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Abstract

A new definition for quantum-mechanical momentum is proposed which
yields novel nonlinear generalisations of Schrödinger and Klein-Gordon
equations. It is thence argued that the superposition and uncertainty
principles as they stand cannot have general validity.
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1 Introduction

1.1 A brief history

In the foundations of modern physics there is nothing more controversial
than the measurement problem of quantum mechanics[1]: How should one
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reconcile the fact that on one hand, the wave function evolves determin-
istically according to the Schrödinger equation as a linear superposition
of different states, while on the other hand, outcome of measurements are
always a single definite state?
This problem is a mere reappearance of the old issue of wave-particle du-
ality, for as long as the wavefunction evolves one is dealing with a wave,
while as soon as a measurement is performed one observes a single par-
ticle, a single dot on the screen for example. The reconciliation of the
wave and particle pictures therefore is a crucial problem whose resolution
is necessary for making any progress regarding the measurement problem.
The pursuit of such reconciliation is at least as old as the quantum theory
itself1. It began with Mie’s ideas[2] and was pursued seriously by Einstein
after his successful explanation of the photoelectric effect[3]. Although
in a letter to Besso[4] Einstein admitted that ‘[...] All the fifty years of
conscious ruminations have not gotten me closer to an anwser for the
question: “What are light quanta?” These days any rascal may believe
that he knows, but he deludes himself.’, his idea of particles being concen-
trations (lumps) of continuous fields[3][5] is still the best concrete idea we
have for our attempts along such lines. This idea was a persistent theme
of Einstein’s attempts and was pursued through his grand programme of
Unified Field Theory [5].
In fact all the realist founders of quantum mechanics especially Schrödinger
himself initially thought in terms of wavepackets: a particle was assumed
to be a ‘parcel’ of matterwaves (an envelope) that moved together as a
whole by a group velocity equal to the velocity of the particle meanwhile
the inner waves (in the parcel) oscillated by a frequency equal to the
phase velocity of de Broglie’s matterwaves. But this view soon faced a
serious problem[6]: wavepackets which were supposed to be particles did
not maintain their integrity due to linearity and dispersion2. This objec-
tion and the consequent ‘victory’ of the idealist founders like Bohr was
serious enough to discourage even de Broglie for some twenty years [7]. de
Broglie’s interest in the problem was revitalised by Bohm’s theory[8]; the
theory that is now called de Broglie-Bohm or Pilot wave theory, according
to which –roughly– the particle and wave pictures are both maintained
simultaneously and the wave ‘guides’ the particle[9] by the guiding equa-
tion

p = ∇S
where S is the phase of the wavefunction (classically Hamilton’s principal
function)[10]. de Broglie-Bohm theory in its description of the double-
slit experiment, by considering the analogy between water waves and
matterwaves[9], relies on the idea of the fluid behaviour of the wavefunc-
tion, which was proposed and elaborated by Madelung[11] shortly after
Schrödinger’s work. This fluid picture of Madelung will prove to be useful
in our discussions in this paper.
de Broglie himself however considered pilot wave theory a ‘degenerate’
form of his early attempts[7]; such attempts evolved to what de Broglie

1We use ‘quantum theory’ to include also the so-called old quantum theory.
2Nonlinearity and dispersion however solves this problem by allowing the existence of

soliton solutions. This is one of our achievements in this paper.
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in his late years dubbed as the theory of the double solution, according
to which, particles were to be described by a nonlinear equation which
has the Schrödinger equation as its approximation, hence the return of
the Einsteinian theme. But neither Einstein nor de Broglie were able to
derive such an equation. In this paper we derive such an equation that

• Is a generalisation of Schrödinger equation: it simplifies to Schrödinger
equation by a certain mathematical condition, hence fulfilling de
Broglie’s maxim.

• Unlike the so-called Nonlinear Schrödinger equation[12] and the Ghirardi-
Rimini-Weber (GRW) theory[13], it contains no new arbitrary pa-
rameters.

• Is nonlinear and dispersive, hence allows for soliton solutions[14].

