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Abstract
The two-dimensional autonomous cellular neural networks (CNNs) having one layer or two layers
of memristor coupling can exhibit many interesting nonlinear waves and bifurcation phenomena.
In this paper, we study the nonlinear waves (solitons) in the one-dimensional CNN difference
equations. From our computer simulations, we found that the CNN difference equations can
exhibit many interesting behaviors. The most remarkable thing is that the first-order linear CNN
difference equation can exhibit a train of solitary waves, if the initial condition is given by the unit
step function. Furthermore, the second-order linear CNN difference equation can exhibit soliton-
like behavior, if the initial condition is given by a pulse wave. That is, the solitary waves pass
through one another and emerge from the collision. Furthermore, the solution exhibits the area-
preserving behavior, and it returns exactly to its initial state (the recurrence of the initial state). In
the case of the nonlinear CNN difference equation, we observed the following interesting behaviors.
In the Korteweg-de Vries CNN difference equation, the three-dimensional plot of the interaction
of the solitary waves looks like a chicken cockscomb. In the Toda lattice CNN difference equation,
a train of solitary waves with a negative amplitude interact with a train of solitary waves with
a positive amplitude, and they emerge from the collisions. Furthermore, after a certain period
of time, the solution breaks down. In the Sine-Gordon CNN difference equation, the solution
moves at constant speed, and it emerges from the collision. Furthermore, the solution returns the
state which is roughly similar to the initial state. In the memristor CNN difference equations, the
three-dimensional plots of solitary waves exhibit more complicated (chaotic or distorted) behavior.
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1 Introduction

A soliton is a solitary wave (a wave packet or pulse) that behaves like a particle, and its amplitude, shape,
and velocity are conserved after a collision with another soliton. In most cases, a soliton satisfies the following
conditions [1]:

1. It must maintain its shape when it moves at constant speed.

2. When a soliton interacts with another soliton, it emerges from the collision unchanged except possibly
for a phase shift.

1After retirement from Fukuoka Institute of Technology, he has continued to study the nonlinear dynamics on memristors.
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In this paper, we study the solitons of the CNN difference equations, which can satisfy the above con-
ditions. We first consider several one-dimensional CNN circuit equations, and we obtain the difference
equations from these equations by using the central difference scheme. The above CNN difference equations
are equivalent to the discretized equations of well-known soliton equations. We next derive the meristor CNN
circuit models by replacing a basic circuit element of the CNN circuit models by a memristor. Similarly, we
can obtain the memristor CNN difference equations by using the central difference scheme.

In this paper, we give a unit step function or a pulse wave as the initial condition, besides the sine and
cosine functions. From our computer simulations, we found that the CNN difference equations (CNN Diff.
Eqs.) exhibit the following interesting behaviors:

(1) First-order linear wave CNN Diff. Eq.
A train of solitary waves are generated, if the initial condition is given by the unit step function.
However, the initial wave moves at a constant speed without distortion, if the initial condition is given
by the sine function

(2) First-order nolinear wave CNN Diff. Eq.
The shape of the initial curve is distorted continuously with increasing time, if the initial condition is
given by the sine wave. The wave gets progressively steeper until the wave overtops, and ultimately
the waveform breaks down.

(3) Second-order linear wave CNN Diff. Eq.
A solution can exhibit soliton-like behavior, that is, it moves at constant speed, and it emerges from
the collision, if the initial condition is given by a pulse wave. Furthermore, the solution exhibits the
area-preserving behavior, and returns exactly to its initial state, that is, the recurrence of the initial
state is observed.

(4) Korteweg-de Vries (KdV) CNN Diff. Eq.
A solution evolves into a train of soliton waves, if the initial condition is given by the function of
tangent hyperbolic. Furthermore, the three-dimensional plot of the interaction of the soliton waves
looks like a chicken cockscomb, if the initial condition is given by the cosine wave.

(5) Sine-Gordon CNN Diff. Eq.
The behavior of the solution is quite similar to that of the second-order linear wave CNN difference
equation, but its shape is distorted, if the initial condition is given by a pulse wave. The solution moves
at constant speed, and it emerges from the collision. Furthermore, the solution returns the state which
is roughly similar to the initial pulse.

(6) Toda lattice CNN Diff. Eq.
A train of solitary waves with negative (res. positive) amplitude interact with a train of solitary waves
with a positive (res. negative) amplitude, and they emerge from the collisions, if the initial condition
is given by a sine wave. Furthermore, after a certain period of time, the solution breaks down.

Furthermore, in the case of the memristor CNN difference equations, the three-dimensional plots of soliton
waves exhibit more complicated (chaotic or distorted) behavior.

2 Wave Equations

2.1 Second-order wave equation

The wave equation for a plane wave traveling in the x direction on an interval [0, L] is

Second-order wave equation� �
∂2u(x, t)

∂t2
= a2

∂2u(x, t)

∂x2
, (1)� �
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where u(x, t) is the amplitude of the wave at position x and time t, and a is the velocity of the wave. The
general solution of Eq. (1) is given by

u(x, t) = ϕ(x+ at) + ψ(x− at), (2)

where ϕ(x) and ψ(x) are arbitrary functions that are continuously differentiable at least twice for all x.

2.1.1 Initial conditions

In this paper, we consider the following initial conditions:

u(x, t)
∣∣∣
t=t0

= f(x),

∂u(x, t)

∂t

∣∣∣∣
t=t0

= 0,

 (3)

which specify the initial position and velocity for Eq. (1). Let φ(x, t) be a solution of Eq. (1). Then it has
to satisfy

φ(x, t0) = f(x). (4)

Thus, the function f(x) should be continuously differentiable at least twice for all x on L, since Eq. (1) is
the second-order partial differential equation.

2.1.2 Boundary conditions

We consider the two typical boundary conditions for Eq. (1):

• Dirichlet (fixed) boundary condition: u(0, t) = d and u(L, t) = e (d and e are constants).

• Periodic boundary condition: u(0, t) = u(L, t).

2.1.3 Approximating the wave equation

We approximate Eq. (1) by using the central difference scheme. Let us define unj by

unj
def
= u(xj , tn), (5)

where xj = x0 + j∆x and tn = t0 + n∆t (x0, t0, ∆x, and ∆t are some constants, and j and n are integers).
Using a second-order central difference for the space and time derivatives, we obtain:

∂2u(x, t)

∂x2

∣∣∣∣
t=tn, x=xj

≈ u(xj+1, tn)− 2u(xj , tn) + u(xj−1, tn)

(∆x)2
=
unj+1 − 2unj + unj−1

(∆x)2
,

∂2u(x, t)

∂t2

∣∣∣∣
t=tn, x=xj

≈ u(xj , tn+1)− 2u(xj , tn) + u(xj , tn−1)

(∆x)2
=
un+1
j − 2unj + un−1

j

(∆t)2
,

(6)

where |∆x| and |∆t| are sufficiently small. Then, we can approximate Eq. (1) by the following difference
equation:

Difference equation for Eq. (1)� �
un+1
j − 2unj + un−1

j =
(∆t)2

(∆x)2
a2
(
unj+1 − 2unj + unj−1

)
, (7)

or equivalently

un+1
j = 2unj − un−1

j +
(∆t)2

(∆x)2
a2
(
unj+1 − 2unj + unj−1

)
. (8)� �
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2.1.4 Calculation of initial states

The equation (8) for n = 2 can be written as

u2j = 2u1j − u0j +
(∆t)2

(∆x)2
a2
(
u1j+1 − 2u1j + u1j−1

)
. (9)

In oder to obtain u2j (n = 1) from Eq. (9), we need to know the value of u1j , u0j , u1j+1, and u1j−1.

