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Abstract

Properties such as the expectation values of energy and momentum of a quantum object can be
calculated exactly in quantum theory, but they cannot be simulated on a classical computer. This is
in part due to the fact that the physical nature of quantum objects is not yet understood (ontology
problem).
In this paper it is shown that it is possible to simulate observable properties of a quantum object on
a classical computer. For this purpose, the wave describing the quantum object is considered as a
physical element with a constant amplitude of a quarter of the Planck constant (Ψmax=h/4=const.).
As a result, the expectation values of energy and momentum, as well as the de Broglie wavelength,
can be simulated without the aid of further parameters.
This is expected to give new ideas to ontological issues.

Content
Abstract.................................................................................................................................................1
1   Introduction.....................................................................................................................................1
2   Assumptions....................................................................................................................................1
3   Simulations......................................................................................................................................2

3.1   Energy......................................................................................................................................2
3.2   Momentum...............................................................................................................................2
3.3   De Broglie wavelength of an electron.....................................................................................3

4   Motivation of some formulas..........................................................................................................4
4.1   E=h·f........................................................................................................................................4
4.2   p=h/λ........................................................................................................................................4

5   Summary..........................................................................................................................................5

1  Introduction
Quantum theory is comprised of a well-proven mathema-
tical set of rules, however, their physical interpretation is
still controversial [1-5, 9]. Related to this is the unsolved
problem of simulating observable properties of individual
quantum objects on a classical computer [6].
In this paper, two simple assumptions about the nature of
a quantum object are made and it is shown that properties
such as energy, momentum and de Broglie wavelength of
a single quantum object can be simulated on its basis.

2  Assumptions
In the major interpretations of quantum mechanics, such
as the Copenhagen Interpretation and  Quantum Bayesia-
nism, the wave representing the quantum object  is con-
sidered to be a mathematical entity for which there is no
equivalent in physical reality [7, 8].
For the purposes of the simulations presented in this pa-
per, the following assumptions are made:
• The function values of the wave have the unit of action

(corresponds to the unit of angular momentum kg·m²/s).
• The amplitude of the wave is constant and has the value

of a quarter of the Planck constant h (figure 1):
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|Ψmax|=
h
4
=const .≈1.65 ·10−34kg·m·m /s (1)

Ψmax: Amplitude of the quantum wave

• The wave can be spread over a wide area of space. If
the absolute function values of all maxima (wave crest
or wave trough) are added over all its locations (figure
2) a constant value of h/4 results.

Figure 1:  Schematic  representation  of  a quantum wave with  a
constant amplitude of h/4 in one spatial dimension.

Figure 2:  Schematic  representation  of  a quantum wave in  two
spatial  dimensions.  The sum of  the absolute  values within the
range of an amplitude (red lines) has a constant value of h/4.

An important question is whether it is possible to repro-
duce observable properties of a quantum object by simu-
lating it on a classical computer based on these assump-
tions?

3  Simulations

3.1  Energy

In quantum mechanics, energy is calculated by the energy
operator

Ê=i ℏ ∂
∂ t

(2)

ħ: reduced Planck constant ħ = h/2π
i: imaginary unit

which acts on the wave function Ψ. In other words, it exa-
mines the development of Ψ over time.
In  the  context  of  this  simulation,  the  wave  function  Ψ
describing  the  object  is  considered  not  as  an  abstract
mathematical  construct,  but  as  a  wave  with  a  constant

amplitude of  h/4 (equation  1). Based on equation  2, the
change in the functional values of such a wave is simu-
lated over time, in order to get the expectation value of the
energy:

⟨E ⟩=| ∂∂t Ψ ( t)| (3)

Additional parameters are not required! The change in the
wave  over  time  provides  the  expectation  value  of  the
energy directly.
As an example, we use a photon as our quantum object.
The speed of propagation of this object corresponds to the
speed of light. In this example, the change over time of
the  wave  representing  the  photon  for  different
wavelengths  will  be  simulated  (table  1).  Only  absolute
values will be considered.
For  comparison,  the  values  calculated  according  to  the
equation E=h·f are also given in table 1. Deviations from
the simulated results are possible due to the limited num-
ber of simulation steps.
You can carry out the simulation for other wavelengths by
yourself on the author's website:
https://www.quanten-krimi.de/pop/02/?ch0040?en

Conclusion: If  a  photon is  described as  a  wave with a
constant amplitude of h/4, the energy of the photon results
directly from the mean time change of this wave.

