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Abstract

We give a template for all forms of integration by parts: single use,

iterative, and recursive.

Introduction

This article provides fast ways to use integration by parts (IBP). Text books
typically give examples of three instances where IBP is useful: regular (one
use of IBP); iterative (more than one use); and recursive (or reduction) for-
mulations. The three are treated separately [2]. We start with a single use
example and show how a template can be used for it. This template also
works for the iterative and recursive cases; we show this with further exam-
ples. If the program works, our template will be easily recalled and give fast
ways to use IBP for all typical IBP problems. This template is based on
tabular integration by parts [1].

Single Use

There are several integration problems that require integration by parts.
An example of a standard function that does not have any other technique
that works is to integrate lnx. We will start from scratch with the goal of
integrating lnx.
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One might recall that IBP is a consequence of the product rule for differ-
entiation. That is (uv)′ = u′v + v′u gives

∫

(uv)′ =

∫

u′v +

∫

v′u

and this in turn implies
∫

u′v = uv −

∫

v′u.

We can infer from this derivation that IBP is for integrands that are products
of two functions: these functions should be chosen so the integrations and
differentiations involved are possible, if not easy. In the case of lnx, we can
make 1 a function; it is easily integrated and lnx is easily differentiated. We
assign u′ = 1 and v = lnx If u′ = 1 then u =

∫

u′ =
∫

1 = x and v = lnx
gives v′ = 1/x. So

∫

u′v =
∫

lnx = x lnx −
∫

xx−1 = x lnx − x. As usual,
differentiation confirms that this is correct.

Here’s a faster way to remember IBP. Make the following template, Table
1. Table 2 shows the template’s use for

∫

lnx. Reading the table, the diagonal

A B C
1

∫

d/dx
2 (u′)
3 + (u) (v)
4 − (v′)

Table 1: Read off
∫

u′v = uv −
∫

v′u. The uv is given by the multiplication
of row 3 cell entries.

B2 and C3 gives the start up integral
∫

(1) ln x, row 3 gives the uv part or
x lnx. Now ask if the integrand formed from multiplying the cell contents
of B3 and C4 is integrable. If so, integrate it. In this case the integral is
∫

xx−1 =
∫

1, an easy integration. The answer is
∫

lnx dx = x lnx−x (plus
C of course). We are reminded to use the negative sign via cell A4.

Here’s another example:
∫

tan−1(x) dx. We can integrate
∫

x

1+x2 dx with
the usual substitution: u = 1 + x2, du = 2x, giving

1

2

∫

2x dx

1 + x2
=

1

2

∫

du

u
=

1

2
ln(1 + x2).

Thus the answer is
∫

tan−1(x) dx = x tan−1(x) − 1
2
ln(1 + x2).
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A B C
1

∫

d/dx
2 1(u′)
3 + x(u) lnx(v)
4 − 1/x(v′)

Table 2: It is fast to fill in the template for 1 and ln(x).

A B C
1

∫

d/dx
2 1(u′)
3 + x(u) tan−1(x)(v)
4 − 1/(1 + x2)(v′)

Table 3: Is
∫

x

(1+x2)
easily integrated?

Iterative Use

Integrating lnx requires one instance of IBP, but many problems require
multiple or iterative uses of IBP.

One can find an easy integral using this template. For example, in Table
4 we calculate

∫

x7 using the two functions x3 and x4. We know the answer
is x8/8. With iterative IBP one idea is to chose a function that when re-
peatedly differentiated yields the zero function. The template allows for the
continuation of the pattern of the single use idea. We, in effect, convert the
integral to the sum of uv rows. Table 4 shows these ideas.

The product of xs in each row is x8, so finding the dot product of the
coefficients in each column should give us 1/8. Using Maple we get a confir-
mation of this, Figure 1.

In Table 5, we’ve split up x7 using x4 and x3. We, of course, get different
coefficients, but Maple will show the dot product of the coefficients in each
column is 1/8. It seems to work. Let’s try a more challenging integration.

For a single use of IBPT we ask a question, but for the iterative use we
actually get the integral. Consider the integral

∫

x2 sin(x) dx.
We quickly make our template for a single use, Table 6. We ask whether

or not −
∫

2x cos x is easily integrated. It isn’t so we ramp up to the iterative
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A B C

1
∫

d/dx

2 x3(u′)

3 + x4

4
(u) x4(v)

4 − x5

20
4x3(v′)

5 + x
6

120
12x2

6 − x
7

840
24x

7 + x
8

8∗840
24

8 − 0

Table 4: A proof of concept for iterative IBP via a template (IBPT).

Figure 1: Maple computes the dot product of the coefficients in columns B
and C. As expected, we get 1/8.

mode and continue integrating column B and differentiating column C.
The structure of the table allows for a new round to start. We are, in

effect, just resetting the u′ and v rows. The iterative continuation is given
in Table 7. We arrive at −x2 cos x + 2x sinx + 2cos x and taking derivatives
we get a confirmation.
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A B C

1
∫

d/dx

2 x4(u′)

3 + x5

5
(u) x3(v)

4 − x6

30
3x2(v′)

5 + x
7

210
6x

6 − x
8

8∗210
6

7 + 0

Table 5: Different partitions of 7 yield the same dot product result.

A B C

1
∫

d/dx

2 sinx(u′)

3 + − cos x(u) x2(v)

4 − 2x(v′)

Table 6: The single use question is asked and then the iterative mode clicks
in.

Here’s another example of iterative integration by parts using a template.
Integrate x2ex. It’s easy. Referring to Table 8, The answer is x2ex−2xex+2ex.
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A B C

1
∫

d/dx

2 sin x(u′)

3 + − cos x(u) becomes new u’ x2(v)

4 − − sin x becomes new u 2x(v′) becomes new v

5 + cos x 2 becomes new v’

6 − 0

Table 7: The iterative mode yields the complete answer.

