenomena of second order, third order, etc)”.
The refractive index is the zeroth rank tensor, if the medi-
um or material is isotropic

Generally, the refractive index is written as the second
rank tensor, a 3 X 3 matrix, if the material is linear'”. It

(er) (1r) (2)

can be the third rank tensor or the fourth rank tensor if
the material is non-linear

The refractive index has a large number of application-
s. It is mostly applied to identify a particular substance,
to confirm its purity or to measure its concentration. In
pharmaceutical industry, it can be used in determination
of drug concentration. It is also used to calculate a fo-
cusing power of lenses and a dispersive power of prisms,
to estimate a thermophysical properties of hydrocarbons
and petroleum mixtures”.

Il. THE LINEAR REFRACTIVE INDEX IN THE
RIEMANNIAN SPACE

Let a function, f, be defined and differentiable at a
point, r, in a certain region of space (i.e. f defines a
differentiable scalar field), then the gradient of f in the
one-dimensional spherical coordinate is defined by
af .
dr "

Vf (3)

In the tensorial notation, eq.(3) can be rewritten as

ﬁf:gradf:fd-:% (4)

where f ; is the covariant derivative of f with respect to
2. Here, V f defines a vector field i.e. the gradient of a
scalar field is a vector field

The relation of the curvature of space and the refrac-
tive index can be defined as

1 R
R:N.Vlnn(r) (5)

where R is a radius of curvature, N is an unit vector a-
long the principal normal or has the same direction with
V In n(r) and n(r) is the space dependent refractive in-
dex. Eq.(5) tells us that the rays are therefore bent in
the direction of increasing refractive index ‘. The illus-
tration of eq.(5) is given in Figure 1 below



Fig. 1 The illustration of the space-dependent
refractive index, n(r), as a function of the curvature
radius, R.

Let us analyse eq.(5). First, let us define that
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Using notation of gradient operator in (3) and substitut-
ing (6) into (5), we obtain

1. Yn(r) .V In n(r)
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where 7 is a unit vector which its magnitude i.e. |#| is 1
and because 7.7 = |7||#| cos 0° = 1, then eq.(7) becomes
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If we assume that the derivative of a function n(r) always
takes a positive value then

dn(r)
dr

dn(r) B dn(r)
dr | dr )
So, eq.(8) becomes
11 dn(r)
R uln) dr (10)

where n(r) can be e.g. exponential, logarithmic, quadrat-
ic, linear functions.

Now, we would like to write eq.(5) in the tensorial no-
tation. But, why do we need to write eq.(5) in the tenso-
rial notation? Eq.(5) is the curvature in one-dimensional
space. If we would like to generalize the curvature in
more than two-dimensional spaces, then we deal with
the Riemann-Christoffel curvature tensor symbol, i.e. the
fourth rank tensor, R;jk-

In tensorial notation, N and V can be written as Ni
and 0/0xz7 respectively and because of the Riemann-
Christoffel curvature tensor is the fourth rank tensor,
then the refractive index in eq.(5) should be written as
the second rank tensor. We obtain the relation between

the curvature tensor and the refractive index tensor as
below

(11)
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where ¢ is the determinant of the metric tensor.

Eq.(11) implies that the second rank tensor of the re-
fractive index in curved space, which is described by the
Riemann-Christoffel curvature tensor, related naturally
to linear optics.

IIl. THE NON-LINEAR REFRACTIVE INDEX IN THE
RIEMANNIAN SPACE

How about the form of the non-linear refractive index
i.e. the refractive index related to the non-linear optics?
In optics, non-linear properties of materials are usually
described by non-linear susceptibilities” . Mathematical-
ly, the optical response can be expressed as a relation
between the polarization density """, ]3, and the electric
field, E.

In the linear case, a relation between the polarization
density and the electric field is simply expressed as” "

P=¢o xM E (12)

where &g is the permittivity of vacuum space, x(!) is the
first order susceptibility or linear susceptibility and it is
a scalar, whereas the polarization and the electric field
are vectors.