3.2  Momentum

In quantum mechanics, the momentum is calculated using
the momentum operator

p̂x=−i ħ ∂
∂x

(4)

which acts on the wave function Ψ. In this case the deve-
lopment of Ψ over space is considered. We limit ourselves
also to one spatial dimension x.
Based on equation  4,  the  local change in the functional
values of a wave with constant amplitude of  h/4 can be
used to get the expectation value of the momentum:

⟨ px ⟩=| ∂∂x Ψ (x)| (5)

The results of the simulations using a photon can also be
found in table 1. In the last column, the values calculated
using the equation  p=h/λ are given for comparison. You
can test it by yourself:
https://www.quanten-krimi.de/pop/02/?ch0070?en

Conclusion: If  a  photon is  described as  a  wave with a
constant amplitude of  h/4, the momentum of the photon
can be directly derived from the mean local change of this
wave.

https://www.quanten-krimi.de/pop/02/?ch0070?en
https://www.quanten-krimi.de/pop/02/?ch0040?en
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λ [nm] Energy [kg·m·m/s·s] Momentum [kg·m/s]

simulated
mean temporal change of the quantum wave

calculated
E=h·f

simulated
mean local change in the quantum wave

calculated
p=h/λ

Red light 700 2,838 · 10-19 2,838 · 10-19 9,466 · 10-28 9,466 · 10-28

Blue light 450 4,414 · 10-19 4,414 · 10-19 1,472 · 10-27 1,472 · 10-27

UV 300 6,622 · 10-19 6,621 · 10-19 2,209 · 10-27 2,209 · 10-27

Table 1: Energy and momentum of photons of different wavelengths λ. The values simulated on the basis of a quantum wave of con -
stant amplitude are highlighted in yellow. The calculated values are given for comparison.

3.3  De Broglie wavelength of an 
electron

In this section the quantum nature of an electron is con-
sidered. To do this, we build on the model of a photon
used for the simulation as a quantum wave with a constant
amplitude of h/4.
An electron, together with a positron, can be created from
a  photon  by  pair  production.  We  investigate  whether
observable properties of an electron can also be simulated
within  the  framework  of  the  assumptions  made  in
equation 1.
The simplified model used for the purpose of the simula-
tion represents an electron as a superposition of a back-
wards  and  forwards  propagating  light  wave.  The
wavelength of these "inner" waves (the two upper waves

in figure 3) is 2.4 10⋅ -12m in the case of an electron that is
not moving (Compton wavelength of the electron). This
corresponds to about twice the wavelength of the photon
required for pair formation.
When this object moves relative to an observer, the op-
tical Doppler effect occurs: The wavelength of the partial
wave in the direction of movement decreases:

(6)

λ0: Wavelength of the inner wave when the object is at rest
λF: Wavelength of the inner wave in the direction of movement
v: Speed of the object
c: Speed of light

Figure 3: Superposition of two waves of different wavelengths and opposite directions of propagation. The enveloping wave (envelope)
is shown in red.

speed
of the electron [m/s]

Wavelength of the inner
wave in the direction of

movement [m]

Wavelength of the inner
wave opposite to the direc-

tion of movement [m]

Wavelength of
enveloping wave [m]

De Broglie wavelength of
an electron

according to λ=h/p  [m]

10000 2,426229·10-12 2,426391·10-12 7.274·10-8 7.274·10-8

15000 2,426189·10-12 2,426432·10-12 4.849·10-8 4.849·10-8

80000 2,425663·10-12 2,426958·10-12 9.092·10-9 9.092·10-9

Table 2: De Broglie wavelength of an electron for different speeds. Values determined by superimposing two waves (yellow) and results
calculated according to λ=h/p (last column).

