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Abstract 

A diagonal form of the Vaidya solution for a spherical symmetric accreting or evaporating 

black hole is analysed. A divergent potential barrier against a low mass freefalling particle is 

shown to exist at the Schwarzschild critical radius.  
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In classical general relativity, from the perspective of distant observers, stationary black holes 

are objects existing in the infinite future. This stems from diverging time dilation at the 

critical radius. However, these objects either exist in a vacuum or are the source of an 

electromagnetic field if charged. By contrast, astrophysical black holes exist in an 

environment containing matter accreting onto it, and also emit radiation due to evaporation 

(Hawking, 1974). More realistic models of black holes due to Vaidya (1951) exchange mass-

energy with their environment and consequently these solutions are non-stationary.  

 The Vaidya metric is traditionally represented in the Eddington-Finkelstein form 
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where, given null time variables u or v, z v= −  for an (advanced) accreting black hole, or 

z u=  for the (retarded) evaporating case. However, this form of the metric hides important 

features such as the ability of falling particles to reach the horizon in a finite time relative to 

stationary distant observers. This feature is far from apparent in the form of equation (1). 

Moreover, care must be taken to include energy-momentum tensor fields of the surrounding 

environment, and these fields are sufficient to perturb the solution in such a way as to allow 

this early arrival at the critical radius before the final evaporation point. That freefalling 

matter close to the critical radius is best modelled as null radiation makes equation (1) a 

natural choice of coordinates for this application. 

 However, in order to elucidate important features of the Vaidya solution it is 

advantageous to diagonalise equation (1). This has the benefit of making the coordinates 

time-symmetric and more meaningful as far as physical measurement is concerned. More 

recently Berezin et al (2017) have recast this metric in diagonal form. A diagonal Vaidya 

metric may be written 
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where 0f  is given by 
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The parameter, α , is accretion rate or evaporation rate as appropriate, which at any instant 

Berezin and colleagues have chosen to make linear in the null variable. This simplifies things 

by setting α ( dm dz= − ) as a constant. It is immediately seen that equation (3) is valid for 

[ ]0,1 8α ∈ . 

 Inspection of equation (3) shows that space-time is partitioned into four regions 

bounded by three concentric timelike hyper-tubes, whose radii vary with t. Here we label 

these radii as 1 2c
r r r< <  reflected by where the corresponding factors appear in equation (3). 

The critical radius, 
c

r , is where the event horizon appears in the Schwarzschild solution. The 

function 0 0f =  at 1r  and 2r , and we necessarily see divergent time dilation at these points. In 

the Schwarzschild limit 1 c
r r→  and 2r → ∞ . Given that at sufficiently large distance the 

modelling of accreting matter as radiation is inaccurate, coupled with outgoing Hawking-

radiation being relatively weak, it is difficult to see the physical significance of the zero at 2r . 

Moreover, the exponent on the corresponding factor in equation (3) is small. So we confine 

our interest to a region a range ( ) 2, ,  cr R R r< . 

 The radial freefall time, 
F

t∆ , from a specified radius, 1R r>  to 1r  is represented by 
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In the Schwarzschild limit, this integral is known to diverge. Moreover similar freefall times 

also diverge for Kerr-Newman metrics. However, taking ( )00 0 , ;g f r t α=  from equation (3) 

we see convergence due to the exponent in the second factor 1 1 8 2α+ − < . Therefore an 

inbound null trajectory will exhibit an inflection point at 1r  instead of approaching it 

asymptotically as in stationary cases. Beyond 1r  the null cones open out again, allowing the 

inbound null trajectory to reach 
c

r  for t < ∞ . 

 By holding t constant, it is useful to plot 0f  against r to see the relevant features and 

to compare with the Schwarzschild limit ( 0α → ). This is shown in figure 1. The most 

obvious feature is the almost abrupt change in the direction of gradient seen at 1r , and we see 

a large negative gradient in the interval ( )1,cr r . The geodesic equation for a test particle, 

where 0r
U =  momentarily, gives the radial component of four-acceleration as 
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From equation (2) we notice that 
rr

g  (and therefore rrg ) is negative for 
c

r r> . The positive 

gradient of 0f  above 1r  makes r
Uɺ  negative thus representing attraction as expected. The 

change in direction of 0,rf  at 1r  implies gravitational repulsion in the interval ( )1,cr r  with 0f  

as an effective potential. The question is, does the actual potential diverge at 
c

r ? 

