
   

 

 
 

Direct derivation of Minkowski space and special relativity 

from an invariant tensor statement and a condition of simulta-

neity for the null 4-vector. Solutions for time-like and space-

like trajectories 

David Escors 

1 Miguel Servet Foundation. Pamplona. Spain 

 Correspondence: descorsm@navarra.es 

11 May 2021 

Abstract: Derivation of special relativity classically relies on the use of two inertial reference frames 

separating at a constant velocity, combined with the constancy of the speed of light as a founding 

definition of simultaneity. Einstein´s original method for derivation provides the general frame-

work in which special relativity is often taught. While this approach is intuitive for students, it is 

nevertheless confusing in some aspects and lacks clarity in certain steps. Hence, special relativity is 

very often questioned with paradoxes and apparent mathematical inconsistencies. In most in-

stances, these paradoxes are set up under improper mathematical frameworks, or in systems which 

are not invariant under coordinate transformations. Here, Minskowski space and special relativity 

are fully derived from an invariant tensor statement valid in any reference frame, with the simulta-

neity condition imposed on the 4-dimensional null vector. This approach derives Minkowski space 

with a very limited number of steps in tensor space without the need of introducing separating 

inertial reference frames. From it, the main features of special relativity for bradyon and tachyon 

trajectories are derived. This solution is particularly adequate for students of special and general 

relativity, as it is simple, straightforward and mathematically consistent. 

 

1. Introduction 

General relativity (GR) arises from differential geometric principles through tensor equa-

tions, making this theory mathematically sound 1. GR has been extensively tested at many 

levels, and it has been reinforced by new experimental data on gravitational waves and 

their velocity of propagation 2,3. GR sets up a dynamical space-time structure in a pseudo-

Riemannian manifold, which is shaped by mass-energy-momentum densities. Rather 

than focusing on the kinematics of objects in a gravitational field, GR stablishes local 

space-time geometries and shapes geodesics for particle trajectories. By the use of tensor 

equations, its overall mathematical structure is consistent and valid in any reference 

frame. Special relativity (SR) naturally arises from general relativity when the gravita-

tional fields are removed, and therefore it is substantiated in GR for its mathematical 

structure. However, due to historical reasons, SR was developed before general relativity 

in a much simpler way. For its derivation, inertial reference frames separating with a con-

stant velocity in the absence of gravitation were used to observe events 4. The real novelty 

in SR was the definition of simultaneous events when linked by a path of light. Einstein 

explicitly postulated the constancy for the speed of light as a fundamental physical law, 

so it could comply with Maxwell equations, Lorentz transformations and known experi-

mental data 5,6. Following SR classical postulates, Lorentz transformations naturally came 

out, and the concept for a 4-dimentional space-time with a special metric invariant under 

Lorentz transformations was later generalized by Minkowski 7.  
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Einsteins´original derivation method is still taught because of its easy visualization. How-

ever, the derivation method requires a few steps that are not sufficiently justified. These 

steps make SR frequently questioned with paradoxes and apparent mathematical incon-

sistencies 8. While most of the paradoxes disappear if SR is properly used within the 

framework of general relativity and tensor calculus, most relativity students miss this 

point. The main problematic steps in the derivation are two. First, the use of several iner-

tial reference frames, and the need to choose one of them as “preferred” (static). The sec-

ond one derives from the solution put forward by Einstein to the first problem, who im-

posed a symmetry condition with two opposite velocity terms in a founding equation 4. 

The first term (c-v) is non-problematic, but the second term (c+v) implicitly leads to a 

breaking of the constancy of light. Although not inadequate per se to fulfill a symmetry 

condition, this step is sufficiently ambiguous to make it a target for discrediting the theory 

if taken out of the context of general relativity. 

As SR is a special case of general relativity, it can be derived with a few steps by only 

defining the proper 4-dimensional space, without considering observable events. Here, 

Minkowski space and SR are derived from the definition of the differential invariant 

length in a vector space, and association of the 4-dimensional null vector to the definition 

of simultaneity. Then, particle trajectories for bradyons and tachyons are calculated within 

the SR framework.  

2. Derivation of Minkowski space from an invariant tensor statement 

A differential length vector dS within a vector space can be defined with components 

corresponding to differential changes in arbitrary coordinates.  

(Equation 1) 

𝒅𝒔 ≡ (𝒅𝒙𝟎, 𝒅𝒙𝟏, 𝒅𝒙𝟐, … . . 𝒅𝒙𝒏) 

A scalar can be constructed by contracting the differential length vector with its corre-

sponding dual vector. This constitutes an invariant tensor statement for differential length 

squared in a tensor space valid in any reference frame. This contraction can be expressed 

in terms of the metric tensor. 