λF=λ0√ 1− v
c

1+ v
c
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The wavelength of the partial wave against the direction
of movement increases:

(7)

λb: Wavelength of the inner wave against the direction of movement

The  frequencies  f of  the  inner  waves  are  obtained  by
means of the relationship f=c/λ (c: speed of light).
As a result of the superposition of the partial waves, an
envelope wave forms (figure 3 below). The frequency fE

of which results from:

f E=
f F−f B

2
(8)

Table 2 shows the wavelengths of the envelope obtained
by simulation for various electron velocities. For compa-
rison the values calculated using λ=h/p are shown.
You can also carry out this simulation by yourself:
https://www.quanten-krimi.de/pop/04/?ch0040?en

4  Motivation of some formulas
Now there are completely different  options available to
determine the energy and momentum of a quantum ob-
ject:
- by calculation using the equations E=h·f and p=h/λ.
- by simulating the mean temporal or local change of a

wave with a constant amplitude of h/4.
The question is: Is there any connection?

4.1  E=h·f

According to the simulation in chapter  3.1, the expecta-
tion value of the energy of a quantum wave results from
the mean change of the wave over time. In the following,
this will be formulated mathematically. We only consider
absolute values.
The wave function for a harmonic wave that only depends
on time t is:

Ψ (t)=Ψmax⋅sin(2π⋅ t
T

) (9)

Ψmax = Maximum value (amplitude) of Ψ, T = period duration

The 1st derivative with respect to the time t gives: 

Ψ (t) '=Ψmax⋅
2π
T

⋅cos(2 π⋅ t
T

) (10)

In order to determine the expectation value of the energy,
we  require  the  mean  value  Ψ(t)' of  this  function.  The
mean value of an aligned cosine function can be determ-
ined from its maximum value:

Ψ '= 2
π
⋅Ψ 'max (11)

For the sake of clarity, we just omit the absolute symbols.

We require the maximum value Ψ'max. In equation 10, Ψ'

is  greatest  when  the  cosine  has  its  maximum possible
value of 1:

Ψ (t) 'max=Ψmax⋅
2π
T

⋅1 (12)

Ψ (t) 'max=Ψmax⋅
2π
T

(13)

Inserting equation 13 into equation 11, we have:

Ψ (t) '=2
π
⋅Ψmax⋅

2 π
T

(14)

Ψ (t) '=Ψmax⋅
4
T

(15)

The  period  T corresponds  to  the  reciprocal  of  the  fre-
quency:

T=1
f

(16)

With this we replace T in equation 15:

Ψ (t) '=Ψmax⋅4⋅f (17)

According to the assumption in equation 1, the amplitude
of a quantum wave corresponds to a quarter of the Planck
constant h. By substituting this in place of Ψmax in equa-

tion 17 we obtain:

Ψ (t) '=h
4
⋅4⋅f (18)

Ψ (t) '=h⋅f (19)

The mean time dependent change of a quantum wave can
therefore be calculated from the product h·f. According to
the simulation in chapter  3.1, this change over time cor-
responds to the energy E of a quantum wave:

Ψ (t) '=h⋅f=E (20)

Conclusion: The equation E=h·f results from the assump-
tion that a quantum object is described as a wave with a
constant  amplitude of  h/4.  Therefore,  the energy of  the
quantum object corresponds directly to the mean temporal
change of the wave.

4.2  p=h/λ

According to the simulation in chapter  3.2, the expecta-
tion value of the momentum of a quantum wave results
from the mean local change of the wave. In the following
this will be formulated mathematically.
The wave function for a harmonic wave that only depends
on one spatial dimension x is:

Ψ (x)=Ψmax⋅sin(2π⋅x
λ
) (21)

Ψmax = Maximum value (amplitude) of Ψ, λ = wavelength

The 1st derivative of equation 22 with respect to the loca-
tion x results in:

λb=λ0 √ 1+ v
c

1−v
c

https://www.quanten-krimi.de/pop/04/?ch0040?en
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Ψ (x) '=Ψmax⋅
2 π
λ

⋅cos(2 π⋅x
λ
) (22)

In  order  to  determine  the  expectation  value  of  the
momentum,  we  require  the  mean  value  Ψ(x)' of  this
function (equation 11). For this, we have to determine the
maximum value of the 1st  derivative  Ψ'max.  In equation
22,  Ψ' is  greatest  when  the  cosine  has  its  maximum
possible value of 1:

