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ABSTRACT

This publication takes a mathematical approach to a general solution to the Navier-Stokes

equations. The basic idea is a mathematical analysis of the unipolar induction according to

Faraday with the help of the vector analysis. The vector analysis enables the unipolar induc-

tion and the Navier-Stokes equations to be related physically and mathematically, since both

formulations are mathematically equivalent. Since the unipolar induction has proven itself in

practice, it can be used as a reference for describing the Navier-Stokes equations.

1. INTRODUCTION

The Navier-Stokes equations describe the movement of liquids and gases. The first problem

with the set of equations is that the proof for a solution in three-dimensional space has not yet

been produced. The second problem is that the math behind the equations is difficult to un-

derstand and has not yet been explained plausibly. The third problem is one of the so-called

Millennium Prize problems and is to prove the generality of the equations. This paper deals

with the third problem and at the same time solves the first two problems.

Vector calculation was not yet introduced during the lifetime of Claude Louis Marie Henri

Navier (1785-1836) and was still in its infancy during the lifetime of George Gabriel Stokes

(1819-1903) (it was introduced in 1844). In this paper a proposal is formulated with which

the Navier-Stokes equations can be derived from vector calculations in order to solve the

three problems listed above. A mathematical connection to the unipolar induction according

to Faraday and thus to  the "Maxwell  equations" is  established in order to  prove that  the

Navier-Stokes equations are also valid in three-dimensional space.  To explain the approach,

the Navier-Stokes equations for incompressible Newtonian liquids at constant pressure are

combined with the equations for the unipolar induction according to Faraday, through vector

analysis. The aim of this thesis is not to explain the already known and recognized mathemat-
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ical principles of the vector calculation. Reference is only made to this to explain the ap-

proach.

2. IDEAS AND METHODS

2.1 IDEA BEHIND THE SOLUTION

The idea is to apply the vector description of the unipolar induction to the Navier-Stokes

equations. This explains a general validity for physical behavior with regard to the movement

of substances of all kinds and the effect of forces on these substances.

Unipolar induction:

E⃗  = v⃗  x B⃗                                                                                                                   (2.1.1)

E⃗  =  electric fieldstrength

v⃗   =  velocity

B⃗  =  magnetic fluxdensity

µ  =  magnetic permeability

H⃗ =  magnetic field strength 

If the rot-operator is now used on both sides of equation 2.1.1, equation 2.1.2 results.

rot E⃗  = rot( v⃗  x B⃗)                                                                                                      (2.1.2)

According to the rules of vector analysis, equation 2.1.2 can also be rewritten as equation

2.1.3.

rot E⃗  =  rot( v⃗  x B⃗)  =  (grad v⃗) B⃗−(grad B⃗) v⃗  +  v⃗ (div B⃗)  −B⃗(div v⃗ )                     (2.1.3)

The key message of this formula is that a magnetic field is created when an object moves

through an electric field. The material constant µ  is given by the relationship B⃗=µ H⃗ . 

If E⃗=Φ⃗1 , H⃗=Φ⃗2 and µ=a  are now abstracted, the equation 2.1.4 arises.

rot Φ⃗1=rot ( v⃗  x (a Φ⃗2))=(grad v⃗ )a Φ⃗2−(grad (a Φ⃗2)) v⃗+ v⃗ (div(a Φ⃗2))−a Φ⃗2(div v⃗) (2.1.4)
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If the terms of equation 2.1.4 are now mathematically reformulated, a new overall expression

is created which has an analogy to the Navier-Stokes equations. This expression is shown in

equation 2.1.5.

rot Φ⃗1  = a (grad v⃗ )Φ⃗2  - a
δΦ⃗2

δ t
 + v⃗ (div (a Φ⃗2))  - (a Φ⃗2)(div v⃗)                                (2.1.5)

If the equation 2.1.5 is now multiplied by -1, the result is equation 2.1.6.

−rot Φ⃗1  = −a (grad v⃗ )Φ⃗2  + a
δΦ⃗2

δ t
 - v⃗ (div(a Φ⃗2))  + (a Φ⃗2)(div v⃗ )                         (2.1.6)

In direct comparison, the equations 2.1.7 and 2.1.8 are the Navier-Stockes equations.

     f      =      ρ
δu
δ t

           + ρ(grad u)u  −  div σ(u , p)     +      0                               (2.1.7)

and 

div u  = 0                                                                                                                      (2.1.8)

Here and also in the following explanations u  is equated with the expression of the velo-

city  v⃗ . Since  Φ2  must be based on a field which contains sources and sinks, i.e. in

which density distributions play a role, and which occurs in n-dimensional space, we can

assume that the Navier-Stockes equations also have the effect in map n-dimensional space.