Let us first obtain the value of u1j . Consider the first equation of Eq. (3) for x = xj . It can be described
as follow:

u(xj , t)
∣∣∣
t=t0

= u(xj , tn)
∣∣∣
n=0

= unj

∣∣∣
n=0

= u0j = f(xj), (10)

where unj = u(xj , tn). Thus, u0j is given by

u0j = f(xj). (11)

We next obtain u1j , u1j+1, and u1j−1. Consider the second equation of Eq. (3). Using the central difference
for the time derivative, we obtain from Eq. (3)

∂u(x, t)

∂t

∣∣∣∣
t=t0, x=xj

≈ u(xj , tn+1)− u(xj , tn−1)

2∆t
=
un+1
j − un−1

j

2∆t

∣∣∣∣∣
n=0

=
u1j − u

−1
j

2∆
= 0, (12)

that is,
u−1
j = u1j . (13)

Equation (8) for n = 0 can be written as

u1j = 2u0j − u−1
j +

(∆t)2

(∆x)2
a2
(
u0j+1 − 2u0j + u0j−1

)
. (14)

Substituting Eq. (13) into Eq. (14), we obtain

2u1j = 2u0j +
(∆t)2

(∆x)2
a2
(
u0j+1 − 2u0j + u0j−1

)
, (15)

which can recast into the form:

u1j = u0j +
(∆t)2

2(∆x)2
a2
(
u0j+1 − 2u0j + u0j−1

)
. (16)

Thus, if the initial conditions

u0j−1 = f(xj−1), u0j = f(xj), u
0
j+1 = f(xj+1), (17)

are given, we can obtain u1j from Eq. (16). Furthermore, u1j+1 and u1j−1 can be written as

u1j+1 = u0j+1 +
(∆t)2

2(∆x)2
a2
(
u0j+2 − 2u0j+1 + u0j

)
,

u1j−1 = u0j−1 +
(∆t)2

2(∆x)2
a2
(
u0j − 2u0j−1 + u0j−2

)
.

 (18)

Thus, they can be obtained from the initial conditions:

u0j−2 = f(xj−2), u0j−1 = f(xj−1), u0j = f(xj), u
0
j+1 = f(xj+1), u0j+2 = f(xj+2), (19)

We next obtain u2j using Eq. (8). Equation (8) for n = 1 can be described as follow:
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u2j = 2u1j − u0j +
(∆t)2

(∆x)2
a2
(
u1j+1 − 2u1j + u1j−1

)
. (20)

where
u0j = f(xj),

u1j = u0j +
(∆t)2

2(∆x)2
a2
(
u0j+1 − 2u0j + u0j−1

)
,

u1j+1 = u0j+1 +
(∆t)2

2(∆x)2
a2
(
u0j+2 − 2u0j+1 + u0j

)
,

u1j−1 = u0j−1 +
(∆t)2

2(∆x)2
a2
(
u0j − 2u0j−1 + u0j−2

)
,


(21)

and u0j−2, u
0
j−1, u

0
j , u

0
j+1, and u0j+2 are given by Eq. (19). Thus we can obtain u2j from Eq. (20). Similarly,

we can sequentially obtain u3j , u
4
j , u

5
j , · · · .

2.1.5 Boundary condition setting

Consider the difference equation (8) with N cells. The boundary conditions in Sec. 2.1.2 are described as
follow:

• Dirichlet (fixed) boundary condition:

un1 = f(x1),

unN = f(xN ).

}
(22)

• Periodic boundary condition:
un0 = unN ,

unN+1 = un1 .

}
(23)

2.1.6 CNN circuit realization and difference equation approximation

We show the circuit realization of Eq. (8). Consider the resistor-coupled CNN shown in Fig. 1 [2] , where
each cell consists of a frequency-dependent negative resistor (FNDR) with unit conductance (G = 1).2 The
dynamics of this circuit is given by

Dynamics of the resistor-coupled CNN in Fig. 1� �
d2vj(t)

dt2
=

1

R
(vj+1(t)− 2vj(t) + vj−1(t)) . (24)� �

Let vj(tn) = vnj , where tn = t0 + n∆t. Using the second-order central difference for the time derivative, we
obtain:

d2vj(t)

dt2

∣∣∣∣
t=tn

≈ vj(tn+1)− 2vj(tn) + vj(tn−1)

(∆t)2
=
vn+1
j − 2vnj + vn−1

j

(∆t)2
, (25)

2The FNDR is a two-terminal linear element defined by i = G(d2v/dt2). It is a higher-order circuit element.
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where |∆t| is sufficiently small. Then, from Eq. (24), we get the following equation:

vn+1
j = 2vnj − vn−1

j +
(∆t)2

R

(
vnj+1 − 2vnj + vnj−1

)
= 2vnj − vnj−1 +

(∆t)2

(∆x)2
a2
(
vnj+1 − 2vnj + vnj−1

)
,

(26)

where we set R = (∆x/a)2. It can be recast into the following difference equation:

Difference equation for Eq. (24)� �
vn+1
j = 2vnj − vnj−1 +

(∆t)2

(∆x)2
a2
(
vnj+1 − 2vnj + vnj−1

)
. (27)� �

Thus, Eq. (27) is equivalent to Eq. (8), that is, they have the same solution. We call Eq. (27) as the
second-order linear wave CNN Diff. Eq.

Figure 1: A CNN realization of Eq. (8) with linear resistor coupling between cells. The CNN cell consists
of a FNDR (frequency-dependent negative resistor).

2.1.7 Computer simulations

Consider the second-order linear wave CNN Diff. Eq. (27) (equivalently, Eq. (8)) with N = 200 (cells).
Assume that the boundary condition is given by the Dirichlet (fixed) boundary condition:

un1 = 0,

unN = 0.

}
(28)

(A) pulse wave initial condition

Assume that the initial condition is given by the pulse with the height of 10:

u0j =

{
10 (50 ≤ j ≤ 70),
0 (otherwise),

(29)

Note that the initial state, that is, the pulse is not continuously differentiable for all x. We show our computer
simulations in Fig. 2, where the parameters for Eq. (27) are given by

a = 1, N = 200, ∆t = 0.1, ∆x = 0.1, 0 ≤ n ≤ 398. (30)

Observe the following behavior of the solution:
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1. A pulse splits into two pulses traveling with different direction.

2. When a pulse reaches the fixed boundary, it reflects back (n = 61). The reflected pulse is inverted.

3. After the interaction of the two pulses, they merge into one pulse (n = 199). It is the reversing pulse
of the given initial pulse.

4. The reversed pulse splits into two pulses traveling with different direction. They merge into one pulse
again (n = 398), which is identical to the initial condition.

The above procedure is repeated, again and again. It shows the recurrence of the initial state. Furthermore,
the total area of solutions is constant, which is given by the product of the pulse-width and pulse-amplitude
of the initial pulse, that is, 20 × 10 = 200. That is, Eq. (27) exhibits the area-preserving behavior. Thus,
we conclude that the solutions of Eq. (27) can exhibit the following soliton-like behavior :

• A pulse splits into two pulses traveling with different direction. They move at constant speed.