1.2 Motivation

According to the current understanding, Schrödinger equation governs the
evolution of the wavefunction between measurements and measurements
‘reset’ the probabilities. If we compare this statement with the issue
of wave-particle duality, we realise that observation of particles violates
unitarity and conservation of probability

∂|ψ|2

∂t
+∇ ·

(
|ψ|2∇S

m

)
= 0, (1)

In other words we maintain that it is the conservation of probability that
obstructs the application of Schrödinger equation to the collapse process.
Hence any reconciliation of wave and particle pictures must go beyond the
law of conservation of probability. It now temporarily serves us to recall
Penrose’s description of quantum mechanics[1] in terms of U-process3 and
R-process4. According to Penrose the complete evolution of the quantum
state must look like5

If we recall the fluid picture of Madelung and hence think of the above
graph as the motion of a quantum fluid of probability, we can presume
that the R-processes act as the sinks of the probability fluid. But the
current (orthodox) quantum mechanics crucially misses this point because

3Unitary evolution.
4Reduction (collapse of the wavefunction).
5The graph has a mere explanatory role and we do not consider it to accurately describe

reality, for in our view there is not any such discontinuous R-process.
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the fluid that it describes is an incompressible one; in other words one
without sinks (sources)[15][16]. This condition in non-relativistic quantum
mechanics is mathematically expressed by

∇ · v = ∇ · p = ∇ · k = 0. (2)

The conclusion is that a complete picture of reality in which the wave and
particle aspects are united hence the measurement problem is resolved –or
at least a serious attempt is made for its resolution– must dispose of the
incompressibility of the quantum probability fluid. It is an interesting fact
–to the best of our knowledge– that relaxation of this significant restric-
tion has not yet been considered.
Methodologically, we know it is quite difficult –if not impossible– to begin
with the condition (2) and arrive at a nonlinear equation. We must in-
stead reverse the process and by starting from a firm physical motivation,
find a nonlinear equation which simplifies to the Schrödinger equation by
imposing (2).
Nevertheless a key observation can be made immediately from (2) that
the current operatorial scheme of quantum mechanics cannot handle the
incompressibility condition (1) and in fact it yields a contradiction: as

p̂ = −i~∇

condition (2) for a test wavefunction ψ reads

∇ · (p̂ψ) = (∇ · p̂)ψ = −i~∇2ψ = 0 (3)

which is evidently an absurdity since derivation of (1) assumes ∇2ψ 6=
0, otherwise ∂tρ = 0. We will discuss this observation later in detail
and argue that this problem is caused by the associativity of quantum
mechanics’ operator algebra.

2 Harmonisation

It is the received wisdom that Planck-Einstein-de Broglie law6 pν = ~kν
belongs to the era of ‘old quantum mechanics’ and that in the realm
of quantum mechanics the right (and more fundamental) perspective is
to solve the Schrödinger equation for any case at hand. Although from
an instrumentalist point of view this perspective has been quite success-
ful, in this paper we advocate another perspective which will prove to
be more fruitful with regard to the foundational questions of quantum
mechanics. Our perspective is that quantum mechanics is basically ‘all’
about pν = ~kν . To adopt such perspective we need to first scrutinise
our understanding of its essential ingredient kν . By any rigorous math-

6The metric signature (+,−,−,−) is used everywhere in this paper. Greek indices run
over 0 to 3 (four dimensions).
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ematical definition7 it is required that a wave be defined as a field8 on
spacetime which satisfies a certain equation, without any explicit reference
to its four-wavevector. On the other hand, according to our perspective
pν = ~kν is a fundamental law of nature and appearance of kν in such a
law suggests that we must enforce all waves to acquire a mathematically
well-defined four-wavevector. Therefore we must find a definition for the
four-wavevector of a wave ψ in terms of the ψ itself ; we shall call this pro-
cess harmonisation. Considering the simplest case of a complex harmonic
wave9,10,

ψ = Ae−ikµx
µ

,

if we apply the gradient operator to both sides we have,

∂µψ = −ikµψ = −iψkµ (4)

we realise that there are three possibilites for harmonisation:

1. Linear-operatorial approach, in which k̂µ ∈ End
(
L2(R)

)
such that

ψ
k̂µ7−→ i∂µψ

i.e.
k̂µ
(
ψ
)