The reason for this is that the “Maxwell-Equations”,  which can also be derived from the

unipolar induction,  have proven to be a consistent description of electromagnetic fields to

this day.

2.2 BASICS OF VECTOR CALCULATION

In order to be able to derive the set of equations of the Navier-Stokes equations from vector

calculation, this chapter describes the fundamentals of vector calculation used to solve the

problems described in chapter 1  introduction of this paper.

First of all, three meta vectors a⃗ , b⃗  and c⃗  are introduced at this point. These three

meta vectors are used in the basic mathematical description of the cross product in equation

2.2.1.
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c⃗  = a⃗× b⃗                                (2.2.1)

In equation 2.2.2, the rot-operator is used on both sides of  equation 2.2.1.

rot c⃗  =  rot ( a⃗×b⃗)                                            (2.2.2)

Now the right side of equation 2.2.2 is rewritten according to the calculation rules of vector

calculation and equation 2.2.3 arises.

rot c⃗  =  rot (a⃗× b⃗)  =  (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  (div b⃗)  −  b⃗  (div a⃗ )            (2.2.3)

When equation 2.2.3 is multiplied by -1, the expression results from equation 2.2.4.

−rot c⃗  =  −(grad a⃗ )  b⃗  +  (grad b⃗ )  a⃗  − a⃗  (div b⃗)  +  b⃗  (div a⃗ )                             (2.2.4)

2.3 SUBSTITUTING THE PHYSICAL COMPONENTS OF THE NAVIER-STOKES
EQUATIONS

In the next step, the meta vector  a⃗  in equation 2.2.4 is replaced by the velocity vector

v⃗ . The meta vector b⃗  is replaced by the density multiplied by the velocity (ρ  ⋅ v⃗ ) .

The result is equation 2.3.1.

  −(grad v⃗ )  (ρ v⃗ )  +  (grad (ρ v⃗))  v⃗  − v⃗  div (ρ v⃗ )  + (ρ v⃗ )  div v⃗  =  - rot (v⃗×(ρ v⃗ )) (2.3.1)

v⃗  =  velocity

ρ  =  density

2.4 BASIC DESCRIPTION

2.4.1 NAVIER-STOKES EQUATIONS

The formulas of the Navier-Stokes equations and the vector calculation to which reference is

made in this publication are presented here. Throughout the elaboration, the form of variation

of the incompressible Navier-Stokes equations is referred to and used as a reference. The
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approach can also be used for other forms of variation of the Navier-Stokes equations, but

then only with the application of the appropriate laws for the vector calculation.

ρ
δu
δ t

 + ρ(grad u )u  - div σ(u , p)  = f                                                                           (2.4.1)

div u  = 0                                            (2.1.8)

σ(u , p)n  = h                                            (2.4.2)

u = v⃗  =  velocity

t  =  time

ρ =  density

σ =  Stress tensor

p =  pressure

f =  undefined force

The expression  u  is used here for the expression of the velocity v⃗ .  In order to get a

better overview of the proposed solution, the equation 2.4.3, 2.4.4, 2.4.5 and 2.1.8 are written

one above the other.

−( rot( a⃗×b⃗))       =  −(grad a⃗)  b⃗       +  (grad b⃗)  a⃗      −  a⃗  div b⃗       +  b⃗  div a⃗       (2.4.3)

−( rot( v⃗×(ρ v⃗ )))  =  −(grad v⃗ )(ρ v⃗)  +(grad (ρ v⃗ ))  v⃗  − v⃗  div(ρ v⃗ )  +  (ρ v⃗ )  div v⃗   (2.4.4)

      f                    =     ρ(grad u )u     +     ρ
δu
δ t

           −      div σ(u , p )  +             0   (2.4.5)

with

div u  = 0                                            (2.1.8)

2.5 MATHEMATICAL APPROACH

In the following chapters,  the mathematical-physical  combination of  the individual  terms

from equations 2.1.8, 2.4.4 and 2.4.5 is discussed in more detail.
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2.5.1 TERM 2 FROM EQUATIONS 2.4.4 AND 2.4.5

 

First of all, the second term in each case from equations 2.4.4 ( (grad v⃗ ) (ρ v⃗ ) ) and 2.4.5 

( ρ(grad u)u ) is equated in equation 2.5.1.  According to the commutative law of multi-

plication, the factor  ρ  can change its position as a factor. Therefore it does not matter

where the factor ρ  is within both sides of equation 2.5.1. 