• When a pulse interacts with another pulse, it emerges from the collision, and then it splits into two
pulses.

• A solution returns exactly to its initial state (recurrence of the initial state).

• A solution exhibits the area-preserving behavior.

(B) two pulse wave initial condition

We next show the computer simulations when the two pulses are given as the initial state. Assume that the
initial condition is given by

u0j =

 10 (50 ≤ j ≤ 70),
10 (150 ≤ j ≤ 170),
0 (otherwise).

(31)

Then we obtain the computer simulations in Fig. 3, where the parameters for Eq. (27) are given by

a = 1, N = 200, ∆t = 0.1, ∆x = 0.1, 0 ≤ n ≤ 796. (32)

Observe that the solution exhibits the same behavior as the case of the one pulse. That is, the two initial
pulses are split into four pulses, and the solution of Eq. (8) eventually returns to the initial state after the
interaction of the pulses (n = 398, 796). Furthermore, the total pulse area is constant, which is equal to
20× 10 + 20× 10 = 400.

(C) sine wave initial condition

Assume next that the initial condition is given by the sine wave:

u0j = sin

[
2π

(
j − 1

N

)]
, (33)

where j = 1, 2, · · · , 200, and the boundary condition is given by Eq. (28). We show our computer simula-
tions in Fig. 4, where the parameters for Eq. (27) are given by

a = 1, N = 200, ∆t = 0.1, ∆x = 0.1, 0 ≤ n ≤ 400. (34)

Observe that the solution represents the vibration of a string. In our computer simulations, the initial wave
dose not evolve into a solitary-type wave.
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(a)

(b)

Figure 2: Three-dimensional plots of soliton-like waves in the second-order linear wave CNN Diff. Eq. (27).
Two different plots of the soliton-like waves are shown. The initial condition is given by the pulse with the
height of 10. The boundary condition is given by the Dirichlet (fixed) boundary condition. Observe that a
pulse splits into two pulses traveling with different direction. They move at constant speed. When a pulse
reaches the fixed boundary, it reflects back (n = 61). The reflected pulse is inverted. After the interaction
of the two pulses, they merge into one pulse (n = 199). It is the reversing pulse of the given initial pulse.
The above reversed pulse splits into two pulses traveling with different direction. They merge into one pulse
again (n = 398), which is identical to the initial condition. That is, the solution returns exactly to its initial
state. Furthermore, it exhibits the area-preserving behavior.8



(a)

(b)

Figure 3: Three-dimensional plots of soliton-like waves in the second-order linear wave CNN Diff. Eq. (27).
Two different plots of the soliton-like waves are shown. The initial condition is given by the two pulse with
the height of 10. The boundary condition is given by the Dirichlet (fixed) boundary condition. The solution
returns exactly to its initial state (two pulses) at n = 398, 796.
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(a)

(b)

Figure 4: Three-dimensional plots of the solutions in the second-order linear wave CNN Diff. Eq. (27).
Two different plots of the waves are shown. The initial condition is given by the sine wave. The boundary
condition is given by the Dirichlet (fixed) boundary condition. The solution represents the vibration of a
string. In this case, the initial wave dose not evolve into a solitary-type wave.
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2.2 First-order linear wave equation

Consider the second-order wave equation

∂2w(x, t)

∂t2
= a2

∂2w(x, t)

∂x2
, (35)

where w(x, t) is the amplitude of the wave. Then Eq. (36) can be written as[
∂

∂t
+ a

∂

∂x

] [
∂

∂t
− a ∂

∂x

]
w(x, t) = 0. (36)

Define

u(x, t)
def
=

[
∂

∂t
− a ∂

∂x

]
w(x, t). (37)

Then, Eq. (36) can be recast into [
∂

∂t
+ a

∂

∂x

]
u(x, t) = 0. (38)

Similarly, define

u(x, t)
def
=

[
∂

∂t
+ a

∂

∂x

]
w(x, t). (39)

Then, Eq. (36) can be recast into [
∂

∂t
− a ∂

∂x

]
u(x, t) = 0. (40)

Thus, we study next the first-order wave equations defined by

(a)

[
∂

∂t
+ a

∂

∂x

]
u(x, t) = 0,

(b)

[
∂

∂t
− a ∂

∂x

]
u(x, t) = 0,

 (41)

or equivalently

First-order linear wave equations� �
(a)

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0,

(b)
∂u(x, t)

∂t
− a∂u(x, t)

∂x
= 0.

 (42)

� �
The general solutions of Eq. (42)(a) and (b) are given by

(a) u(x, t) = ξ(x− at),

(b) u(x, t) = η(x+ at),

}
(43)

respectively, where ξ(x) and η(x) are arbitrary functions that are continuously differentiable for all x.
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2.2.1 Approximating the first-order linear wave equation

We approximate Eq. (42) by using the central difference scheme. Let us define unj by

unj
def
= u(xj , tn), (44)

where xj = x0 + j∆x and tn = t0 + n∆t (x0, t0, ∆x, and ∆t are some constants, and j and n are integers).
Using the central difference for the space and time derivatives, we obtain:

∂u(x, t)

∂t

∣∣∣∣
t=tn, x=xj

≈ u(xj , tn+1)− u(xj , tn−1)

(2∆t)
=
un+1
j − un−1

j

(2∆t)
,

∂u(x, t)

∂x

∣∣∣∣
t=tn, x=xj

≈ u(xj+1, tn)− u(xj−1, tn)

(2∆x)
=
unj+1 − unj−1

(2∆x)
,


(45)

where |∆x| and |∆t| are sufficiently small. Then, Eq. (42) can be approximated by the following difference
equations:

(a)
un+1
j − un−1

j

2∆t
+ a

unj+1 − unj−1

2∆x
= 0,

(b)
un+1
j − un−1

j

2∆t
− a

unj+1 − unj−1

2∆x
= 0.

 (46)

They can be recast into the form

Difference equations for Eq. (42)� �
(a) un+1

j = un−1
j − ∆t

∆x
a (unj+1 − unj−1),

(b) un+1
j = un−1

j +
∆t

∆x
a (unj+1 − unj−1).

 (47)

� �
2.2.2 Boundary condition setting

Consider the difference equation (47) with N cells. The boundary conditions in Sec. 2.1.2 are described as
follow:

• Dirichlet (fixed) boundary condition:

un1 = f(x1),

unN = f(xN ).

}
(48)

• Periodic boundary condition:
un0 = unN

unN+1 = un1

}
(49)

2.2.3 CNN circuit realization

We show the circuit realization of Eq. (47). Consider the resistor-coupled CNN shown in Fig. 5, where each
cell consists of a capacitor Cand a voltage-controlled current source Ij . The dynamics of this circuit is given
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Figure 5: A CNN realization of Eq. (47) with linear resistor coupling between cells. The CNN cell consists
of a capacitor C and a voltage-controlled current source Ij , where C = 1 and Ij = 2(vj − vj−1)/R.

by

C
dvj(t)

dt
=

vj+1(t)− 2vj(t) + vj−1(t)

R
+ Ij

=
vj+1(t)− 2vj(t) + vj−1(t)

R
+

2(vj(t)− vj−1(t))

R

=
vj+1(t)− vj−1(t)

R


(50)

where C = 1 and Ij = 2(vj − vj−1)/R. Thus, we can obtain the following equation:

Dynamics of the resistor-coupled CNN in Fig. 5� �
dvj(t)

dt
=
vj+1(t)− vj−1(t)

R
(51)� �

Using the central difference for the time derivative, we obtain:

∂vj(t)

∂t

∣∣∣∣
t=tn

≈ vj(tn+1)− vj(tn−1)

2∆t
=
vn+1
j − vn−1

j

2∆t
, (52)

where vnj = vj(tn), tn = t0 + n∆t, and |∆t| is sufficiently small. Then, we can approximate Eq. (51) by the
following difference equation:

vn+1
j − vn−1

j

2∆t
=
vnj+1 − vnj−1

R
, (53)

It can be recast into the form

Difference equations for Eq. (51)� �
(a) vn+1

j = vn−1
j − ∆t

∆x
a (vnj+1 − unj−1) for R = −2∆x,

(b) vn+1
j = vn−1

j +
∆t

∆x
a (vnj+1 − unj−1) for R = 2∆x.