:= i∂µψ

plus the eigenvalue hypothesis

k̂µ(ψ) = kµψ = ψkµ

An immediate elaboration is needed here. It is astonishing how rich
and delicate notation can be. Equation (4) is all that we have to
begin with. It is valid only as it stands, and as it stands kµ is a
vector, not an operator on the L2 space of wavefunctions11. It is
not impermissible to promote kµ to an operator but to be logically
consistent we cannot change the fundamental equation (4) that we
started with. Therefore if we choose to promote kµ to an operator
–as we do in this approach– we must keep (4) as it stands, and that
is why we need the additional eigenvalue hypothesis. What we just
expressed is not anything controversial; it is one of the axioms[18]
of quantum mechanics, only in light of a different perspective.

7For example, an entity φ which satisfies the wave equation

∂2φ

∂t2
= v2∇2φ,

where v is the speed of propagation of the wave. Or, an entity φ which satisfies the Schrödinger
equation.

8We only consider scalar fields in this paper. Sufficient conditions of smoothness are also
assumed implicitly.

9Note that this is not the most general harmonic wave one can write. Moreover notice
that in these definitions only forward-in-time waves are considered. It is not clear whether
this preference of time direction affects the theory in a decisive manner; Woit has elaborated
on this issue in the context of QFT, see Appendix A to [17].

10Technically plane waves are not physically legitimate as they are not square-integrable,
but this issue can be rigorously avoided; see[18]. We do not involve in such technical details
hereafter in this paper.

11This must not be confused with the way one thinks of vectors as linear operators on space
of forms; that is a totally different matter
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2. Nonlinear-operatorial12 approach, in which ǩµ ∈ L2L
2\{0}

i.e. ǩµ : L2(R)\{0} → L2(R) such that

ψ
ǩµ7−→ i

∂µψ

ψ

i.e.

ǩµ(ψ) := i
∂µψ

ψ
6=
(
kµψ = ψkµ

)
thus without the need to add the eigenvalue hypothesis; because
with the eigenvalue hypothesis in this case we would have

i
∂µψ

ψ
= kµψ

⇒ ∂µψ = −kµψ2

which is incompatible with (4).

3. Neoclassical nonlinear approach, in which ψ ∈ L2(R)\{0} and kµ ∈
CR4

i.e. kµ : R4 → C such that

xν
kµ7−→ i

∂µψ(xν)

ψ(xν)

or

kµ(xν) := i
∂µψ(xν)

ψ(xν)
6=
(
kµψ = ψkµ

)
again without the need to add the eigenvalue hypothesis, for the
same reason stated above. As we shall see later the eigenvalue
hypothesis is automatically included as a special case in this neo-
classical approach in the sense that it leads to a generalisation of
Schrödinger and Klein-Gordon eigenvalue problems. The assump-
tion ψ ∈ L2(R)\{0} is made only to make connection with the Born
Principle, as our starting motivation requires. But after our theory
is developed it will become conceivable that the structure (Hilbert
Space) that comes with this assumption might not be necessary; es-
pecially the necessity of the inner product structure is hard to see
given that in this approach –among other things– we do not need to
define the notion of self-adjointness (which requires an inner product
to be defined).

The second and third approach might seem identical but there are crucial
differences which make them not only different but also incomparable: in
the nonlinear-operatorial approach –like linear-operatorial– ψ and ∂µψ
are not considered ‘independent’; once ψ is given one just puts it into the
input of ǩµ to get momentum. This is essentially the reason that in the
derivation of Schrödinger equation from the variational principle, one only
varies with respect to ψ (and ψ∗). In the neoclassical approach however, ψ
and ∂µψ are considered ‘independent’. Indeed this is the reason for calling
it neoclassical because it reminds one of the way position and momentum