(Equation 2) 

𝒅𝒙𝜶𝒅𝒙𝜶 = 𝒅𝒙𝜶𝒅𝒙𝝆𝒈𝝆𝜶 = (𝒅𝒔)𝟐 

The null vector represents no separation in the 4-dimensional vector space, and fulfils 

the following invariant tensor equation by equating the length squared (equation 2) to 0: 

(Equation 3) 

𝒅𝒙𝜶𝒅𝒙𝝆𝒈𝝆𝜶 = 𝟎 

To derive Minkowski space, orthogonal Euclidean spatial coordinates (x, y and z; or x1, x2 

and x3) and a time coordinate (t, x0) are used. The imposition of the condition of simulta-

neity (equation 3) can be re-written by separating temporal from spatial coordinates and 

applying orthogonality, as follows: 

(Equation 4) 

𝒅𝒙𝟎𝒅𝒙𝟎𝒈𝟎𝟎 + 𝒅𝒙𝒎𝒅𝒙𝒎𝒈𝒎𝒎 = 𝟎 
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A relationship between spatial and temporal components that fulfils the null vector can 

then be expressed:     

(Equation 5) 

𝒅𝒙𝒎𝒅𝒙𝒎𝒈𝒎𝒎
 

(𝒅𝒙𝟎)𝟐

 

= −𝒈𝟎𝟎 

This condition for the null vector results in the temporal component of the metric to be of 

negative sign, which resembles the Minkowski space metric. The spatial components of 

the metric tensor are equal to 1 to fulfil orthogonality in flat space. Special relativity de-

fines simultaneity as the coordinate path of light in space-time. This condition needs to be 

imposed on the null 4-vector, which would represent the length of two simultaneous 

points in 4-vector space. From equation (5) and imposing the definition of simultaneity, 

the following equivalences can be written: 

(Equation 6) 

𝒅𝒙𝒎𝒅𝒙𝒎𝒈𝒎𝒎
 

(𝒅𝒙𝟎)𝟐

 

=
(𝒅𝒙𝟏)𝟐 + (𝒅𝒙𝟐)𝟐 + (𝒅𝒙𝟑)𝟐

(𝒅𝒙𝟎)𝟐
= 𝒄𝟐 

 

The imposition of simultaneity could be in principle be met by any arbitrary expression, 

without the explicit statement of the constancy of the speed of light in vacuum. From 

equations (5) and (6), the temporal component of the metric tensor corresponds to   

(Equation 7) 

𝒈𝟎𝟎 = −𝒄𝟐 

This condition is valid in any reference frame as long as it fulfils the simultaneity condi-

tion. Then, we have the following invariant statement for the differential length, which 

corresponds to the metric of Minkowski space: 

(Equations 8) 

 
(𝒅𝒔)𝟐 = −𝒄𝟐(𝒅𝒙𝟎)𝟐 + (𝒅𝒙𝟏)𝟐 + (𝒅𝒙𝟐)𝟐 + (𝒅𝒙𝟑)𝟐 

 

or 

(𝒅𝒔)𝟐 = −𝒄𝟐(𝒅𝒕)𝟐 + (𝒅𝒙)𝟐 + (𝒅𝒚)𝟐 + (𝒅𝒛)𝟐 
  

 

 

 

3. Derivation of time-like trajectories  
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The derivation of founding equations for SR kinematics from the metric (equation 8) is 

straightforward using classical Lagrangian methodology, as this method satisfies geo-

desic equations. An Action can be constructed for time-like paths. This corresponds to the 

classical SR framework and requires the integration of the differential length for the action 

as follows: 

(Equation 9) 

𝑨 = 𝒌 ∫ 𝒅𝒔
𝒃

𝒂

= 𝒌 ∫ √𝒄𝟐(𝒅𝒕)𝟐 − (𝒅𝒙)𝟐 − (𝒅𝒚)𝟐 − (𝒅𝒛)𝟐
𝒃

𝒂

 

The action includes an arbitrary constant “k”, and can be rewritten in a classical form: 

(Equation 10) 

𝑨 = 𝒌 ∫ √𝟏 −
𝒗𝟐

𝒄𝟐
𝒅𝒕

𝒃

𝒂

 

                          

Which includes the coordinate velocity in the path of stationary action. The Lagrangian 

function then corresponds to  

(Equation 11) 

𝑳 = 𝒌√𝟏 −
𝒗𝟐

𝒄𝟐
=

𝒌𝒄

𝜸
 

                           

The relativistic gamma factor appears naturally in the Lagrangian function. By solving 

Euler-Lagrange equations, an expression for a 3-vector momentum is directly obtained. 

(Equation 12) 

𝑷𝒎 =
𝝏𝑳

𝝏𝒗𝒎
=

−𝒌  𝒗𝒎

𝒄𝟐√𝟏 −
𝒗𝟐

𝒄𝟐

 

 

For this equation to be dimensionally consistent with momentum, the constant k needs 

to fulfil the following: 

(Equation 13) 

𝒌 ≡ −𝒎𝒄𝟐 
              

Leaving the special relativistic Lagrangian in its classical final form. 
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(Equation 14) 

𝑳 = −𝒎𝒄𝟐√𝟏 −
𝒗𝟐

𝒄𝟐
 

        

And a definition for proper velocity of the spatial components (Um) which coincides with 

the classical definition. 