A B C

1
∫

d/dx

2 ex(u′)

3 + ex(u) x2(v)

4 − ex 2x(v′)

5 + ex 2

6 − 0

Table 8: Integrating x2ex using iterative integration by parts with template.

Recursive

Recursive formulations are needed for such integrals as
∫

cosn(x) dx,
∫

sinn(x) dx,
and

∫

eax cos(bx) dx. The idea is to repeatedly (iteratively) use IBP until a
constant times the original integrand appears. One can then solve for the
original integrand. Thus with a single use if the original integrand appears,
stop; if it doesn’t continue with the iterative mode until such an integrand
appears. Examples will give the idea.

Create a recursive formula that allows for integrating
∫

cosn(x) dx. Using
Table 9, we contemplate whether the pattern

∫

cosn(x) dx = sin(x) cosn−1(x) + (n − 1)

∫

cosn−2(x) sin2(x) dx (1)

has a right side integral that could give a recursive formula – a reduction in
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the power of cos(x). Yes, we can rewrite (1) this integral:

∫

cosn−2(x) sin2(x) dx =

∫

cosn−2(x)(1 − cos2(x)) dx

and this gives
∫

cosn−2(x)(1 − cos2(x)) dx =

∫

cosn−2(x) dx −

∫

cosn(x) dx

A B C

1
∫

d/dx

2 cos(x)(u′)

3 + sin(x)(u) cosn−1(x)(v)

4 − (n − 1) cosn−2(x)(− sin(x))(v′)

Table 9: A single use IBP for a possible recursive formulation.

With a little algebra this yields

∫

cosn(x) dx =
sin(x) cosn−1(x) + (n − 1)

∫

cosn−2(x) dx

n
, (2)

a power reducing formula.
We can use a notational system to avoid writing a lot. In the spirit of

synthetic division, the formula in (2) is

{n} :
1

n
[ n-1 1] +

n − 1

n
{ n-2 }

where the brackets indicate first cos to a power times sin to a power and
curly braces mean apply the formula for the enclosed natural number. So
reads cos4(x) is

{4} :
1

4
[ 3 1] +

3

4
{ 2 }

and then applying the formula for a power of 2

{4} :
1

4
[ 3 1] +

3

4
{
1

2
[ 1 1] +

1

2
{0}}
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yielding
cos3(x) sin(x)

4
+

3

4

(

cos(x) sin(x)

2
+

x

2

)

.

We check this with Maple, Figure (2).

Figure 2: Maple confirms the formula for the fourth power of cosine is correct.

Here is the notation for cos(x)5:

{5} :
1

5
[ 4 1] +

4

5
{
1

3
[ 2 1] +

2

3
{

∫

1}}

giving
cos4(x) sin(x)

5
+

4

5

(

cos2(x) sin(x)

3
+

2

3
sin(x)

)

.

Maple in Figure 3 confirms that this is correct.

Figure 3: Maple confirms the formula for the fifth power of cosine is correct.
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Using our template allows for some flexibility. We can continue down the
template iteratively or stop for a single use – as we did with the first recursive
formulation. We see this flexibility in our next example.

Create a reduction formula for
∫

eax cos bx dx. Table 10 asks us to con-
sider the v′u integral. It isn’t in the right form. We need the original integral
times something to be repeated. So, as indicated in Table 11, we continue
for another iteration.

With a little algebra we arrive at our formula. We first read off from this
Table

∫

eax cos bx dx =
eax sin bx

b
+

a

b2
eax cos bx−

a2

b2

∫

eax cos bx dx.

The goal is not to reach zero in column C (as with usual iterations) but to
see a repeat of the original integral. We ask a question of the product given
by cells B3 and C4: does the integral formed from this product repeat the
original with a multiplier? It does.

A B C

1
∫

d/dx

2 cos bx(u′)

3 + 1
b
sin bx(u) eax(v)

4 − aeax(v′)

Table 10: Single use IBP doesn’t deliver back the original integral.

Next, letting Jn =
∫

eax cos(bx) dx, we find

Jn +
a2

b2
Jn =

eaxb sin(bx) + eaxa cos(bx)

b2
. (3)

Now

Jn +
a2

b2
Jn = Jn(1 +

a2

b2
) = Jn(

a2 + b2

b2
)

and with (3) this gives

Jn =
eaxb sin(bx) + eaxa cos(bx)

a2 + b2
.

Figure 4 provides a check that this formulation is correct using Maple.
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A B C

1
∫

d/dx

2 cos bx(u′)

3 + 1
b
sin bx(u) eax(v)

4 − − 1
b2

cos bx aeax(v′)

5 + ” a2eax

Table 11: Another iteration and we have the needed re-occurrence of the
original integral.

Figure 4: Maple confirms that this reduction formulation is correct.

Conclusion

There are many integral problems that can be generated from these tem-
plates. One can break in at any row and go down and over equals straight
across minus another down and over. So, for example, using Table 5, the
integral given by B4 times C5 equals B5 times C5 - integral of B5 times C6.
This makes it clear why this template works; one is just resetting with each
move down the columns the same structure as the first embedded IBP.

Another interesting aspect of these tables is one can use them in reverse,
going up rather than going down. So, using the same Table 5, what is the
fourth derivative of x8/8(210), it is four up from where it occurs: x4. See
Figure 5. Going up using column C, we find nesting integrals – an usual form
of integration. See Figure 6.
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Figure 5: As integration is the inverse of differentiation, such results can be
observed.

Figure 6: Nesting intervals – all with same dx are an unusual form.
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