In the non-linear case , the polarization density
can be modelled as a power series of the electric field
as below™ "~

P= €0 X(l) E! + X(2) E? + X(3) E® + }
=P '+ P2+ P+ ... (13)

where El = E, E?=FE E, E3=FEE E, ete. Plis
called the linear polarization, while P2, P3 are called the
second and third non-linear polarizations, respectively.
Thus, the polarization is composed by linear and non-
linear components””. The first susceptibility term, y(9,
corresponds to the linear susceptibility (dimensionless).
The subsequent non-linear susceptibilities, x(*), where
a > 1, have units of (meter/volt)*~1?":*! The quantities
x@ and x® are known as the second order and third
order susceptibilities, respectively. These electric suscep-
tibilities, x(V, @, x(3, are the second, third and fourth
rank tensors, respectively” . In optical Kerr effect, the
third order susceptibility, x®, related to the non-linear
refractive index

Now, we have a question: if the non-linear refractive
index is related to the third order susceptibility, (3, and
the third order susceptibility is the fourth rank tensor
then how to define the non-linear refractive index which
is related to the fourth rank tensor of the third order
susceptibility?



For a linearly polarized monochromatic light in an
isotropic medium or a cubic crystal, the non-linear re-
fractive index, no, can be expressed by

ng = 127 (n2) ™' Re x©® (14)

where ng is a linear refractive index’” and Re x(® is a real
part”’ of the third order non-linear susceptibility. We see
from eq.(14), the linear refractive index is a function of
the non-linear refractive index.

We see from eq.(11), the linear refractive index, ng,
is the second rank tensor, n,,;, and refer to Jatirian, et
al.”" the third order susceptibility, x(®), is the fourth rank

tensor, X,(%%«s, so we can write eq.(14) as below

Nmi = 121 nPI* () (15)

pars _ -1
where n) " = (ng)~'. So,

ng = ng;irs (16)
It means that the non-linear refractive index should be
the sizth rank tensor (a mized tensor of second rank co-
travariant and fourth rank covariant).

Substituting (15) into (11), we obtain

0
Rpijk =g {Nk p In (1277 nbare X;%L)} (17)
Eq.(17) shows that in the non-linear optics, the Riemann-
Christoffel curvature tensor is related to the sixth rank
tensor of the refractive index (actually, the non-linear
refractive index is the inverse of 2% as given in eq.(16)).

IV. THE REFRACTIVE INDEX IN THE TOPOLOGICAL
SPACE (GLOBAL GEOMETRY)

Riemannian geometry is the study of Riemannian man-
ifold, where the Riemannian manifold is a pair of smooth
manifold plus Riemannian metric tensor”". The Rieman-
nian geometry, which was the high dimensional general-
ization of Gauss intrinsic surface theory, gives a geomet-
rical structure which is entirely local””. Local geometry is
the study of small pieces of a manifold””. A manifold is a
topological space that locally resembles Euclidean space
near each point”’. A topological space may be defined
as a set of points, along with a set of neighbourhoods
for each point, satisfying a set of axioms relating points
and neighbourhoods”®. Global geometry is, as the word
suggests, the study of the total manifold including, for
example, the number of holes

Let Q,,; be the curvature form

Qi = Y Runijie da? A da® (18)

where R;,;;i be the Riemann-Christoffel curvature ten-
sor, z/, z* are local coordinates and A is a notation for
the exterior (wedge) product (it satisfies the distribu-
tive, anti-commutative and associative laws)’” This

curvature form, Qumi, 18 an anti-symmetric matriz of 2-
forms™ "7, In differential geometry, the curvature form
describes curvature of a connection on a principal bundle.
It can be considered as an alternative to or generalization
of the curvature tensor in Riemannian geometry

In the case of the linear optics, if we substitute eq.(11)
into eq.(18), we obtain

Olnng,; .
Qi = Z g (N;€ M) dz? A dx® (19)

It means that the curvature form, £2,,;, is related with
the second rank tensor of the linear refractive index, 1,,;.