(Equation 15) 

𝑷𝒎 = 𝒎
𝒗𝒎

√𝟏 −
𝒗𝟐

𝒄𝟐

≡ 𝒎𝑼𝒎 

              

The Hamiltonian for time-like trajectories can also be calculated following Lagrangian 

formalism which results in the classical expression for the mass-energy, as indicated: 

(Equation 16) 

𝑯 = 𝑷𝒎𝑽𝒏 − 𝑳 =
𝒎𝒄𝟐

√𝟏 −
𝒗𝟐

𝒄𝟐

 

 

In the framework of time-like trajectories, this solution is not defined for velocities greater 

than c, as they lead to imaginary solutions. These trajectories are characteristic of bradyons 

with infraluminal velocities. 

 

4. Derivation of space-like trajectories  

For space-like trajectories, there is a sign change in the temporal and spatial coordinates 

of the metric in equations (8) and (9), and these can be solved with the following action 

principle: 

(Equation 17) 

𝑨 = 𝒌 ∫ √−𝒄𝟐(𝒅𝒕)𝟐 + (𝒅𝒙)𝟐 + (𝒅𝒚)𝟐 + (𝒅𝒛)𝟐 =
𝒃

𝒂

− 𝒎𝒄𝟐 ∫ √
𝒗𝟐

𝒄𝟐
− 𝟏

𝒃

𝒂

𝒅𝒕 

             

As the only difference is the change in the sign of the metric components, the constant k 

is equivalent for the calculated in time-like trajectories.  

Euler-Lagrange equations can then be solved to obtain expressions for momentum. 



 3 of 27 
 

 

(Equation 18) 

𝑷𝒎 =
𝝏𝑳

𝝏𝒗𝒎
=

−𝒎𝒗𝒎

√𝒗𝟐

𝒄𝟐 − 𝟏

 

This solution is defined only when particles are moving with supraluminal velocities. Oth-

erwise, imaginary solutions are obtained. Particles following a space-like trajectory have 

negative momentum, which can be associated to negative mass. If the solution of time-

like trajectories is used instead, the mass of a tachyon would be imaginary. However, it 

has to be remarked that time-like trajectories are not defined for velocities higher than c. 

In space-like trajectories, the components of the spatial proper velocity take now this form: 

(Equation 19) 

𝑼𝒎 =
𝒗𝒎

√𝒗𝟐

𝒄𝟐 − 𝟏

 

When the components of the coordinate velocity diverge to infinity, the components of 

the proper velocity will be asymptotic to 1. Similarly, the Hamiltonian can be calculated 

as follows: 

(Equation 20) 

𝑯 =
−𝒎𝒗𝟐

√𝒗𝟐

𝒄𝟐 − 𝟏

+ 𝒎𝒄𝟐√
𝒗𝟐

𝒄𝟐
− 𝟏 =

−𝒎𝒄𝟐

√𝒗𝟐

𝒄𝟐 − 𝟏

 

  

The energy of a tachyon in space-like trajectories is divergent to minus infinity with de-

creasing velocities as they approach to the speed of light. On the other hand, the energy 

goes asymptotically to 0 with increasing velocity, in agreement with the expected proper-

ties for tachyons. 

4. Discussion 

Special relativity is included within the framework of general relativity, which was for-

mulated under principles of differential geometry through tensor equations. However, 

the classical derivation of SR starts from a purely “kinematic” approach by evaluating the 

observation of events from two independent inertial reference frames, and postulating 

simultaneity by light ray trajectories. Its classical mathematical derivation is appropriate 

but presents some weak points that are not sufficiently argued. The classical approach is 

still taught in relativity courses, and the change of different reference frames, relative ve-

locities or the choice of particular coordinate systems make the theory to be prone to crit-

icism.  

However, as shown here SR can be easily and directly derived from a starting invariant 

tensor statement. Rather than using distinct inertial reference frames and observation of 

simultaneous events through light paths, here the Minkowski metric was derived through 

tensor principles. This invalidates any paradox that implies a change of reference frames, 
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and makes observations of events from different reference frames mathematically con-

sistent by tensor transformation rules.  

Nevertheless, both the classical and formal derivation methods uncover a point in which 

special relativity can be critiqued upon: the definition of simultaneity. For the derivation 

of SR, here the speed of light has been identified with the null 4-vector in Minkowski space, 

to comply with the postulate of SR simultaneity. The definition of simultaneity by the 

speed of light is difficult to justify and derive from basic principles. However, all the ex-

perimental data supports this postulate, making relativity one of the most successful the-

ories.  

Once the Minkowski metric is derived, the kinematics of time-like and space-like trajecto-

ries can be straightforwardly obtained through Lagrangian mechanics. In this process, the 

speed of light appears as an event horizon separating bradyons and tachyons. Both parti-

cle energies diverge to infinity and minus infinity, respectively, when approaching the 

barrier of the speed of light. Additionally, while bradyons have standard positive energy, 

tachyons have negative energies, which could be similar to the crossing of the ergosphere 

horizon 9. In any case, the SR equations for bradyons and tachyons are distinct and not 

interchangeable. Solutions derived for time-like trajectories are not defined for supralu-

minal velocities, and those for space-like trajectories are not defined for infraluminal ve-

locities. Finally, the equations derived here are in agreement with published studies and 

support the concept for the mass of a tachyon to be non-imaginary 10. 
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