On Goldbach conjecture
by: Mar Detic
May 2021

Abstract:
On Goldbach conjecture stating that every number > greater than 2 is the sum of 3 primes, and even integers is sum of 2 primes.

\[\forall n \in \mathbb{Z} \text{, let assume } n \text{ (including primes) can be written as } (n-1)+1 \]

let assume:
(n-1)+1 is the sum of the primes
\(P_n \) are the set of prime numbers, thus \{\(P_1, P_2, ..., P_{n+1} \}\)
H is the height (quantity of primes; thus number of addends)

By using the definition above we can formulate:

\[(P_1-1)+(P_2-1)+H=(n-1)+1 \]

equation 1 (even integer sum):
\(P_1 = 7 \)
\(P_2 = 11 \)

\((7-1)+(11-1)+2=17+1 \)
\(6+10+2=17+1 \)
\(6+10+2-1=17 \)
\(6+10+1=17 \)
\(17=17 \)

equation 2 (odd integer sum):
\(P_1 = 1 \)
\(P_2 = 7 \)
\(P_3 = 11 \)

\((1-1)+(7-1)+(11-1)+3=18+1 \)
\(0+6+10+3=18+1 \)
\(0+6+10+3-1=18 \)
\(6+10+2=18 \)
\(18=18 \)

thus we proved \(\forall n \in \mathbb{Z} \text{ can be written as sum of 2 or more primes.} \)