In the case of the non-linear optics, if we substitute
eq.(17) into eq.(18), we obtain

(9 rs 3
Qi = Z g |:Nk i In <127T M Xz(iq)TS)]
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It means that the curvature form, €Q,,;, is related with

the six rank tensor of the non-linear refractive index (ac-

tually, the non-linear refractive index is the inverse of
pqrs

Let us define the pfaffian of ) as below””
pf = Z €mir...manizn Pmyiz A oo A Q. (21)

where 2 is the curvature matriz™° i.e. any even-size com-
plex 2n x 2n anti-symmetric matriz (if Q is an odd size
complex anti-symmetric matrix, the corresponding pfaf-
fian is defined to be zer0), €4, .. .moyin, 1S the 2n-th rank
Levi-Civita tensor which has value +1 or -1 according as
its indices form an even or odd permutation of 1, ...,2n,
and its otherwise zero, and the sum is extended over all
indices from 1 to 2n. Here, my < i1, ... , may, < ig, and
myp <meo < .. <Mop "
Shortly, the pfaffian of Q (21) can be rewritten as

pf Q=" €mi Ui (22)
Related with the Riemann-Christoffel curvature tensor,

the pfaffian of 2 can be written, by substituting eq.(18)
into (22), as

pf Q= Z €msi ZRm”k dl‘j A dl?k (23)

In the case of the linear optics, the pfaffian of 2 (22)
becomes

0lnng,; , &
pf Q= Zemi Z g (N;c da:J) dz? A dx™ (24)

In the case of the non-linear optics, the pfaffian of  (22)
becomes

pf Q= Z €mi Z q {Nk % In (127‘r nzr)rzgsxgz)rs>:|

da? A da® (25)



The Gauss-Bonnet-Chern theorem says that””
1
—) fQ=y(M*™" 26
(0 g [ PR =0 (26)

where n is a natural number, x(M?") is the FEuler-
Poincare characteristic'™"" of the even dimensional ori-
ented compact Riemannian manifold, M?". The Euler-
Poincare characteristic is a topological invariant

In the case of the linear optics, the Gauss-Bonnet-
Chern theorem (26) becomes

1
n{2n — (=1 2 X
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In the case of the non-linear optics, the Gauss-Bonnet
theorem (26) becomes

1
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Related with the Riemannian-Christoffel curvature
tensor, the Gauss-Bonnet-Chern theorem can be written,
by substituting (23) into (26), as

1
2n\ __ n .
XM = ()" /M%Zem
> Riji da’ A da* (29)

This eq.(29) relates the Riemannian geometry which is
local geometry with the topological space which is global
geometry. The Riemann-Christoffel curvature tensor is a
local invariant and the Euler-Poincare characteristic is a
global invariant.

We see from eqs.(27)-(28), the linear and non-linear re-
fractive indices are related with the Euler-Poincare char-
acteristic. Because the Euler-Poincare characteristic is
the topological invariant””“ then the linear and non-
linear refractive indices should be the topological invari-
ants.

V. DISCUSSION AND CONCLUSION

In one and two dimensional spaces, the Gaussian cur-
vatures are 1/R (a circle) and 1/R? (a sphere), respec-
tively. Georg Friedrich Bernhard Riemann, a student of
Johann Carl Friedrich Gauss, generalize the Gauss cur-
vatures for more than two-dimensional space. The re-
sult is the Riemann-Christoffel curvature tensor where
the Christoffel symbol is used in the formulation of the
generalized curvature.

Riemannian geometry gives a geometrical structure
which is entirely local, i.e. the small pieces of a mani-
fold. A manifold is a topological space i.e. a set of points,

along with a set of neighbourhoods for each point, satis-
fying a set of axioms relating points and neighbourhoods.
Global geometry is, as the word suggests, the study of the
total manifold.