(grad v⃗ )  ρ v⃗  = ρ(grad u)u                                                                                          (2.5.1)

According to the rules of multiplication, the expression ρ  from the right site of equation

2.5.1 can also be calculated first with the velocity u  and then with the gradient of u .

Therefore, equation 2.5.1 can be rewritten as equation 2.5.2.

(grad v⃗ )  ρ v⃗  = (grad u)  ρu        (2.5.2)

As already mentioned in chapter 2.4.1, u  in equations 2.1.8, 2.4.1, 2.4.2 and 2.4.5 stands

for the velocity v⃗ .  Therefore, equation 2.5.2 can be rewritten as equation 2.5.3.

(grad v⃗ )  ρ v⃗  = (grad v⃗ )  ρ v⃗        (2.5.3)

That means the second term from equation 2.4.4 and the second term from the equation 2.4.5

can be  equated.  However,  it  must  be  mentioned at  this  point  that  the  second term from

equation  2.4.4  has  a  minus  signed.  Whether  and  how  this  minus  is  relevant  has  to  be

discussed.

2.5.2 TERM 3 FROM EQUATIONS 2.4.4 AND 2.4.5

First, the third term from equation 2.4.4 ( (grad (ρ v⃗ )) v⃗ ) will be brought into a form that is

similar to the form of the third term from equation 2.4.5 ( ρ
δu
δ t

) . To do this, the third term

from equation 2.4.4 must first be written in column form. It should be noted that the gradient

of a vector results in a matrix. Equation 2.5.4 shows how the third term from equation 2.4.4

must then be rewritten.
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(grad(ρ v⃗ ))  ⋅ ( v⃗)  = (
δρ vx

δ x
δρv x

δ y
δρ v x

δ z
δρv y

δ x
δρ v y

δ y
δρ v y

δ z
δρ vz

δ x

δρ vz

δ y

δρv z

δ z
) ⋅ (

vx

v y

vz
)                                                    (2.5.4)

Now, according to the rules of vector calculation, the resulting gradient ( (grad (ρ v⃗ )) )  is

calculated with the velocity vector v⃗  as a general solution (for all substances). The result

is a new vector x⃗(v ,ρ) . This is shown in equation 2.5.5.

 (grad(ρ v⃗ ))  ⋅ v⃗  = (
δ(ρv x)  ⋅ vx

δ x
 + 

δ (ρ v x)  ⋅ v y

δ y
 + 

δ(ρv x)  ⋅ vz

δ z
δ(ρ v y)  ⋅ v x

δ x
 + 

δ(ρ v y)  ⋅ v y

δ y
 + 

δ(ρ v y)  ⋅ v z

δ z
δ (ρ v z)  ⋅ v x

δ x
 + 

δ(ρv z)  ⋅ v y

δ y
 + 

δ(ρ v z)  ⋅ vz

δ z
) =  x⃗(v , ρ)                (2.5.5)

For substances that are not subject to any deformation and have a homogeneous density,

equation 2.5.6 applies.

(grad(ρ v⃗ ))  ⋅ v⃗  = (
δ (ρ v x)

δ x
 ⋅ v x  + 0  + 0

0  + 
δ(ρ v y )

δ y
 ⋅ v y  + 0

0  + 0  + 
δ(ρ vz)

δ z
 ⋅ vz

)  =  x⃗(v ,ρ)                                                    (2.5.6)

The expression from equation 2.5.6 is simplified to equation 2.5.7.

(grad(ρ v⃗ ))  ⋅ v⃗  = (
δ(ρ v x)

δ x
 ⋅ v x

δ(ρ v y)

δ y
 ⋅ v y

δ(ρ vz)

δ z
 ⋅ v z

)                                                                                 (2.5.7)
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In the case of Newtonian liquids under constant pressure conditions, the mass occupancy is

constant and is interpreted as density ρ .  Therefore it can be excluded as a factor on the

right-hand side of equation 2.5.7. This results in equation 2.5.8.

(grad(ρ v⃗ ))  ⋅ v⃗  = ρ(
δ vx

δ x
 ⋅ v x

δv y

δ y
 ⋅ v y

δv z

δ z
 ⋅ v z

)                                                                                    (2.5.8)

Now, on the right-hand side from equation 2.5.8, the velocity v⃗  is derived from the dis-

tance 
δ v⃗
δ s⃗

. Equation 2.5.9 arises.