12We do not restrict our notion of ‘operator’ here to one which has the same domain and
codomain.
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are treated in analytical mechanics. Another crucial difference of the
second and third approach will be explained in Appendix A.
The linear-operatorial approach is familiar and well-studied, being the
foundation for orthodox quantum mechanics. The nonlinear-operatorial
approach can handle the incompressibility condition, but in finding a wave
equation it faces a serious problem13; therefore we do not pursue it in
this paper. The neoclassical approach is the only alternative that can
both handle the incompressibility condition and yield a generalisation of
Schrödinger equation. It is therefore the neoclassical approach on which
we are focused in this paper as our main proposal. To the best of our
knowledge this approach is new: it is the first time that

pµ = i~∂µψ
ψ

(5)

is proposed as the definition of quantum-mechanical momentum. Al-
though de Broglie-Bohm theory comes quite close to our approach, it
misses the point by dispensing with the imaginary part of the momentum
in order to make the same predictions as the Schrödinger picture. To be
precise, if we write the wavefunction in polar form

ψ(x, t) = R(x, t)eiS(x,t)/~

where R,S : R3×R→ R, we see that according to our proposed definition
of quantum-mechanical momentum we have

v =
∇S
m
− i~
m

∇R
R

(6)

while in de Broglie-Bohm theory only the first term is considered[19], how-
ever in our view there is no a priori theoretical reason why one should do
so, on the contrary we will soon argue that neglecting the second term
comes from a metaphysical position. By omission of this second term one
is losing some of the ‘information’ encoded in the wavefunction. Indeed
this can be better seen if we think of S as the Hamilton’s principal func-
tion in classical mechanics (Hamilton-Jacobi theory[10]). We know that
quantum mechanics must tell us more about reality than what classical
mechanics does, however by leaving something (the guiding equation) un-
changed that already exists in classical mechanics we cannot hope to fully
achieve this expectation. Inclusion of the imaginary part is an important
point of departure for our theory compared to de Broglie-Bohm theory,
whose guiding equation is a special case of our definition by letting

∇R = 0, R 6= 0

resulting in
∃f : R→ R, such that R = f(t) 6= 0

which means that de Broglie-Bohm theory by assumption only includes
wavefunctions with amplitudes that are uniform in space. The orthodox
quantum mechanics is not different with regard to this limitation because
by its conservation of probability (1) it implicitly assumes v = ∇S/m.

13The problem is explained in Appendix A.
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The basic reason that de Broglie-Bohm and orthodox quantum theory
neglect the second term is that being bound by the eigenvalue hypothesis
they think of eigenvalues as what is actually observed in measurements
hence they require the eigenvalues to be real numbers. We believe that
this is the last remnant of ‘classical thinking’ in quantum mechanics, that
presupposes only real numbers exist. It is true that in measurements one
only observes real numbers but that can well be a limitation of our un-
derstanding: that we cannot observe imaginary numbers is not a reason
they cannot exist. In fact our proposal of including the second term in
(6) is quite aligned with the work of Renou et al.[20] who are discussing
the possibility of empirically testing the ‘reality’ of complex numbers. By
loosening this restriction our approach proves to yield novel insights which
are obscured by narrowing physical entities to linear self-adjoint opera-
tors.
Even if we ignore this important point, on the conceptual side, de Broglie-
Bohm theory never promotes (5) to the definition of momentum in quan-
tum mechanics as the theory only augments Schrödinger’s theory with the
additional guiding equation.
One aspect of incompleteness of mathematics of quantum theory as it
stands nowadays is therefore shown here. The incompleteness that (6)
reveals provides a reason to think that the definition (5) by successfully
handling the incompressibility condition as we shall see, is the right defi-
nition for quantum-mechanical momentum by virtue of its generality.

3 Neoclassical Nonlinear theory

3.1 Generalisation of Schrödinger equation

Similar to the familiar derivation of the Schrödinger equation from the
law of conservation of energy, we apply the Planck-Einstein-de Broglie
law pµ = ~kµ to the logarithmic approach to get

p = −i~∇(logψ) and E = i~ ∂
∂t

(logψ) (7)

Substituting (7) in the law of conservation of energy

E =
p · p
2m

+ V,

yields

i~ ∂
∂t

logψ = − ~2

2m
(∇ logψ)2 + V (8)

To get the Schrödinger equation, notice that (8) is equivalent to

i~∂ψ
∂t

= − ~2

2m

|∇ψ|2

ψ
+ V ψ (9)

which differs from the Schrödinger equation only by the term

|∇ψ|2

ψ
,
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which we now show only in the special case that k is a solenoidal field,
is equal to the corresponding term in Schrödinger equation. Consider the
incompressibility condition (2)

