A new derivation of Euler-Bohlin invariant of linearly damped Harmonic oscillator with constant frequency

Debasis Biswas
Chakdaha. W.B. 741222. India
Email - biswasdebasis38@gmail.com

Abstract

: [In this paper a simple derivation of Euler-Bohlin invariant is given without any kind of symmetry analysis].

Key words : Invariant, Damped harmonic oscillator, Euler-Bohlin Invariant.

1. Introduction.

The standard equation of damped harmonic oscillator with constant frequency and damping force proportional to velocity is :

$$
\begin{equation*}
\ddot{\mathrm{x}}+2 \mathrm{~K} \dot{\mathrm{x}}+\omega^{2} \mathrm{x}=0 \text { (overhead dots represent time derivative) } \tag{1.1}
\end{equation*}
$$

A well known time-independent invariant of damped harmonic oscillator is EulerBohlin invariant [1] which is

$$
\begin{equation*}
\frac{\left(\dot{\mathrm{x}}+\lambda_{1} \mathrm{x}\right)^{\lambda_{1}}}{\left(\dot{\mathrm{x}}+\lambda_{2} \mathrm{x}\right)^{\lambda_{2}}}=\text { constant } \tag{1.2}
\end{equation*}
$$

where λ_{1} and λ_{2} are given by

$$
\left.\begin{array}{ll}
& \lambda_{1}+\lambda_{2}=2 \mathrm{~K} \tag{1.3}\\
\text { and } & \lambda_{1} \cdot \lambda_{2}=\omega^{2}
\end{array}\right]
$$

2. New derivation of invariant (1.2) of damped harmonic oscillator.

To derive we use a basic result of integrability of a first order nonlinear differential equation of the form :

$$
\begin{equation*}
y^{\prime}(x)-s(x)+\frac{R(x)}{y}=0, \quad y^{\prime}=\frac{d y}{d x} \tag{2.1}
\end{equation*}
$$

This integrability condition [2] of differential equation (2.1) is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{R}}{\mathrm{~S}}\right)=\frac{(\mathrm{n}-1)}{\mathrm{n}^{2}} \mathrm{~S} ; \quad \mathrm{n}=\mathrm{constant} \tag{2.2}
\end{equation*}
$$

And when the above condition is satisfied an integrating factor of (2.1) is given by [2]

$$
\begin{array}{r}
\mu=\frac{y}{[y+f(x)]^{n}} \\
\text { where } f(x)=-\frac{n R(x)}{S(x)} \tag{2.4}
\end{array}
$$

Now to use the above result, let

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{y}(\mathrm{x}) \tag{2.5}
\end{equation*}
$$

Therefore $\quad \ddot{x}=y^{\prime}(x) y(x) ; y^{\prime}=\frac{d y}{d x}$
using (2.5) and (2.6) equation (1.1) can be recasted as

$$
\mathrm{y}^{\prime}(\mathrm{x})+2 \mathrm{~K}+\frac{\omega^{2} \mathrm{x}}{\mathrm{y}}=0
$$

Equation (2.7) is of the form (2.1). Hence the integrability condition for (1.7) is, using (2.2)

$$
\begin{align*}
& \frac{d}{d x}\left(-\frac{\omega^{2} x}{2 K}\right)=\frac{(n-1)}{n^{2}}(-2 K) \\
& \text { i.e., } \frac{\omega^{2}}{2 K}=\frac{(n-1)}{n^{2}}(2 K) \\
& \text { i.e., } n^{2} \omega^{2}-4 K^{2} n+4 K^{2}=0
\end{align*}
$$

Equation (2.8) is a quadratic in n, have two values of n given by n_{1} and n_{2}, where

$$
\begin{array}{r}
\mathrm{n}_{1}+\mathrm{n}_{2}=\frac{4 \mathrm{~K}^{2}}{\omega^{2}} \\
\text { and } \mathrm{n}_{1} \cdot \mathrm{n}_{2}=\frac{4 \mathrm{~K}^{2}}{\omega^{2}} \tag{2.9}
\end{array}
$$