δ v⃗
δ s⃗

 =  δ
δ t

                                                                                                                     (2.5.9)

The expression on the right-hand side from equation 2.5.9 is now substituted into equation

2.5.8. Assuming that the term v⃗ is equated with the term u  equation 2.5.10 is the result.

(grad(ρ v⃗ ))  ⋅ v⃗  = ρ(
δ
δ t

 ⋅ vx

δ
δ t

 ⋅ v y

δ
δt

 ⋅ v z
) = ρ(

δv x

δ t
δv y

δ t
δv z

δ t
) = ρ(

δ v⃗
δ t

)  =  ρ
δu
δ t

                                   (2.5.10)

The result from equation 2.5.10 now corresponds to the third term from equation 2.4.5. That

means, that the third term from equation 2.4.4 is equated to the third term from equation

2.4.5.

(grad (ρ v⃗ )) v⃗  = ρ
δu
δ t

                                                                                                 (2.5.11)
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2.5.3 TERM 4 FROM EQUATIONS 2.4.4 AND 2.4.5

First the fourth term from equation 2.4.4 is written, v⃗  div (ρ v⃗ )  and the fourth term from

equation 2.4.4 is written, div (σ (u , p)) . The term σ(u , p )  stands for the mechanical normal

stress, which here depends on the velocity u  and the pressure p . It is defined as the

viscous stresstensor (2.5.12).  

σ  = (
σ11  σ12  σ13

σ21  σ22  σ23

σ31  σ32  σ33
)                                                                                                    (2.5.12)

Applying the divergence to this tensor creates a vector, i.e. a tensor of the first degree. This is

shown in equation 2.5.13.

div σ  = (
δσ11

δ x
 + 

δσ12

δ y
 + 

δσ13

δ z
δσ21

δx
 + 

δσ22

δ y
 + 

δσ23

δz
δσ31

δx
 + 

δσ32

δ y
 + 

δσ33

δ z
)=(

σa div
σb div
σc div

)                                                               (2.5.13)

The vector resulting from the div σ  has the physical unit 
g

m⃗  ⋅ s2
 =  F⃗ . With this unit,

the dependence of σ can be mapped, under certain circumstances, on both the speed u

and the pressure p  . That is why σ  can also be written for σ(u , p )  .

The fourth term from equation 2.4.4 shows the following relationship, v⃗  div(ρ v⃗ ) . In this

context, the div (ρ v⃗ )  provides a purely numerical value and a physical unit. This can be

seen from equation 2.5.14.

div(ρ v⃗ )  = 
δ(ρ vx)

δx
 + 

δ(ρ v y)

δy
 + 

δ(ρ v z)

δ z
                                                                 (2.5.14)

If the scalar expression from equation 2.5.14, however, multiplied by the velocity  v⃗ , as

shown in the fourth term from equation 2.4.4 is required, however, a vector results.  This

relationship is shown in equation 2.5.15.
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v⃗  div(ρ v⃗ )  = (
v x  ⋅ (

δ(ρ vx )

δx
 + 

δ(ρ v y)

δy
 + 

δ(ρv z)

δ z
)

v y  ⋅ (
δ(ρ v x)

δx
 + 

δ(ρ v y)

δ y
 + 

δ(ρ vz)

δ z
)

vz  ⋅ (
δ(ρ vx )

δx
 + 

δ(ρ v y)

δy
 + 

δ(ρ v z)

δ z
)
)                                                (2.5.15)

The resulting vectors from equation 2.5.15, and from equation 2.5.13, both have the physical

unit 
g

m⃗  ⋅ s2
 =  F⃗ . In addition, the resulting vector from equation 2.5.15 is also dependent

on the pressure p  and the velocity u / v⃗ . The next thing in common is that both vectors

make a statement about the tensions within a substance. For these reasons we can use the

term four from equation 2.4.4 and the term four from equation 2.4.5 equate. This result is

shown in equation 2.5.16.

v⃗  div(ρ v⃗ )  = div(σ (u , p))                                                                                             (2.5.16)

 

2.5.4 TERM 5 FROM EQUATIONS 2.4.4 AND 2.4.5

Term 5 from Equation 2.4.4 is (ρ v⃗)  div v⃗  and Term 5 from Equation is 0 .

Equation 2.1.8 says that div ( v⃗ )  = 0  is. Inserting equation 2.1.8 into equation 2.4.4 results

in the expression from equation 2.5.17. This means that the fifth term from equation 2.4.4 can

be equated with the fifth term from equation 2.4.5.  This can also be seen from equation

2.5.17.