 (54)

� �
Thus, Eq. (54) is equivalent to Eq. (47), that is, they have the same solution. We call Eq. (54) as the
first-order linear wave CNN Diff. Eqs.
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2.2.4 Computer simulations

Consider the first-order linear wave CNN Diff. Eq. (54)(a). We study the behavior of its solutions for the
two kinds of initial conditions.

• Case 1. Assume that the initial condition is given by the unit step function:

v0j =

{
0 (j ≥ 100),
1 (otherwise),

(55)

and the boundary condition is given by the Dirichlet (fixed) boundary condition:

vn1 = 1,

vnN = 0.

}
(56)

where N = 250 (cells). We show our computer simulations in Fig. 6, where the parameters for Eq.
(54)(a) are given by

a = 0.2, N = 200, ∆t = 0.05, ∆x = 0.3, 0 ≤ n ≤ 500. (57)

Observe that the initial wave evolves into a train of solitary-like waves. They are generated in the
neighborhood of the discontinuity point of the initial wave. These solitary-like waves move to the
right at a constant speed. Note that the initial state (condition), that is, the unit step function is not
continuously differentiable for all x.3

• Case 2. The initial condition is given by the cos function:

v0j = cos

[
2π

(
j

N − 1

)]
, (58)

and the boundary condition is given by the periodic boundary condition:

vn0 = vnN ,

vnN+1 = vn1 ,

}
(59)

where N = 256 (cells). We show our computer simulations in Fig. 7, where the parameters for Eq.
(54)(a) are given by

a = 0.2, N = 256, ∆t = 0.05, ∆x = 0.3, 0 ≤ n ≤ 3000. (60)

Observe that the initial sine wave moves at a constant speed without distortion. This behavior is quite
different from that of Case 1.

3The general solutions of Eq. (42) are continuously differentiable for all x.
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(a)

(b)

Figure 6: Three-dimensional plots of soliton waves in the first-order linear wave CNN Diff. Eq. (54). Two
different plots of the soliton-like waves are shown. The initial condition is given by the unit step function
and the boundary condition is given by the Dirichlet (fixed) boundary condition. Observe that the initial
wave evolves into a train of solitary-like waves.
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(a)

(b)

Figure 7: Three-dimensional plots of soliton waves in the first-order linear wave CNN Diff. Eq. (54). Two
different plots of the waves are shown. The initial condition is given by the cos function and the boundary
condition is given by the periodic boundary condition. Observe that the initial sine wave moves at a constant
speed without distortion.
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2.3 First-order nonlinear wave equation

The simplest first-order nonlinear wave (or kinematic wave) equation is

First-order nonlinear wave equation� �
∂u(x, t)

∂t
+ c(u)

∂u(x, t)

∂x
= 0. (61)� �

where u(x, t) is the amplitude of the wave at position x and time t, and c(u) is a given function of u. This
nonlinear equation describes the propagation of a nonlinear wave in the negative direction of the x-axis with
velocity c(u).

2.3.1 Difference equation approximation

We approximate Eq. (61) by using the central difference scheme. Let us define unj by

unj
def
= u(xj , tn), (62)

where xj = x0 + j∆x and tn = t0 +n∆t (x0, t0, ∆x, and ∆t are some constants), and j and n are integers).
Using the central difference for the space and time derivatives, we obtain

∂u(x, t)

∂t

∣∣∣∣
t=tn, x=xj

≈ u(xj , tn+1)− u(xj , tn−1)

2∆t
=
un+1
j − un−1

j

2∆t
,

∂u(x, t)

∂x

∣∣∣∣
t=tn, x=xj

≈ u(xj+1, tn)− u(xj−1, tn)

2∆x
=
unj+1 − unj−1

2∆x
,


(63)

where |∆x| and |∆t| are sufficiently small. Then, we can approximate Eq. (61) by the following difference
equation:

Difference equation for Eq. (61)� �
un+1
j = un−1

j − ∆t

∆x
c(unj ) (unj+1 − unj−1). (64)� �

2.3.2 CNN circuit realization and difference equation approximation

We show the circuit realization of Eq. (64). Consider the CNN cell in Fig. 5. If we replace voltage-controlled
current source Ij in Fig. 5 with

Ij =
2(vj − vj−1)

R
+

(vj+1 − vj−1)δ(vj)

R
, (65)

then the dynamics of the circuit in Fig. 5 is given by

C
dvj(t)

dt
=

vj+1(t)− 2vj(t) + vj−1(t)

R
+ Ij

=
vj+1(t)− 2vj(t) + vj−1(t)

R
+

2(vj(t)− vj−1(t))

R
+

(vj+1(t)− vj−1(t))δ(vj(t))

R

= − (1 + δ(vj(t)))(vj(t)− vj−1(t))

R
= −c(vj(t))(vj+1(t)− vj−1(t))

R
,

(66)

where δ(vj) is a function of vj and c(vj)
def
= 1 + δ(vj). Thus, we can obtain the following equation:
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Dynamics of the resistor-coupled CNN in Fig. 5� �
C
dvj(t)

dt
= −

c
(
vj(t)

)
(vj+1(t)− vj−1(t))

R
. (67)� �

Using the central difference for the time derivative, we obtain

dvj(t)

dt

∣∣∣∣
t=tn

≈ vj(tn+1)− vj(tn−1)

2∆t
=
vn+1
j − vn−1

j

2∆t
(68)

Then, we can approximate Eq. (67) by the following difference equation:

C

(
vn+1
j − vn−1

j

2∆t

)
= −

c(vnj ) (vnj+1 − vnj−1)

R
, (69)

where vnj = vj(tn), tn = t0 + n∆t, and |∆t| � 1. If we assume that C = 1 and R = 2∆x, then we obtain

Difference equation for Eq. (67)� �
vn+1
j = vn−1

j − ∆t

∆x
c(vnj ) (vnj+1 − vnj−1), (70)� �

Thus, Eq. (70) is equivalent to Eq. (64), that is, they have the same solution. We call Eq. (70) as the
first-order nonlinear wave CNN Diff. Eq.

2.3.3 Boundary condition setting

Consider the discrete wave equation (47) with N cells. The boundary conditions in Sec. 2.1.2 are described
as follow:

• Dirichlet (fixed) boundary condition:

un1 = f(x1),

unN = f(xN ).

}
(71)

• Periodic boundary condition:
un0 = unN ,

unN+1 = un1 .

