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Abstract :  
       [In this paper a simple derivation of Euler-Bohlin invariant is given without any kind 

of symmetry analysis]. 
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1. Introduction. 
        The standard equation of damped harmonic oscillator with constant frequency and 

damping force proportional to velocity is : 

  ẍ + 2Kẋ + ω2x = 0 (overhead dots represent time derivative)   …(1.1) 

          A well known time-independent invariant of damped harmonic oscillator is Euler-

Bohlin invariant [1] which is 

                                                  
(ẋ+ λ1x)λ1

(ẋ+ λ2x)λ2
  = constant      …(1.2) 

                              where λ1 and λ2  are given by  

                                                   λ1 + λ2  = 2K                                    

                                     and        λ1 . λ2  = ω2                                     …(1.3) 

 

2. New derivation of invariant (1.2) of damped harmonic oscillator. 

                   To derive we use a basic result of integrability of a first order nonlinear differential 

equation of the form : 

                                       yʹ(x) – s(x) + 
R(x)

y
   = 0,      yʹ = 

dy

dx
     …(2.1)   

This integrability condition [2] of differential equation (2.1) is 

                                        
d

dx
(

R

S
)  = 

(n−1)

n2
 S ;             n = constant    …(2.2) 

        And when the above condition is satisfied an integrating factor of (2.1) is given by [2] 

                                               µ =  
y

[y+f(x)]n         …(2.3) 

                                   where  f(x) = –  
nR(x)

S(x)
       …(2.4)  

Now to use the above result, let   

                                                      ẋ = y(x)       …(2.5) 
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Therefore      ẍ = yʹ(x) y(x) ; yʹ = 
dy

dx
        …(2.6) 

using (2.5) and (2.6) equation (1.1) can be recasted as  

                                 yʹ(x) + 2K + 
ω2x

y
 = 0                                                               …(2.7) 

Equation (2.7) is of the form (2.1). Hence the integrability condition for (1.7) is, using (2.2) 

                                    
d

dx
 (−

ω2x

2K
) = 

(n−1)

n2
 (−2K)  

   i.e.,  
ω2

2K
 = 

(n−1)

n2
 (2K)  

   i.e., n2ω2 – 4K2n + 4K2 = 0      …(2.8) 

Equation (2.8)  is a  quadratic in n, have two values of n given by n1  and  n 2 , where   

                                    n1 + n2 = 
4K2

ω2
    

            …(2.9) 

        and  n1.n2 = 
4K2

ω2
    

Then two  independent   integrating  factors  of  (2.7) are  [using (2.3) and (2.4) ] 

   µ1 = 
y

[y+ 
n1ω2x

2K
]

n1                …(2.10) 

   µ2 = 
y

[y+ 
n2ω2x

2K
]

n2              …(2.11) 

 Now, theory of first order ordinary differential equation asserts [3] that the ratio of two 

linearly independent integrating factors is constant and is the solution of differential equation 

concerned. It is an easy check that µ1 and µ2 are linearly independent. 

 Hence             
μ1

μ2
  = c = 

[y+ 
n2ω2x

2K
]

n2

[y+ 
n1ω2x

2K
]

n1
                         …(2.12) 

Equation (2.12) is thus the solution of (2.7). And it is clear that a solution of (2.7) is an invariant 

of (1.1). 

 Therefore, it turns out that (2.12) is an invariant of (1.1). 

 Now, a little manipulation of (2.12) gives 

               

[y+ 
n2ω2x

2K
]

ω2

2K
n2

[y+ 
n1ω2x

2K
]

ω2

2K
n1

  = Constant, because    c = Const.            …(2.13) 
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Equation (2.13) is exactly Euler-Bohlin invariant of (1.1). This may be verified as follows : 

          Let   θ1 =  
ω2

2K
n2      and   θ2 =  

ω2

2K
n1 

Then (2.13) can be rewritten as  

            
(y+ θ1x)θ1

(y+ θ2x)θ2
  = Const = 

(ẋ+ θ1x)θ1

(ẋ+ θ2x)θ2
 , using (2.5)   …(2.14) 

         and   θ1 + θ2  = 
ω2

2K
n2 + 

ω2

2K
n1 = 

ω2

2K
 (n2 + n1) = 

ω2

2K
 
4K2

ω2
 = 2K 

           using (2.9) …(2.15) 

                    and   θ1. θ2  = 
ω4

4K2 n2 n1 = 
ω4

4K2  
4K2

ω2
 = ω2  

A comparison of (1.3) and (2.15) asserts that θ1 and  θ2  are identical with  λ1 and λ2.  

 Finally a comparison of (1.2) and (2.14) asserts that equation (2.14) is the Euler-Bohlin 

time independent invariant of damped harmonic oscillator equation (1.1). 

 

 

3. Conclusion : 
  Euler-Bohlin invariant is a well known time independent invariant of damped 

harmonic oscillator. In above a new derivation of the invariant is given. The derivation is simple 

and uses no symmetry methods. 
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