Then two independent integrating factors of (2.7) are [using (2.3) and (2.4)]

$$
\begin{align*}
& \mu_{1}=\frac{y}{\left[y+\frac{n_{1} \omega^{2} x}{2 K}\right]^{n_{1}}} \tag{2.10}\\
& \mu_{2}=\frac{y}{\left[y+\frac{n_{2} \omega^{2} x}{2 K}\right]^{n_{2}}} \tag{2.11}
\end{align*}
$$

Now, theory of first order ordinary differential equation asserts [3] that the ratio of two linearly independent integrating factors is constant and is the solution of differential equation concerned. It is an easy check that μ_{1} and μ_{2} are linearly independent.

Hence $\quad \frac{\mu_{1}}{\mu_{2}}=c=\frac{\left[y+\frac{n_{2} \omega^{2} x}{2 K}\right]^{n_{2}}}{\left[y+\frac{n_{1} \omega^{2} x}{2 K}\right]^{n_{1}}}$
Equation (2.12) is thus the solution of (2.7). And it is clear that a solution of (2.7) is an invariant of (1.1).

Therefore, it turns out that (2.12) is an invariant of (1.1).
Now, a little manipulation of (2.12) gives

$$
\begin{equation*}
\frac{\left[y+\frac{n_{2} \omega^{2} x}{2 K}\right]^{\frac{\omega^{2}}{2 K}}}{\left[y+\frac{n_{1} \omega^{2} x}{2 K}\right]^{\frac{\omega^{2}}{2 K} n_{1}}}=\text { Constant, because } c=\text { Const. } \tag{2.13}
\end{equation*}
$$

Equation (2.13) is exactly Euler-Bohlin invariant of (1.1). This may be verified as follows :

$$
\text { Let } \theta_{1}=\frac{\omega^{2}}{2 \mathrm{~K}} \mathrm{n}_{2} \quad \text { and } \quad \theta_{2}=\frac{\omega^{2}}{2 \mathrm{~K}} \mathrm{n}_{1}
$$

Then (2.13) can be rewritten as

$$
\begin{align*}
& \frac{\left(y+\theta_{1} x\right)^{\theta_{1}}}{\left(y+\theta_{2} x\right)^{\theta_{2}}}=\text { Const }=\frac{\left(\dot{x}+\theta_{1} x\right)^{\theta_{1}}}{\left(\dot{x}+\theta_{2} x\right)^{\theta_{2}}} \quad \text {, using }(2.5) \tag{2.14}\\
& \text { and } \theta_{1}+\theta_{2}=\frac{\omega^{2}}{2 K} n_{2}+\frac{\omega^{2}}{2 K} n_{1}=\frac{\omega^{2}}{2 K}\left(n_{2}+n_{1}\right)=\frac{\omega^{2}}{2 K} \frac{4 K^{2}}{\omega^{2}}=2 K \\
& \text { using (2.9) } \tag{2.15}\\
& \text { and } \theta_{1} \cdot \theta_{2}=\frac{\omega^{4}}{4 K^{2}} n_{2} n_{1}=\frac{\omega^{4}}{4 K^{2}} \frac{4 K^{2}}{\omega^{2}}=\omega^{2}
\end{align*}
$$

A comparison of (1.3) and (2.15) asserts that θ_{1} and θ_{2} are identical with λ_{1} and λ_{2}.
Finally a comparison of (1.2) and (2.14) asserts that equation (2.14) is the Euler-Bohlin time independent invariant of damped harmonic oscillator equation (1.1).

3. Conclusion :

Euler-Bohlin invariant is a well known time independent invariant of damped harmonic oscillator. In above a new derivation of the invariant is given. The derivation is simple and uses no symmetry methods.

References

1. B.D. Vujanovic and S.E. Jones. Variational methods in non conservative phenomena. Academic Press. 1989.
2. George Boole. A Treatise on Differential equations. Pp 90 and 489. Macmillian and Co. 1865.
3. Nail H. Ibragimov : A Practical Course in Differential Equations and Mathematical Modelling. World Scientific, 2009.