}
(72)

2.3.4 Computer simulations

Consider the first-order linear wave CNN Diff. Eq. (70) with N = 256 (cells). Assume that the initial
condition is given by the sine wave:

v0j = sin

[
2π

(
j

N − 1

)]
, (73)

and the boundary condition is given by the Dirichlet (fixed) boundary condition:

vn1 = 0,

vnN = 0,

}
(74)
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where j = 1, 2, · · · , 256. We show our computer simulations in Fig. 7, where the parameters for Eq. (70)
are given by

a = 0.2, N = 256, ∆t = 0.05, ∆x = 0.3, 0 ≤ n ≤ 1250. (75)

Observe that the shape of the initial curve is distorted continuously with increasing time, if the initial
condition is given by the sin wave. That is, the wave gets progressively steeper until the wave overtops, and
ultimately the waveform breaks down (a floating point overflow occurs in our computer simulations). It is
due to the reason that the solution becomes multiple-valued for t.
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(a)

(b)

Figure 8: Three-dimensional plots of soliton waves in the first-order nonlinear wave CNN Diff. Eq. (70).
Two different plots of the waves are shown. The initial condition is given by the sine wave and the boundary
condition is given by the Dirichlet (fixed) boundary condition. Observe that the shape of the initial curve is
distorted continuously with increasing time, and the wave gets progressively steeper until the wave overtops.
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3 Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation is one of the most well known of all nonlinear partial differential
equations. It was proposed by D. Korteweg and G. de Vries [6] to describe weakly nonlinear shallow water
waves:

∂u(x, t)

∂t
+ a u(x, t)

∂u(x, t)

∂x
+ b

∂3u(x, t)

∂x3
= 0. (76)

where a and b are constants.4

3.1 Difference equation approximation

We approximate Eq. (76) by using the central difference scheme. Let us define unj by

unj
def
= u(xj , tn) (77)

where xj = x0 + j∆x and tn = t0 + n∆t (x0, t0, ∆x, and ∆t are some constants, and j and n are integers).
Using the finite difference approximations for the time and space derivatives, we obtain:

∂u(x, t)

∂t

∣∣∣∣
t=tn, x=xj

≈
un+1
j − un−1

j

2∆t
,

∂u(x, t)

∂x

∣∣∣∣
t=tn, x=xj

≈
unj+1 − unj−1

2∆x
,

∂3u(x, t)

∂x3

∣∣∣∣
t=tn, x=xj

≈
unj+2 − 2unj+1 + 2unj−1 − unj−2

2(∆x)3
,


(78)

where |∆t| and |∆x| are sufficiently small. Substituting Eq. (78) into Eq. (76), we obtain

un+1
j − un−1

j

2∆t
+ aunj

(
unj+1 − unj−1

2∆x

)
+ b

unj+2 − 2unj+1 + 2unj−1 − unj−2

2(∆x)3
= 0, (79)

or equivalently

un+1
j = un−1

j −
(
a∆t

∆x

)
unj (unj+1 − unj−1)−

(
b∆t

∆x3

)
(unj+2 − 2unj+1 + 2unj−1 − unj−2). (80)

3.2 Boundary condition setting

Consider the discrete wave equation (80) with N cells. The boundary conditions in Sec. 2.1.2 are described
as follow:

• Dirichlet (fixed) boundary condition:

un1 = un2 = f(x1),

unN = unN−1 = f(xN ).

}
(81)

• Periodic boundary condition:
un0 = unN ,

un−1 = unN−1,

unN+1 = un1 ,

unN+2 = un2 .


(82)

4In [1], the parameters a and b are set to 1 and (0.022)2, respectively.
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3.3 CNN circuit realization and difference equation approximation

Figure 9: A CNN realization of Eq. (80). The CNN cell Nj consists of three elements, that is, a capacitor C,

a voltage-controlled current source Ij , and a unity-gain buffer. Here, C = 1, Ij = −
( a

2∆x

)
ynj (ynj+1−ynj−1),

and vj = yj . Each CNN cell are connected to four neighbor cells using the four resistors Ri (i = 1, 2, 3, 4).
A unity gain buffer is an op-amp circuit which has a voltage gain of 1.

We show the circuit realization of Eq. (80). Consider the CNN cell model shown in Fig. 9, where the
cell consists of a capacitor C, a voltage-controlled current source Ij , and a unity gain buffer. The dynamics
of this circuit is given by

C
dvj(t)

dt
= Ij + Is

= −
( a

2∆x

)
yj (yj+1 − yj−1) +

yj−2 − yj
R1

+
yj−1 − yj

R2
+
yj+1 − yj

R3
+
yj+2 − yj

R4

(83)

where

Ij = −
( a

2∆x

)
ynj (yj+1 − yj−1)

Is =
yj−2 − yj

R1
+
yj−1 − yj

R2
+
yj+1 − yj

R3
+
yj+2 − yj

R4

(84)

If we set

C = 1, R1 = −2∆x3

b
, R2 =

∆x3

b
, R3 = −∆x3

b
, R4 =

2∆x3

b
, (85)

then we obtain

dvj
dt

= −
( a

2∆x

)
ynj (ynj+1 − ynj−1) +

(
b

2∆x3

)[
−(ynj−2 − vnj ) + 2(ynj−1 − vnj )− 2(ynj+1 − vnj ) + (ynj+2 − vnj )

]
= −

( a

2∆x

)
ynj (ynj+1 − ynj−1)−

(
b

2∆x3

)
(ynj+2 − 2ynj+1 + 2ynj−1 − vnj−2),

(86)
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where vj = yj . Let vj(tn) = vnj , where tn = t0 + n∆t. Using the central difference for the time derivative,
we obtain:

∂vj(t)

∂t

∣∣∣∣
t=tn

≈
vn+1
j − vn−1

j

2∆t
, (87)

where ∆t is sufficiently small. Then, from Eq. (86), we get the difference equation:

vn+1
j = vn−1

j −
(
a∆t

∆x

)
vnj (vnj+1 − vnj−1)−

(
b∆t

∆x3

)
(vnj+2 − 2vnj+1 + 2vnj−1 − vnj−2), (88)

where we replaced yj with vj , since vj = yj . Thus, Eq. (88) is equivalent to Eq. (80), that is, they have the
same solution. We call Eq. (88) as the Korteweg-de Vries (KdV) CNN Diff. Eq.

3.4 Memristor CNN cell model

Consider next the CNN cell model shown in Fig. 10, where we replaced the voltage-controlled current source
in Fig. 9 with the coupled extended memristor. The dynamics of this circuit is given by

C
dvj
dt

= Is + iM

= −
( a

2∆x

)
(yj+1 − yj−1)W (ϕj) vM +

yj−2 − yj
R1

+
yj−1 − yj

R2
+
yj+1 − yj

R3
+
yj+2 − yj

R4
,

dϕj

dt
= vj ,

(89)

where

iM = −
( a

2∆x

)
(yj+1 − yj−1)W (ϕj) vM ,

vM = vj = yj ,

Is =
yj−2 − yj

R1
+
yj−1 − yj

R2
+
yj+1 − yj

R3
+
yj+2 − yj

R4
,

(90)