Ψ (x) 'max=Ψ max⋅
2π
λ

⋅1 (23)

Ψ (x) 'max=Ψ max⋅
2π
λ

(24)

We insert equation 24 into equation 11:

Ψ (x )'=2
π
⋅Ψmax⋅

2π
λ

(25)

Ψ (x )'=Ψmax⋅
4
λ

(26)

According to the assumption in equation 1, the amplitude
of a quantum wave corresponds to a quarter of the Planck
constant  h. By substituting this in the place of  Ψmax in

equation 26 we obtain:

Ψ (x )'=h
4
⋅4
λ

(27)

Ψ (x )'=h
λ

(28)

The mean local change of a quantum wave can therefore
be  calculated  from  the  quotient  h/λ.  According  to  the
simulation in chapter 3.2, this local change corresponds to
the momentum p of a quantum wave:

Ψ (x )'=p=h
λ

(29)

Conclusion: The equation p=h/λ results from the assump-
tion that a quantum object is considered to be a wave with
a constant amplitude of h/4. Therefore, the momentum of
the  quantum  object  can  be  directly  obtained  from  the
mean local change of the wave.

5  Summary
In order to simulate observable properties of a quantum
object on a classical computer, an assumption was made
that a quantum object can be described as a wave with a
constant amplitude of  h/4 (h = Planck constant). On this
basis the expectation value of the energy of the quantum
object results directly from the mean temporal change of
the wave, the expectation value of the momentum from its
mean local change. If a model in the form of oppositely
propagating light waves is used for quantum objects with
a  rest  mass,  the  speed-dependent  wavelength  of  the
enveloping  wave  corresponds  to  the  de  Broglie  wave-
length observed.
The  assumptions  made  here  are  expected  to  allow  a
deeper understanding of the nature of quantum objects.



6

[1] A. Zeilinger: Die Wirklichkeit der Quanten. Spektrum der Wissenschaft No. 11, (2008)

[2] A. Hobson: There are no Particles, there are only Fields. AM. J. Phys. 81, 211 (2013)

[3] A. Cabello: Interpretations of quantum theory: A map of madness. arXiv:1509.04711 [quant-ph] (2016)  

[4] A. Ananthaswamy: Quantenmechanik kein Ausweg aus der Unwirklichkeit. Spektrum der Wissenschaft 
No. 12, 13-19 (2018)

[5] T.T. Yong: A no-go theorem for Quantum theory ontological models.  arXiv:2012.05712 [quant-ph] 
(2020)

[6] D. Tong: Machen Quanten Sprünge? Spektrum der Wissenschaft Higlights 3.17, 24-27, (2017)

[7] C. A. Fuchs, A. Peres: Quantum theory needs no ‘interpretation’. Phys. Today 53, No. 3, 70–71 (2000)

[8] D-M. Cabaret, T. Grandou, E. Perrier: Status of the wave function of Quantum Mechanics, or, What is 
Quantum Mechanics trying to tell us?.  arXiv:2103.05504 [physics.hist-ph] (2021)

[9] Natalie Wolchover: Was ist ein Teilchen?. Spektrum der Wissenschaft No. 4, 12-18 (2021)

https://www.spektrum.de/magazin/was-ist-ein-teilchen/1838662
https://arxiv.org/abs/2103.05504
https://physicstoday.scitation.org/doi/10.1063/1.883004
https://www.spektrum.de/news/machen-quanten-spruenge/1254827
https://arxiv.org/abs/2012.05712
https://arxiv.org/abs/2012.05712
https://www.spektrum.de/magazin/realitaet-und-kausalitaet-in-der-quantenphysik/1603740
https://www.spektrum.de/magazin/realitaet-und-kausalitaet-in-der-quantenphysik/1603740
https://arxiv.org/abs/1509.04711
https://aapt.scitation.org/doi/10.1119/1.4789885
https://www.spektrum.de/magazin/die-wirklichkeit-der-quanten/969246

	Abstract
	1 Introduction
	2 Assumptions
	3 Simulations
	3.1 Energy
	3.2 Momentum
	3.3 De Broglie wavelength of an electron

	4 Motivation of some formulas
	4.1 E=h·f
	4.2 p=h/λ

	5 Summary