In relation with the refractive index, because the re-
fractive index is related with the curvature of one and
two-dimensional spaces, and this curvature can be gen-
eralized for more than two-dimensional space, then the
refractive index should be able to be formulated in more
than two dimensional curved space. It gives the second
rank tensor of the refractive index as the consequence of
the fourth rank tensor of the Riemann-Christoffel curva-
ture tensor. The second rank tensor of the refractive
index describes the linear optics. It implies that the
Riemann-Christoffel curvature tensor is related naturally
to the linear optics.

Because the linear refractive index can be related with
the non-linear refractive index and the third order of the
susceptibility, where the linear refractive index is the sec-
ond rank tensor and the third order of susceptibility is
the fourth rank tensor, then the non-linear refractive in-
dex should be the sizth rank tensor. It implies that the
Riemann-Christoffel curvature tensor is also related with
the non-linear optics, i.e. the non-linear refractive index.

The Riemann-Christoffel curvature tensor can be gen-
eralized to the curvature form. So, the linear and non-
linear refractive indices also can be generalized to the
curvature form. Because the curvature form can be gen-
eralized to the curvature matrix, in pfaffian form, then
the linear and non-linear refractive indices also can be
written in relation with the pfaffian of the curvature ma-
trix.

The pfaffian of the curvature matrix is defined to be
zero if the curvature matrix is an odd-size complex an-
tisymmetric matrix. But, the pfaffian of the curvature
matrix is defined to be non-zero if the curvature matrix
is an even-size complex antisymmetric matrix. It has the
consequence that the related curvature form, eq.(18), is
non-zero. It means that the curvature is non-zero, i.e.
the space is curved. Clearly, the size of (complex anti-
symmetric) matriz is related with the curvature of space.
Even and odd-size (complex antisymmetric) matrices are
related with a curved and flat space, respectively.

The Gauss-Bonnet-Chern theorem is defined in e-
q.(26), where the pfaffian of the curvature matrix is relat-
ed with the Euler-Poincare characteristic. M?2" indicates
even-dimensional oriented compact Riemannian mani-
fold, where the Riemannian manifold is smooth manifold
plus Riemannian metric tensor. The pfaffian of the cur-
vature matrix itself consists of the Riemann-Christoffel
curvature tensor as shown in eq.(29), where the Riemann-
Christoffel curvature tensor is anti-symmetric tensor
(matrix). The Riemann-Christoffel curvature tensor
based on the Riemann metric tensor which is symmet-
ric matrix. This is the reason why, the pfaffian can be
integrated using M?2" as the integration limit.

The non-zero Euler-Poincare characteristic is the con-
sequence of the non-zero pfaffian of the curvature matrix.



The non-zero pfaffian of the curvature matrix is related
with the even-size of complex antisymmetric matrix us-
ing in the curvature matrix. Physically, the non-zero
Euler-Poincare characteristic is related with the even-
dimensional curved space.

We see from eq.(27)-(28), the linear and non-linear re-
fractive indices are related with the Euler-Poincare char-
acteristic. The non-zero Euler-Poincare characteristic is
related with the non-zero refractive indices. Because the
non-zero Fuler-Poincare characteristic is related with the
even-dimensional curved space, then the non-zero refrac-
tive indices should ”live” in the even-dimensional curved
space. The Euler-Poincare characteristic is the topologi-
cal invariant. Because the Fuler-Poincare characteristic
is the topological invariant then the linear and non-linear
refractive indices are also the topological invariants.

The non-zero Euler-Poincare characteristic requires
the even dimensional oriented compact Riemannian man-
ifold. What is the consequence to the pfaffian of the
curvature matrix, the Euler-Poincare characteristic, the
linear and non-linear refractive indices formulation, if the
Riemannian manifold is even dimensional, but unorient-
ed non-compact? Can the Gauss-Bonnet-Chern theo-
rem be formulated using the even dimensional unoriented
non-compact Riemannian manifold?
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