The v-i characteristic of the coupled extended memristor is given by

iM = −
( a

2∆x

)
(yj+1 − yj−1)W (ϕj) vM , (91)

where ϕj is the flux of the coupled extended memristor and W (ϕj) is a scalar function of ϕj (
dϕj

dt = vM ).
Using the central difference for the time derivative, we get the difference equation:

vn+1
j = vn−1

j −
(
a∆t

∆x

)
(vnj+1 − vnj−1)W (ϕn

j ) vnj −
(
b∆t

∆x3

)
(vnj+2 − 2vnj+1 + 2vnj−1 − vnj−2),

ϕn+1
j = ϕn−1

j + 2(∆t) vnj ,

 (92)

where vj(tn) = vnj , ϕj(tn) = ϕn
j , tn = t0 + n∆t, and the circuit parameters are given by

C = 1, R1 = −2∆x3

b
, R2 =

∆x3

b
, R3 = −∆x3

b
, R4 =

2∆x3

b
. (93)

We call Eq. (92) as the Korteweg-de Vries (KdV) memristor CNN Diff. Eq.
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Figure 10: A memristor CNN cell model. The CNN cell Nj consists of three elements, that is, a capacitor
C, a coupled extended memristor, and a unity-gain buffer, where C = 1 and vj = vM = yj . The v-i

characteristic of the coupled extended memristor is given by iM = −
( a

2∆x

)
(yj+1−yj−1)W (ϕj) vM , where

ϕj is the flux of the coupled extended memristor and W (ϕj) is a scalar function of ϕ (=
∫
vM (t)dt). Even

though the extended memristor appears to be disconnected, its dynamics is coupled via the state variables
yj+1 and yj−1. Each CNN cell are connected to four neighbor cells using the four resistors Ri(i = 1, 2, 3, 4).
A unity gain buffer is an op-amp circuit which has a voltage gain of 1.

3.4.1 Computer simulations

Consider tthe Korteweg-de Vries (KdV) memristor CNN Diff. Eq. (92) with N = 256 (cells). Assume that
the initial condition is given by the sine wave:

v0j = sin

[
2π

(
j

N

)]
, (94)

and the boundary condition is given by the periodic boundary condition:

vn0 = vnN ,

vn−1 = vnN−1,

vnN+1 = vn1 ,

vnN+2 = vn2 .


(95)

We show our computer simulations in Fig. 11, where the parameters for Eq. (92) is given by

a = 0.2, b = 0.1, N = 256, ∆t = 0.1, ∆x = 0.4, n = 7000. (96)

Observe that the initial sin wave evolves into a train of soliton waves. When a soliton interacts with another
soliton, it emerges from the collision without a phase shift. Ultimately, the solution breaks down (that is,
a floating point overflow occurs in our computer simulations). The three-dimensional plot of soliton waves
looks like a chicken cockscomb.
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(a)

(b)

Figure 11: Three-dimensional plots of soliton waves in the Korteweg-de Vries (KdV) CNN Diff. Eq. (88).
Two different plots of the soliton waves are shown. The initial condition is given by the sine wave and the
boundary condition is given by the periodic boundary condition. The soliton waves of Fig. 11 (b) look like
a chicken cockscomb.
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Assume that the initial condition is given by the function of tangent hyperbolic:

v0j =

1− tanh

(
j − 100)

1.5

)
2

; (97)

and the boundary condition is given by the fixed boundary condition:

vn1 = vn2 = 1,

vnN−1 = vnN = 0.

}
(98)

We show our computer simulations in Fig. 12, where the parameters for Eq. (92) are given by

a = 0.5, b = 0.1, N = 256, ∆t = 0.05, ∆x = 0.3, 0 ≤ n ≤ 400. (99)

Observe that the initial wave evolves into a train of soliton waves.

Figure 12: TThree-dimensional plots of soliton waves in the Korteweg-de Vries (KdV) CNN Diff. Eq. (88).
The initial condition is given by the function of tangent hyperbolic and the boundary condition is given by
the fixed boundary condition.
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Consider next the Korteweg-de Vries (KdV) memristor CNN Diff. Eq. (92). Assume that the initial
condition is given by

v0j =

∣∣∣∣cos

[
2π

(
j

N

)]∣∣∣∣ , (100)

and the boundary condition is given by the periodic boundary condition:

vn0 = vnN ,

vn−1 = vnN−1,

vnN+1 = vn1 ,

vnN+2 = vn2 .


(101)

We show our computer simulations in Fig. 13, where the parameters for Eq. (92) are given by

a = 0.2, b = 0.1, N = 256, ∆t = 0.05, ∆x = 0.4, 0 ≤ n ≤ 40000. (102)

and W (ϕj) is given by

W (ϕj) =

{
1, |ϕ| ≤ 1,

1.5, (otherwise),
(103)

where c and d are constants. Observe that the three-dimensional plot of the soliton waves exhibit more
complicated (chaotic) behavior than that of the Korteweg-de Vries (KdV) CNN Diff. Eq. (88).
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(a) three-dimensional plot

(b) two-dimensional plot

Figure 13: Two different views of the waves in the Korteweg-de Vries (KdV) memristor CNN Diff. Eq.
(92). The initial condition is given by the cosine wave and the boundary condition is given by the periodic
boundary condition. (a) Observe that the waves exhibit complicated (chaotic and distorted) behavior. (b)
Observe that the wave interacts with another wave, and it emerges from the collision. In Fig. 13(b), the
z-coordinate, that is, vnj is mapped onto a plane by projecting the three-dimensional plot along the z axis.
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4 Sine-Gordon Equation

The sine-Gordon equation appears in a number of other physical applications, including the propagation of
fluxons in Josephson junctions. The sine-Gordon equation is

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
− sin(u(x, t)) = 0, (104)

where u(x, t) is the amplitude of the wave at position x and time t, and a is the velocity of the wave.

4.1 Difference equation approximation

We approximate Eq. (104) by using the central difference scheme. Let us define unj by

unj
def
= u(xj , tn), (105)

where xj = x0 + j∆x and tn = t0 + n∆t (x0, t0, ∆x, and ∆t are some constants, and j and n are integers).
Using the second-order central difference for the space and time derivatives, we obtain:

∂2u(x, t)

∂x2

∣∣∣∣
t=tn, x=xj

≈
unj+1 − 2unj + unj−1

(∆x)2
,

∂2u(x, t)

∂t2

∣∣∣∣
t=tn, x=xj

≈
un+1
j − 2unj + un−1

j

(∆t)2
,

(106)

where |∆x| and |∆t| are sufficiently small. Substituting Eq. (106) into Eq. (104), we obtain

unj+1 − 2unj + unj−1

(∆t)2
−
unj+1 − 2unj + unj−1

(∆x)2
− sin(unj ) = 0. (107)

It can be recast into the form

unj+1 = 2unj − unj−1 +
(∆t)2

(∆x)2
(unj+1 − 2unj + unj−1) + (∆t)2 sin(unj ). (108)

4.2 Boundary condition setting

Consider the difference equation (108) with N cells. The boundary conditions in Sec. 2.1.2 are described as
follow:

• Dirichlet (fixed) boundary condition:

un1 = f(x1),

unN = f(xN ).

}
(109)

• Periodic boundary condition:
un0 = unN

unN+1 = un1

}
(110)
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Figure 14: A CNN realization of Eq. (108) with linear resistor coupling between cells. The CNN cell consists
of a FNDR and a nonlinear resistor described by iR = sin(vR).