∇ · k = 0 (10)

Which, by our definition (5) is

∇ · (∇ψ
ψ

) =
ψ∇2ψ − |∇ψ|2

ψ2
= 0

therefore
|∇ψ|2

ψ
= ∇2ψ (11)

In other words, Schrödinger equation is a special case of the nonlinear
equation derived in this paper. Condition (11) reveals an important but
hidden assumption of the current theory of quantum mechanics about
wavefunctions; yet it is not unexpected at all, for it is equivalent –if we
use the right definition of momentum– to the condition (2) which was
already a well-known fact. What obscured this equation so far to be
explicitly stated is the incomplete definition of momentum in orthodox
quantum mechanics, which, as we remarked in the introduction cannot
handle the condition satisfactorily.
We can now explicitly see how linearity of Schrödinger equation arises from
nonlinearity of (9), and how an eigenvalue problem which is a marker of
quantum discreteness and quantum ‘jumps’ is only a special case to a
nonlinear but continuous reality. In this light the superposition ‘princi-
ple’ is only an special-case feature of nature and has a limited domain of
applicability.
The observation in which an eigenvalue problem arises from a more gen-
eral nonlinear equation is quite a generic one and worthy of emphasis.
As a simple example consider how Helmholtz equation

∇2φ = −k2φ

can be an approximation to the following nonlinear equation

∇ · (∇φ
φ

) = −k2,

for φ 6= 0,
As

∇ · (∇φ
φ

) =
1

φ
∇2φ− |∇φ|

2

φ2
= −k2

Multiplying both sides by φ yields

∇2φ− |∇φ|
2

φ
= −k2φ

If we apply the approximation

|∇φ|2

φ
≈ 0

we are led to the original Helmholtz equation.
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3.2 Generalisation of Klein-Gordon equation

Our definition of momentum (5) can be readily substituted in E2 = p2c2+
m2c4 to yield

1

c2
(
∂ψ

∂t
)2 − |∇ψ|2 + (

mc

~
)2ψ2 = 0 (12)

which can also be written as

−〈∂µψ, ∂
µψ〉

ψ2
= (

mc

~
)2 (13)

where 〈·, ·〉 denotes the inner product of the complexified Minkowski space-
time.
Similar to the case for non-relativistic equation (3), this equation as well
is reduced to the Klein-Gordon equation by the special-relativistic gener-
alisation of condition (2)

∂µp
µ = ∂µk

µ = 0 (14)

which is
ψ�ψ − 〈∂µψ, ∂µψ〉

ψ2
= 0

⇒ 〈∂µψ, ∂
µψ〉

ψ2
=

�ψ
ψ

Substitution in the alternative form (13), we have

�ψ
ψ

= −(
mc

~
)2

multiplication of both sides by ψ yields(
� + (

mc

~
)2
)
ψ = 0

i.e. the Klein-Gordon equation.

3.3 Comparison with other relevant nonlinear equa-
tions

A nonlinear generalisation of Schrödinger equation reminds one of the
Nonlinear Schrödinger equation[12]

i
∂ψ

∂t
= −1

2
∇2ψ + k|ψ|2ψ

and possibly other similar equations like Gross-Pitaevskii[21].
On mathematical side, our proposed equation is totally different from such
equations in that it is a first-order PDE.
On physical side, all such equations are based on various approximations[22][23]
hence with no simple and elegant derivation. Being approximations and
not generalisations they all owe their physical role to a more fundamental
(as opposed to emergent) equation. In case of the Gross-Pitaevskii equa-
tion for example, the nonlinearity is an emergent one: involving scattering