 

 

 
Figure 1: Graph of ( )0 , ;f r t α  from equation (3) (solid line). The dashed line is the 

corresponding graph in the Schwarzschild case ( 0α = ). The vertical dotted line marks the 

position of the critical radius, 
c

r . a 0.06α = , b  0.02α = . 



 

 The best way to answer this is to consider the Hamiltonian for a low mass particle of 

intrinsic mass m in a general gravitational field. Here we start by representing the intrinsic 

mass in terms of four-momentum, 
a

p , in a general space-time: this is given by 2 a

a
m p p= . 

The derivation is as follows; we start by decomposing the right hand side into temporal and 

spatial components 
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Solving the quadratic for the Hamiltonian, 0H p= , gives 
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Now considering only the radial component of momentum, the Hamiltonian becomes 
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As 
c

r r→ , 00 0g →  for 0m >  therefore H → ∞ . For 0m = , we have 0rrg →  implying that 

0rp →  as 
c

r r→ . For material particles ( 0m > ) and photons ( 0m = ) this indicates a 

divergent potential barrier at the critical radius. 

 For a realistic black hole that has reached equilibrium with its environment, the 

interval 1 c
r r−  is very small, most likely less than a Planck length. The potential barrier is 

therefore harder than during the initial collapse phase when all the mass of a star is yet to be 

consumed. But even there, the energy required to reach the increasing critical radius still 

diverges in the spherically symmetric case. If this is correct then what are the implications? 

There are certainly some intriguing possibilities. Most important, if this mechanism extends 

to asymmetric collapse, it is an immediate resolution of the information paradox. It appears 

that a void forms in a collapsing star with all the consumed matter being squeezed onto its 

inner surface. Inside the inner surface (at ( )cr r t= ) there would be no matter present.  

 However, this is where we need to be cautious. If there is no mass-energy flux at 
c

r  

then the Vaidya solution is not valid, and this would limit the otherwise infinite positive 

potential, and allow material to leak across the boundary and enter the void. At present it is 

difficult to calculate the proportion of material crossing this boundary. If the total mass 

entering the void is low enough to have negligible back-reaction then it may be attracted back 

towards the potential minimum at 1r . Other mechanisms for leakage might, for example, 

included quantum tunnelling, particularly if momenta are reduced to levels where associated 

wavelengths are comparable to 
c

r .  

 That said there is the possibility that initially inbound material would bounce back 

across the potential minimum and oscillate back and forth in a damped fashion. During 

periods when the system is in equilibrium, mass-energy influx and outgoing Hawking 

radiation are at a minimum. If this minimum approaches zero then we are back to the 



Schwarzschild solution. Taking a pragmatic view, all we know about black holes is outside 

the critical radius. So, notwithstanding all of the consistent mathematical models of black 

hole interiors, they remain in the realms of speculation. An object with all its mass 

concentrated at its critical radius instead of a central singularity would, to an outside 

observer, appear similar to any black hole satisfying more traditional models. In this, 

admittedly rather crude model, the main attractor is not a central (or a ring) singularity at 

0r = , but a sphere at or just outside the critical radius. And when the system approaches the 

Schwarzschild limit, the potential barrier is replaced by diverging time dilation at 
c

r  and the 

consequential asymptotic behaviour of inbound null geodesics.  

 The author is currently unaware of a similar model being proposed elsewhere or if so, 

whether it has been rigorously tested in the theoretical arena. Unless there is something 

seriously wrong with what is being suggested here then it is tempting to propose the 

following conjecture 

 

Conjecture: Given a spacelike Cauchy hypersurface, S, with no regions of radius, R, 

containing mass, ( )( )2 21
02

4M R a Q πε> + +  for specific angular momentum, a, and charge, 

Q, then the laws of physics combine to prevent such regions forming to the future of S. 

 

 If this is regarded as a serious possibility then it raises questions as to whether it can 

be tested. If true then all consumed material is confined to a uniform layer just above the 

critical radius with a thickness of no more than a few Planck lengths. Moreover it is possible 

that scattered photons can be emitted perpendicular to this surface and escape to infinity. 

Whether such photons carry information characterising this layer is an open question. If 

detectable, the image of a black hole would appear with a relatively bright spot in the centre 

of the image. Initial steps toward imaging black holes have already been taken with the Event 

Horizon Telescope (EHT) (Wielgus et al, 2020), but these observations are to date, in their 

infancy. It can be hoped that similar observations in the future, employing some descendent 

of the EHT, would make this kind of testing possible. 
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