Figure 15: A CNN realization of Eq. (108) with linear resistor coupling between cells. The CNN cell consists
of a FNDR described by q = G(d2ϕ/dt2) and a memristor described by a constitutive relation between the
charge q and the flux ϕ, that is, q = sin(ϕ). Differentiate both sides of q = sin(ϕ) with respect to t, we
can obtain the relation between the terminal voltage vM and terminal current iM , that is, iM = cos(ϕ)vM
(iM = dq

dt , vM = dϕ
dt ).

4.2.1 CNN circuit realization and difference equation approximation

We show the circuit realization of Eq. (108). Consider the resistor-coupled CNN shown in Fig. 14.5 The
dynamics of this circuit is given by

d2vj(t)

dt2
=

1

R
(vj+1(t)− 2vj(t) + vj−1(t)) + sin(vj(t)). (111)

If we replace the voltage vj(t) in Eq. (111) with the flux ϕj(t), we obtain

d2ϕj(t)

dt2
=

1

R
(ϕj+1(t)− 2ϕj(t) + ϕj−1(t)) + sin(ϕj(t)). (112)

Equation (112) can be realized by the memristor circuit in Fig. 15.

5The FNDR is defined by i = G(d2v/dt2) in Sec. 2.1. However, in Fig. 14, the FNDR is described by q = G(d2ϕ/dt2).
Differentiating this equation with respect to t, we obtain i = G(d2v/dt2), where i = dq/dt and v = dϕ/dt. Thus, these two
equations are identical.
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Consider Eq. (111). Let vnj = vj(tn), where tn = t0 + n∆t. Using the second-order central difference for
the time derivative:

d2vj(t)

dt2

∣∣∣∣
t=tn

≈
vn+1
j − 2vnj + vn−1

j

(∆t)2
, (113)

we obtain the following difference equation from Eq. (111):

vn+1
j − 2vnj + vn−1

j

(∆t)2
=

1

R

(
vnj+1 − 2vnj + vnj−1

)
+ sin(vnj ). (114)

where ∆t is sufficiently small. It can be recast into the form

vnj+1 = 2vnj − unj−1 +
(∆t)2

(∆x)2
(vnj+1 − 2vnj + vnj−1) + (∆t)2 sin(vnj ), (115)

where we set R = (∆x)2. Thus, Eq. (115) is equivalent to Eq. (108), that is, they have the same solution.
We call Eq. (115) as the Sine-GordonCNN Diff. Eq.

Similarly, from Eq. (112), we obtain

ϕn
j+1 = 2ϕn

j − ϕn
j−1 +

(∆t)2

(∆x)2
(ϕn

j+1 − 2ϕn
j + ϕn

j−1) + (∆t)2 sin(ϕn
j ), (116)

where
dϕn

j

dt = vnj . It goes without saying that Eq. (116) is to equivalent to Eqs. (108) and (115), that is,
they have the same solution. We call Eq. (116) as the sine-Gordon memristor CNN Diff. Eq.

4.2.2 Computer simulations

Consider the sine-Gordon memristor CNN Diff. Eq. (116) with N = 200 (cells). Assume that the initial
condition is given by the pulse with the height of 30:

ϕ0
j =

{
30 (50 ≤ j ≤ 70),
0 (otherwise),

(117)

and the boundary condition is given by the Dirichlet (fixed) boundary condition:

ϕn
1 = 0,

ϕn
N = 0,

}
(118)

where j = 1, 2, · · · , 200. We show our computer simulations in Fig. 16, where the parameters for Eq. (116)
are given by

N = 200, ∆t = 0.1, ∆x = 0.1, 0 ≤ n ≤ 398. (119)

From our computer simulations, we observed the following behavior:

• The three dimensional plot of the solutions is little distorted, compared with that of the second-order
linear wave CNN Diff. Eq. (27) (see Fig 2 (b)).

• The solitary wave moves at constant speed. Furthermore, the wave with a negative amplitude (blue)
interacts with another wave (n ≈ 199), and it emerges from the collision.

• The solution returns the state which is roughly similar to the initial pulse (n = 398), that is, the
recurrence of the initial state is observed.
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Let us next replace the sine function sin(ϕn
j ) in Eq. (116) with the simple signum function, which is

defined by

sgn(ϕn
j ) =


−1 if ϕn

j < 0,
0 if ϕn

j = 0,
1 if ϕn

j > 0.
(120)

The initial condition is given by Eq. (117) and the boundary condition is given by Eq. (118). Then we
obtain the results in Fig. 17. Observe that the three dimensional plot of the solution is much more distorted
in the neighborhood of n = 398. Thus, we conclude that the nonlinear term sin(ϕn

j ) or the piecewise linear
term sgn(ϕn

j ) causes the distortion in the wave.
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(a) three-dimensional plot

(b) two-dimensional plot

Figure 16: Two different views of the waves in the sine-Gordon memristor CNN Diff. Eq. (116). The initial
condition is given by the pulse with the height of 30 and the boundary condition is given by the Dirichlet
(fixed) boundary condition. (a) Observe that the three dimensional plot of the solution is little distorted,
compared with that of Fig. 2 (b). Note that the solution returns the state which is roughly similar to the
initial pulse (n = 398). (b) Observe that the wave moves at constant speed. Furthermore, the wave with a
negative amplitude (blue) interacts with another wave (n ≈ 199), and it emerges from the collision. In this
figure, the z-coordinate, that is, ϕn

j is mapped onto a plane by projecting the three-dimensional plot along
the z axis.
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(a) three-dimensional plot

(b) two-dimensional plot

Figure 17: Two different views of the waves in the sine-Gordon memristor CNN Diff. Eq. (116), in which
the sine function is replaced by the signum function. The initial condition is given by the pulse with the
height of 30 and the boundary condition is given by the Dirichlet (fixed) boundary condition. (a) Observe
that the three dimensional plot of the solution is much more distorted, compared with that of Fig. 2 (b). (b)
Observe that the wave movies at constant speed. Furthermore, the wave with a negative amplitude (blue)
interacts with another wave (n ≈ 199), and it emerges from the collision. In this figure, the z-coordinate,
that is, ϕn

j is mapped onto a plane by projecting the three-dimensional plot along the z axis.
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5 Toda Lattice Equation

The Toda lattice is a simple model for a one-dimensional crystal in solid state physics. The Hamiltonian of
such a system is given by [7, 8]

H =
∑
j

1

2
pj

2 +
∑
j

e−( qj+1−qj ) (121)

where qj is the displacement of the j-th particle from its equilibrium position, and pj is its momentum (mass
m = 1). Then, the Hamilton’s Equations are given by

dqj
dt

= pj ,

dpj
dt

= e−( qj−qj−1 ) − e−( qj+1−qj ),

 (122)

where j = 1, 2, · · · , N and we consider the case of a periodic lattice of the length N : qj = qj+N .
Define new variables

aj =
1

2
e−( qj+1−qj )/2,

bj =
1

2
pj ,

 (123)

where j = 1, 2, · · · , N . Then Eq.(122) can be recast into the form [8, 9]

daj(t)

dt
= (bj(t)− bj+1(t))aj(t),

dbj(t)

dt
= 2 (aj−1(t)

2 − aj(t)2),

 (124)

where j = 1, 2, · · · , N . In the case of a periodic lattice of the length N , aj = aj+N , bj = bj+N .

5.1 Difference equation approximation

We approximate Eq. (124) by using the central difference scheme. Let us define anj and bnj by

anj
def
= aj(tn),

bnj
def
= bj(tn).