(ρ v⃗)  ⋅ div( v⃗ )  = (ρ v⃗ )  ⋅0  =  0                                                                                   (2.5.17)

2.5.5 TERM 1 FROM EQUATIONS 2.4.4 AND 2.4.5

Since the first term of equation 2.4.5 ( f ) is not precisely defined, it can be calculated with

the first term from equation 2.4.4 ( rot ( v⃗×(ρ v⃗ )) ) are equated. Equation 2.5.18 results by

equating the first term from equation 2.4.4 and the first term from equation 2.4.5.

rot (v×(ρ v⃗ ))  =  f                                                                                                      (2.5.18)
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Here, too, there is a minus sign in the first term of equation 2.4.4. For this term, too, it must

be discussed whether and what effects this sign has on equation 2.5.1.8.

3. DISCUSSION

1.  It  remains  to  be  discussed  whether  this  expression  div( v⃗ )  = 0  is  valid  for  all

substances, including those that are not subject to Newton's laws.  The problem is that the

relationship from equation 3.1.1 holds.

div ( v⃗ )  =  (Sp)grad ( v⃗ )                                                                                                  (3.1.1)

If the relationship from equation 3.1.1 gold plated, then (Sp)grad ( v⃗)  =  0  must also ap-

ply. The question here would be what effect this would have on the two equations 2.4.4 and

2.4.5.

2. What effects would an inhomogeneous density distribution of a substance have on the solu-

tion approach? Do other rules of vector calculus apply in this case?

3. Based on 2, what effects would it have if the mass occupancy was included in the solution

as a vector quantity instead of the density?

4. Is the approach from equation 2.1.4 a fundamental law of nature that is valid for all sub-

stances?

5. With reference to the question to 4, which state of aggregation then have physical fields?

6.  Term one ( −rot ( v⃗×(ρ v⃗ )) )  and term two ( −(ρ v⃗)  (grad v⃗ ) )  from equation 2.4.4

have a minus sign. It remains to be discussed whether and what effect this has on equating the

two equations 2.4.4 and 2.4.5.

4. CONCLUSIONS

Through the mathematical connection to the vector calculation and the physical-mathematical

connection to  the flow law of electrodynamics,  the general  validity of  the Navier-Stokes

equations could be adequately described. The fact that the vector calculation can create a con-
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nection from the unipolar induction and thus the “Maxwell equations” to the Navier-Stokes

equations allows the conclusion that this approach is a fundamental field equation for the dy-

namics of all substances from fields Depicts gases and liquids, as well as solids and other un-

known substances.  It also remains to be determined whether the Smoluchowsky equations

can also be described using equation 2.1.4.

For comparison, all equations relevant for this elaboration are written below. This shows the

connection between the “Maxwell equations” and the Navier-Stokes equations announced in

Chapter one of this paper.

Calculation rule from vector calculation:

rot c⃗  =  rot (a⃗× b⃗)  =  (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  (div b⃗)  −  b⃗  (div a⃗ )            (2.2.4)

possible fundamental field equation:

rot Φ⃗1=rot ( v⃗  x (a Φ⃗2))=(grad v⃗ )a Φ⃗2−(grad (a Φ⃗2)) v⃗+ v⃗ (div(a Φ⃗2))−a Φ⃗2(div v⃗) (2.1.4)

Unipolar induction:

rot E⃗  =  rot( v⃗  x B⃗)  =  (grad v⃗) B⃗−(grad B⃗) v⃗  +  v⃗ (div B⃗)  −B⃗(div v⃗ )                    (2.1.3)

“Maxwell equations” according to Heaviside:

rot E⃗  =  rot( v⃗  x B⃗)  =       0         −
δ B⃗
δ t

            +      0         −    0                          (3.1.2)

with

div B⃗  = 0                                                                                                                     (3.1.3)

Electric field equation according to Dirac:

rot E⃗  =  rot( v⃗  x B⃗)  =       0         −
δ B⃗
δ t

            + v⃗  div B⃗     −    0                         (3.1.4)

with

div B⃗  = ρm                                                                                                                   (3.1.5)

Navier-Stokes equations:

     f                          =   ρ
δu
δ t

    + ρ(grad u)u  −  div σ(u , p)  +    0                         (2.1.7)

with 

div u  = 0                                                                                                                      (2.1.8)
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The comparison of all equations indicates a common mathematical basis. From a physical

point of view, it seems that the velocity vector plays a role in calculating the movements of

fields and substances.
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