10



length as which is not a fundamental constant of physics, the nonlinear
term is due to interaction of particles and not a fundamental term present
for single particles.
Our proposition on the contrary is based on no approximation nor addi-
tional assumption: it is based on the most general form of the de Broglie
hypothesis that is possible to express in terms of the wavefunction itself
using differential calculus.
For the very reason of not having simple derivations and being approxi-
mate and not fundamental, such equations have not the potential of being
extended to relativistic quantum mechanics while special relativity is eas-
ily applied to our proposed fundamental definition of momentum (5) to
yield the elegant generalisation of Klein-Gordon equation (12).
Along totally different lines that similar to our approach follow nonlinear-
ity as having a fundamental role in quantum physics, the term �ψ/ψ in
(13) resembles �f/f in de Broglie’s theory of double solutions[7]. Basi-
cally de Broglie considers two waves; usual ψ and the u-wave. de Broglie
thought of this new u-wave as representing a ‘mobile singularity’ intended
to represent the particle aspect. The f function is the amplitude of the
u-wave. Although de Broglie himself –like the theory that bears his name–
also missed the point by neglecting the new (second) term in (6), he did
correctly realise the significance of �f/f by stating that
‘The departure from the older mechanics is always bound up with the
presence of the term �f/f .’[7]. Apart from this remark, our theory is
completely different from de Broglie’s theory and does not appeal to the
redundant notion of u-wave.

4 Implications

It must have become clear by now that our proposal is neither an al-
ternative nor an interpretation of any existing quantum theory. It is a
generalisation and as such it has novel physical consequences.

4.1 Generation or Destruction of Probabilities

Although our physical motivation was based on probabilities and measure-
ments, after the development of our proposal we now face difficulties in
maintaining such concepts. Our proposal cannot say anything about the
Born Principle as the principle is a metaphysical one: it is about meaning,
not mathematics. The very statement of the Born Principle that ‘|ψ|2 is
the probability distribution of a superposed quantum state switching to
a single definite eigenvalue by performance of a measurement’ is blurred
by our proposal: according to our view there are neither superpositions
nor eigenvalues in general; both are too special cases to deserve reference
of a fundamental principle of nature. Possible redundancy of concepts
like superposition and eigenvalues in turn makes the meaning of ‘mea-
surement’ and ‘probability of outcome of a measurement’ unclear. In this
light therefore, it is expected that we must look for a new meaning for ψ.
In this paper however we follow Newton’s maxim of hypotheses non fingo
and leave the question open for further meticulous investigations. Accord-
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ingly we temporarily assume that |ψ|2 is some sort of probability in order
to demonstrate the following consequence. If we leave (almost) intact
the assumption of ρ = |ψ|2 representing probabilities, comparison of (1)
and (6) implies that the rate of generation or destruction of probabilities
denoted by π is given by

π =
i~
m
∇ ·
(
|ψ|2∇R

R

)
(15)

As we know from dynamics of compressible fluids[16], π > 0 means gen-
eration of probability, and π < 0 its destruction. Naturally π = 0 is the
situation in which probability is not generated and destructed i.e. con-
served.

4.2 Nonlinearity and Possibility of Solitons

Notice that equation (9) is dispersive: Consider for example the case for
a free particle

i
1

ψ

∂ψ

∂t
= −1

2

|∇ψ|2

ψ2

in which we have set ~ = m = 1 for simplicity. By our definition (5) the
above equation yields the dispersion relation

ω = −1

2
|k|2,

Which is in fact identical with the dispersion relation that Schrödinger
equation yields for a free particle. Unlike Schrödinger equation however,
our equation is nonlinear. As we mentioned in the introduction it is
known that dispersion and nonlinearity together allow for the possibility
of existence of solitons[14]. It is therefore possible to revive the old notion
of wavepackets as particles should such solutions actually occur.

4.3 Uncertainty Principle

Born Principle is not the only conceptual problem revealed by our ap-
proach. There is another –perhaps more significant– issue which has a
better theoretical status in that it can be mathematically analysed. The
fundamental conceptual point of departure for quantum mechanics (in
the Heisenberg picture) compared to classical mechanics is the canonical
commutation relation

[q̂i, p̂j ] = i~δij (16)

where q̂i, p̂j ∈ End(L2) i.e. in quantum mechanics momentum and po-
sition are linear operators which act on the space of square-integrable
functions. The set of all such endomorphisms together with addition,
(functional) composition and scalar multiplication forms an associative
algebra. But this algebra is not a commutative one14 as expressed by
(16). The associativity of this algebra is the reason for the failure (3) of