 (125)

where tn = t0 +n∆t (t0 and ∆t are some constants). Using the second-order central difference for the space
and time derivatives, we obtain

daj(t)

dt

∣∣∣∣
t=tn

≈ aj(tn+2)− aj(tn)

2∆t
=

an+2
j − anj

2∆t
,

dbj(t)

dt

∣∣∣∣
t=tn

≈ bj(tn+2)− bj(tn+2)

2∆t
=

bn+2
j − bnj

2∆t
,

 (126)

where ∆t is sufficiently small. Then, we can approximate Eq. (124) by the following difference equation:

an+2
j − anj

2∆t
=

(
bnj − bnj+1

)
anj ,

bn+2
j − bnj

2∆t
= 2

(
(anj−1)2 − (anj )2

)
,

 (127)
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It can be recast into the form

an+2
j = anj + 2∆t

(
bnj − bnj+1

)
anj ,

bn+2
j = bnj + 2∆t

(
(anj−1)2 − (anj )2

)
.

 (128)

We call Eq. (128) as the Toda lattice Diff. Eq.

5.2 Boundary condition setting

Consider the Toda lattice Diff. Eq. (128) with N cells. The boundary conditions in Sec. 2.1.2 are described
as follow:

• Dirichlet (fixed) boundary condition:

an1 = an2 = f(x1),

anN−1 = anN = f(xN ),

bn1 = bn2 = g(x1),

bnN−1 = bnN = g(xN ),


(129)

• Periodic boundary condition:
an0 = anN ,

an−1 = anN−1,

bn0 = bnN .

 (130)

Figure 18: A CNN realization of Eq. (128). The CNN cell consists of a capacitor and a coupled extended

memristor. The v-i characteristic of the coupled extended memristor is given by iM = (xj−xj+1)vM ,
dxj
dt

=

2(vj−1
2− vj2), where vM = vj and C = 1. Even though the extended memristor appear to be disconnected,

their dynamics are coupled wit the state variables.

36



5.3 CNN circuit realization and difference equation approximation

We show the circuit realization of Eq. (128). Consider the circuit shown in Fig. 18. The dynamics of this
circuit is given by

dvj
dt

= (xj − xj+1)vj ,

dxj
dt

= 2(vj−1
2 − vj2),

(131)

where the coupled extended memristor is defined by

iM = (xj − xj+1)vM ,

dxj
dt

= 2(vj−1
2 − vj2),

(132)

where C = 1 and vM = vj .
Let vj(tn) = vnj , where tn = t0 + n∆t. Using the second-order central difference for the time derivative,

we obtain
dvj(t)

dt

∣∣∣∣
t=tn

≈ vj(tn+2)− vj(tn)

2∆t
=

vn+2
j − vnj

2∆t
,

dxj(t)

dt

∣∣∣∣
t=tn

≈ xj(tn+2)− xj(tn+2)

2∆t
=

xn+2
j − xnj

2∆t
,

 (133)

where ∆t is sufficiently small. Then, we can approximate Eq. (131) by the following difference equation:

vn+2
j − vnj

2∆t
=

(
xnj − xnj+1

)
vnj ,

xn+2
j − xnj

2∆t
= 2

(
(vnj−1)2 − (vnj )2

)
.

 (134)

It can be recast into the form

vn+2
j = vnj + 2∆t

(
xnj − xnj+1

)
vnj ,

xn+2
j = xnj + 4∆t

(
(vnj−1)2 − (vnj )2

)
.

 (135)

Thus, Eq. (135) is equivalent to Eq. (128), that is, they have the same solution. We call Eq. (135) as the
Toda lattice memristor CNN Diff. Eq.

5.3.1 Computer simulations

Assume that the initial condition is given by the sine wave:

v0j = 0.01

(
1.5− sin

[
2π

(
j − 1

N

)])
,

x0j = 0.02 v0j .

 (136)

Furthermore, in order to calculate vnj and xnj for n = 2, 3, · · · from Eq. (135), we need to know v1j and x1j .
Using the forward (two-point) difference, we obtain

dvj
dt

∣∣∣∣
t=t0

≈ vj(t1)− vj(t0)

∆t
=

v1j − v0j
∆t

,

dxj
dt

∣∣∣∣
t=t0

≈ xj(t1)− xj(t0)

∆t
=

x1j − x0j
∆t

.

 (137)
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where ∆t = t1 − t0 is sufficiently small. Then, we can approximate Eq. (131) by

v1j − v0j
∆t

=
(
x0j − x0j+1

)
v0j ,

x1j − x0j
∆t

= 2
(

(v0j−1)2 − (v0j )2
)
.

 (138)

It can be recast into the form:

v1j = v0j + ∆t
(
x0j − x0j+1

)
v0j ,

x1j = xnj + 2∆t
(

(v0j−1)2 − (v0j )2
)
,

 (139)

Thus, we can obtain v1j and x1j using the initial conditions x0j , x0j+1, v0j , and v0j−1. Assume next that the
boundary condition is given by the periodic boundary condition:

vn0 = vnN ,

vn−1 = vnN−1,

xn0 = xnN .

 (140)

We show our computer simulations in Fig. 19, where ∆t = 0.1 and N = 256. Observe that the Toda
lattice memristor CNN Diff. Eq. (135) exhibits the following soliton-like behavior:

• The shape of the initial curve is distorted continuously with increasing time.

• The wave moves to the boundary, and reflects back. Then, the wave gets progressively steeper.

• A train of solitary waves are generated from the steepest part of the distorted wave. They move to
the boundary, and reflect back.

• A train of reflected solitary waves with negative (res. positive) amplitude interact with a train of
solitary waves with a positive (res. negative) amplitude, and they emerge from the collisions.

• After a certain period of time, the solution breaks down (a floating point overflow occurs in our
computer simulations).
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(a) 0 ≤ n ≤ 200 (b) 200 ≤ n ≤ 1000 (c) 1000 ≤ n ≤ 5000

(d) 5000 ≤ n ≤ 10000 (e) 10000 ≤ n ≤ 20000 (f) 20000 ≤ n ≤ 25000

(g) 25000 ≤ n ≤ 30000 (h) 30000 ≤ n ≤ 40000 (i) 40000 ≤ n ≤ 50000

(j) 50000 ≤ n ≤ 60000 (k) 60000 ≤ n ≤ 80000 (l) 80000 ≤ n ≤ 90000

Figure 19: Three-dimensional plots of soliton waves in the Toda lattice memristor CNN Diff. Eq. (135).
The initial condition is given by the sine wave and the boundary condition is given by the periodic boundary
condition. (a)-(g) The shape of the initial curve is distorted continuously with increasing time. (h)-(j) A
train of solitary waves are generated from the steepest part of the distorted wave. (k)-(l) A train of solitary
waves with negative (res. positive) amplitude interact with a train of solitary waves with a positive (res.
negative) amplitude, and they emerge from the collisions.
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6 Conclusion

We have studied the solitary waves in the CNN difference equations. A remarkable point is that the second-
order linear wave CNN difference equation can exhibit the basic properties of solitons. We have also shown
that the solitons in the memristor CNN difference equations exhibit more complicated behavior. In this
paper, we used the central difference scheme for solving the differential equations. If we use other difference
schemes, we may observe more interesting behavior. Furthermore, we used the synchronous parallel model
to obtain the solutions of the CNN difference equations. If we use the sequential model, then we may obtain
similar but little different results.
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