A new proof of functional equation of Riemann Zeta function

Debasis Biswas
Chakdaha
W.B - 741222
India
biswasdebasis38@gmail.com

Abstract

: [In this paper a new proof of functional equation of Riemann Zeta function is given using analytical expression of Riemann Xi function.]

Keywords: Functional equation, Riemann Xi function, Riemann Zeta function.

1. Introduction:

In a recent paper [1], analytical expression of Complex Riemann Xi function $\xi(\mathrm{s})$ was derived. The general expression for $\xi(\mathrm{s})$ is

$$
\begin{align*}
\xi(\mathrm{s}) & =\xi(\sigma+\mathrm{it}) . \\
& =\mathrm{F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right)\left[\operatorname{Cos} \mathrm{l}_{1} \mathrm{t} \operatorname{Cosh} \mathrm{l}_{1}\left(\sigma-\frac{1}{2}\right)+i \operatorname{Sin} \mathrm{l}_{1} \mathrm{t} \operatorname{Sin} \mathrm{hl}_{1}\left(\sigma-\frac{1}{2}\right)\right] \tag{1.1}
\end{align*}
$$

$\mathrm{F}_{2}\left(\mathrm{l}_{1}\right), \mathrm{F}_{1}\left(\mathrm{l}_{1}\right)$ are all positive constants and can not be determined.
l_{1} is a positive parameter.
Now using the identity

$$
\begin{align*}
& \text { Cosx }=\operatorname{Coshix} \quad \text { and } \quad \text { iSinx }=\text { Sinhix equation (1.1) can be written as. } \\
& \xi(\mathrm{s})=\mathrm{F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left[i 1_{1} \mathrm{t}+\mathrm{l}_{1}\left(\sigma-\frac{1}{2}\right)\right] \\
& =\mathrm{F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left[l_{1}\left(\mathrm{~S}-\frac{1}{2}\right)\right] \tag{1.2}\\
& \text { Where } \mathrm{s}=(\sigma+\mathrm{it}) .
\end{align*}
$$

In next section we will derive the functional equation of Riemann Zeta function using (1.2).

2. Proof of functional equation of Riemann Zeta function.

The functional equation of Riemann Zeta function [2] is, for all complex S

$$
\begin{equation*}
\pi^{-\frac{s}{2}} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})=\pi^{-\left(\frac{1-\mathrm{s}}{2}\right)} \Gamma\left(\frac{1-\mathrm{s}}{2}\right) \zeta(1-\mathrm{s}) \tag{2.1}
\end{equation*}
$$

The Riemann Xi and Riemann zeta function are connected through the equation [3] :

$$
\begin{equation*}
\xi(s)=\frac{1}{2} s(s-1) \pi^{-\frac{s}{2}} \Gamma(s / 2) \zeta(s) \tag{2.2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\pi^{-\frac{s}{2}} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})=\frac{2 \xi(\mathrm{~s})}{\mathrm{s}(\mathrm{~s}-1)} \tag{2.3}
\end{equation*}
$$

Using (1.2) the equation (2.3) can be written as

$$
\begin{equation*}
\pi^{-\frac{s}{2}} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})=\frac{2\left[\mathrm{~F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left\{\mathrm{l}_{1}\left(\mathrm{~s}-\frac{1}{2}\right)\right\}\right]}{\mathrm{s}(\mathrm{~s}-1)} \tag{2.4}
\end{equation*}
$$

In (2.4) replacing S by $(1-\mathrm{S})$ we find

$$
\begin{align*}
\pi^{-\left(\frac{1-s}{2}\right)} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-\mathrm{s}) & =\frac{2\left[\mathrm{~F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left\{\mathrm{l}_{1}\left(1-\mathrm{S}-\frac{1}{2}\right)\right\}\right]}{(1-\mathrm{s})(-\mathrm{s})} \\
& =\frac{2\left[\mathrm{~F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left\{\mathrm{l}_{1}\left(\frac{1}{2}-\mathrm{s}\right)\right\}\right]}{\mathrm{s}(\mathrm{~s}-1)} \\
& =\frac{2\left[\mathrm{~F}_{2}\left(\mathrm{l}_{1}\right)+\mathrm{F}_{1}\left(\mathrm{l}_{1}\right) \operatorname{Cosh}\left\{\mathrm{l}_{1}\left(\mathrm{~S}-\frac{1}{2}\right)\right\}\right]}{\mathrm{s}(\mathrm{~s}-1)} \tag{2.5}
\end{align*}
$$

A comparison of (2.5) and (2.4) gives

$$
\begin{equation*}
\pi^{-\left(\frac{1-s}{2}\right)} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)=\pi^{-\frac{s}{2}} \Gamma(s / 2) \zeta(s) \tag{2.6}
\end{equation*}
$$

Equation (2.6) is nothing but the functional equation of Riemann Zeta function given by (2.1). Thus the proof is established.

3. Conclusion:

The above proof is new and depends on the general analytical expression of Riemann Xi function $\xi(\mathrm{s})$ derived earlier [1].

References:

1. Debasis Biswas

Vixra : 2103. 0083 V - 2 .
2. Aleksandar Ivic : The Riemann Zeta function. Theory and applications.

Dover Publications. 2003. N. Y.
3. E. C. Titchmarsh : The theory of Riemann Zeta function. Second edition. O. U. P. 1986

