On the change in electrical power caused by loading an electrical circuit with an impedance

Aloys J. Sipers*, Joh. J. Sauren ${ }^{\dagger}$

April 30, 2021

Abstract

In this paper we apply the theory of two-ports to present and to proof two real-valued theorems and two complex-valued theorems on the difference in electrical power of an unloaded and a loaded circuit driven by a voltage source or a current source, respectively.

1 Theorems on real-valued impedances

Figure 1
For given currents i_{1}, i_{2} and a given two-port matrix

$$
\mathbb{T}:=\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]
$$

the voltages u_{1} and u_{2} can be determined from

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\mathbb{T} \cdot\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]
$$

We then have the following results:

[^0]
Lemma

Figure 2

Figure 3

1. The equivalent resistance of the circuit shown in Figure 2 equals

$$
R_{e}=a
$$

2. The equivalent resistance of the circuit shown in Figure 3 loaded with resistor R equals

$$
\widetilde{R}_{e}=a-\frac{c^{2}}{b+R}
$$

Proof

1. $R_{e}=(a-c)+(c)=a$
2. $\widetilde{R}_{e}=(a-c)+(c) \|((b-c)+R)=(a-c)+\frac{c \cdot(b-c+R)}{c+(b-c+R)}$

$$
=a-\frac{c^{2}}{b+R}
$$

From this lemma the following theorem can be derived:

Theorem 1

Let u be the source voltage of a circuit, u_{o} the open source voltage between the terminals A and B of the unloaded voltage source circuit and R_{i} the internal resistance of the unloaded voltage source circuit, respectively.

Figure 4

Figure 5

Figure 6

Let p be the electrical power of the unloaded circuit displayed in Figure 4. Further, let \widetilde{p} be the electrical power of the circuit displayed in Figure 5 loaded with resistor R. Then

$$
\widetilde{p}-p=\frac{u_{o}^{2}}{R_{i}+R}
$$

Proof

Let \mathbb{T} be the two-port matrix of the circuit

$$
\mathbb{T}:=\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]
$$

Using part (1) of the lemma

$$
p=\frac{u^{2}}{R_{e}}=\frac{u^{2}}{a}
$$

Using part (2) of the lemma

$$
\widetilde{p}=\frac{u^{2}}{\widetilde{R}_{e}}=\frac{u^{2}}{a-\frac{c^{2}}{b+R}}
$$

From the circuit displayed in Figure 4 it follows

$$
u_{o}=\frac{c}{(a-c)+c} \cdot u=\frac{c}{a} \cdot u
$$

and

$$
R_{i}=(b-c)+c \|(a-c)=b-c+\frac{c \cdot(a-c)}{c+(a-c)}=\frac{a \cdot b-c^{2}}{a}
$$

Then

$$
\frac{u_{o}^{2}}{R_{i}+R}=\frac{\left(\frac{c}{a} \cdot u\right)^{2}}{\frac{a \cdot b-c^{2}}{a}+R}=\frac{c^{2}}{a \cdot(b+R)-c^{2}} \cdot \frac{u^{2}}{a}=\widetilde{p}-p
$$

The theorem states that the change in electrical power between the loaded and the unloaded circuit equals the electrical power of the loaded Thévenin circuit:

$$
p_{\text {loaded }}-p_{\text {unloaded }}=p_{\text {Thévenin loaded }}
$$

From the previous lemma the following theorem can be derived:

Theorem 2

Let i be the current source of a circuit, u_{o} the open source voltage between the terminals A and B of the unloaded current source circuit and R_{i} the internal resistance of the unloaded current source circuit, respectively.

Let p be the electrical power of the unloaded circuit displayed in Figure 7. Further, let \widetilde{p} be the electrical power of the circuit displayed in Figure 8 loaded with resistor R.
Then

$$
p-\widetilde{p}=\frac{u_{o}^{2}}{R_{i}+R}
$$

Proof

Let \mathbb{T} be the two-port matrix of the circuit

$$
\mathbb{T}:=\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]
$$

Using part (1) of the lemma

$$
p=i^{2} \cdot R_{e}=i^{2} \cdot a
$$

Using part (2) of the lemma

$$
\widetilde{p}=i^{2} \cdot \widetilde{R}_{e}=i^{2} \cdot\left(a-\frac{c^{2}}{b+R}\right)
$$

From the circuit displayed in Figure 7 it follows that

$$
u_{o}=i \cdot(c)=c \cdot i
$$

and

$$
R_{i}=(b-c)+(c)=b
$$

Then, it holds that

$$
\frac{u_{0}^{2}}{R_{i}+R}=\frac{(c \cdot i)^{2}}{b+R}=\frac{c^{2}}{b+R} \cdot i^{2}=p-\widetilde{p}
$$

Note that the expression $p-\widetilde{p}$ for the change in electrical power for a circuit connected across a current source equals $-(\widetilde{p}-p)$ where $(\widetilde{p}-p)$ expresses the change in electrical power for a voltage source.

The theorem states that the change in electrical power between the unloaded and the loaded circuit equals the electrical power of the loaded Thévenin circuit:

$$
p_{\text {unloaded }}-p_{\text {loaded }}=p_{\text {Thévenin loaded }}
$$

Example 1

Application of the derived theorems to the Wheatstone bridge/twin parallel voltage divider.

Given: $R_{1}=10 \Omega, R_{2}=40 \Omega, R_{3}=20 \Omega, R_{4}=30 \Omega$.