14As such q̂i and p̂j can be considered as ∞×∞ matrices and matrix multiplication is not
commutative.
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orthodox quantum mechanics in handling the incompressibility condition:
as the first equality in (3) shows, by giving the same mathematical status
(operator) to both divergence and p quantum mechanics allows for the
two to become a laplacian via functional composition as the operation of
the algebra. In our theory however, divergence and p do not have same
mathemematical status; first one is a linear operator, second one is a vec-
tor.
According to our theory qi, pj : R4 → C i.e. in our theory momentum
and position of a certain point in phase space are elements of the field
of complex numbers (scalars) and by the commutative property of a field
they do commute, viz. in our approach (for simplicity we restrict to one
dimension)

p = − i~
ψ

∂ψ

∂x

and

x = − i~
ψ

∂ψ

∂p

therefore

px = − i~
ψ

∂ψ

∂x
x

as long as all the constituents of this equation are elements of a field
–which they are– we have

− i~x
ψ

∂ψ

∂x
= xp

therefore in this neoclassical approach xp = px.
This is not to say that uncertainty ‘principle’ is wrong ; it cannot be, as it
as has been empirically verified[24][25][26], but that it is not a fundamental
principle of nature due to its lack of universal validity; it applies only when
the operatorial definition of momentum is held, which need not generally
be the case. Therefore as Einstein remarked that ‘It is the theory which
decides what we can observe’[27] more accurate experiments must be done
both to better understand the incompressibility condition and to test the
general validity of the Heisenberg uncertainty principle.

A Failure of nonlinear-operatorial approach

As we know from the linear-operatorial approach (orthodox quantum me-
chanics), the square of momentum in the law of conservation of energy
acted on ψ

Eψ =
p2

2m
ψ + V ψ

translates to the quantum-mechanical momentum operator acting twice;
nabla acting twice becomes laplacian, which is why we have the laplacian
in Schrödinger equation. Mathematically,

p2ψ → p̂op̂(ψ) = p̂
(
p̂(ψ)

)
as the operation of operator algebra is functional composition. In the
nonlinear-operatorial approach we are still keeping the operator algebra
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and this acting twice still holds, viz.

p2ψ = p̂
(
p̂(ψ)

)
but now the definiton is different

p̂(ψ) = −i~∇ψ
ψ

(17)

let

φ = p̂(ψ) = −i~∇ψ
ψ
,

as

p̂(φ) = −i~∇φ
φ

we must have

p̂(φ)
?
= −i~

∇ ·
(
−i~∇ψ

ψ

)
−i~∇ψ

ψ

which is seriously problematic as a vector cannot be in a denominator. So
definition (17) cannot be maintained in a non-linear operatorial approach.

B A conjecture

It is natural to expect however that it is in this realm (non-linear operato-
rial approach) that the uncertainty principle continues to rule. Therefore
if we want to create a nonlinear picture that continues to use operators,
we must find an alternative for (17) such that it would have the definition
of momentum in conventional quantum mechanics as its ‘special case’.
But this ‘special case’ must be clearly stated mathematically. Suppose
one succeeds in finding a definition for quantum-mechanical momentum
which would not face the problem mentioned above. Call such definition
p̆j , then a candidate for quantification of nonlinearity of this operator
would be

M = sup{‖
(
p̆j − (−i~∂j)

)
ψ‖2}, ∀ψ ∈ L2(R)

Thus when nonlinearity of all operators is zero, orthodox quantum me-
chanics is recovered. In this way, if we assume any such p̆j exists, the
nonlinear-operatorial theory built upon it would be a proper generalisa-
tion of quantum mechanics: the same way one recovers classical mechan-
ics when position and momentum commute, one would recover linear-
operatorial quantum mechanics when M = 0. Assuming M is a viable
measure of nonlinearity of quantum-mechanical operators, or any other
measure that can satisfy our expectations, then by comparison to (16)
one is lead to a key question: Could this measure be a constant, universal
for all operators?
Our conjecture is that, as [M] = momenum and the only fundamental
constant with such dimension that we know of is Planck momentum, it is
possible that

M = mP c =

√
~c3
G
, (18)

14



Therefore if this conjecture is true, when both ~ and G are significant
linearity of quantum mechanics no longer holds. This conjecure if proved
to be viable (both mathematically and physically) would have momentous
consequences for quantum gravity.
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