Figure 10

Figure 11

The two-port matrix of this circuit equals

$$
\begin{aligned}
\mathbb{T} & :=\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]= \\
& =\frac{1}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot\left[\begin{array}{cc}
\left(R_{1}+R_{2}\right) \cdot\left(R_{3}+R_{4}\right) & R_{2} \cdot R_{3}-R_{1} \cdot R_{4} \\
R_{2} \cdot R_{3}-R_{1} \cdot R_{4} & \left(R_{1}+R_{3}\right) \cdot\left(R_{2}+R_{4}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
25 & 5 \\
5 & 21
\end{array}\right] \Omega
\end{aligned}
$$

The equivalent resistance of the unloaded circuit equals

$$
R_{e}=a=25 \Omega
$$

The equivalent resistance of the circuit loaded with resistor $R=4 \Omega$ equals

$$
\widetilde{R}_{e}=a-\frac{c^{2}}{b+R}=24 \Omega
$$

Given the source voltage $u=600 \mathrm{~V}$ of the circuit displayed in Figure 12

Figure 12

Figure 13

Figure 14

The electrical power of the unloaded circuit equals

$$
p=\frac{u^{2}}{R_{e}}=14400 \mathrm{~W}
$$

The electrical power of the circuit loaded with resistor $R=4 \Omega$ equals

$$
\widetilde{p}=\frac{u^{2}}{\widetilde{R}_{e}}=15000 \mathrm{~W}
$$

The open source voltage between the terminals A and B equals of the unloaded circuit equals

$$
u_{0}=\frac{c}{a} \cdot u=120 \mathrm{~V}
$$

The internal resistance of the unloaded circuit

$$
R_{i}=\frac{a \cdot b-c^{2}}{a}=20 \Omega
$$

The change in electrical power according to Theorem 1 amounts to

$$
\widetilde{p}-p=\frac{u_{o}^{2}}{R_{i}+R}=600 \mathrm{~W}
$$

Example 2

Given the source current $i=25 \mathrm{~A}$ of the circuit displayed in Figure 15

Figure 15

Figure 16

Figure 17

The electrical power of the unloaded circuit equals

$$
p=i^{2} \cdot R_{e}=15625 \mathrm{~W}
$$

The electrical power of the circuit loaded with resistor $R=4 \Omega$ equals

$$
\widetilde{p}=i^{2} \cdot \widetilde{R}_{e}=15000 \mathrm{~W}
$$

The open source voltage between the terminals A and B of the unloaded circuit amounts to

$$
u_{o}=c \cdot i=125 \mathrm{~V}
$$

The internal resistance of the unloaded circuit equals

$$
R_{i}=b=21 \Omega
$$

The change in electrical power according to Theorem 2 is equal to

$$
p-\widetilde{p}=\frac{u_{o}^{2}}{R_{i}+R}=625 \mathrm{~W}
$$

2 Theorems on complex-valued impedances

In the complex plane the power of an impedance can be expressed as

$$
P:=\frac{|U|^{2}}{Z^{*}}=|I|^{2} \cdot Z
$$

In the complex plane these expressions are no analytic functions of the complex source voltage U or the complex source current I. The electrical powers p and \widetilde{p} are real-valued functions of the source voltage u or the source current i and the entries of the two-port matrix \mathbb{T}. The variables u, i and the entries of the two-port matrix \mathbb{T} are real-valued. Yet, the domain of these variables can be extended to the complex plane, to obtain analytic continuations of the functions p and \widetilde{p}. For this reason, the theorems stated and derived above, also apply to a complex valued source voltage U or a complex valued source current I and impedances.

Theorem 3

Let U be the source voltage of a circuit and U_{o} being the open source voltage between the terminals A and B of the unloaded circuit. Let Z_{i} be the internal impedance of the unloaded circuit.

Let P the electrical power of the unloaded circuit displayed in Figure 18 Let \widetilde{P} the electrical power of the circuit displayed in Figure 19 loaded with
impedance Z.
Then

$$
\widetilde{P}-P=\left(\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{U^{*}}{U}\right)^{*}
$$

Remark: note that

$$
\widetilde{P}-P \neq \frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}},|\widetilde{P}-P|=\left|\frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}\right|
$$

Proof

According to Theorem 1

$$
\widetilde{p}-p=\frac{U_{o}^{2}}{Z_{i}+Z}
$$

The proof proceeds by multiplying this identity with the factor U^{*} / U followed by conjugating the result:

$$
\begin{gathered}
\frac{U^{*}}{U} \cdot(\widetilde{p}-p)=\frac{U^{*}}{U} \cdot\left(\frac{U^{2}}{\widetilde{Z}_{e}}-\frac{U^{2}}{Z_{e}}\right)=\frac{U \cdot U^{*}}{\widetilde{Z}_{e}}-\frac{U \cdot U^{*}}{Z_{e}}=\frac{|U|^{2}}{\widetilde{Z}_{e}}-\frac{|U|^{2}}{Z_{e}}=\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{U^{*}}{U} \\
\left(\frac{|U|^{2}}{\widetilde{Z}_{e}}-\frac{|U|^{2}}{Z_{e}}\right)^{*}=\frac{|U|^{2}}{\widetilde{Z}_{e}^{*}}-\frac{|U|^{2}}{Z_{e}^{*}}=\widetilde{P}-P=\left(\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{U^{*}}{U}\right)^{*}
\end{gathered}
$$

As remarked, the change in electrical power and the electrical power of the Thévenin circuit differ but are equal in magnitude.

Theorem 4

Let I the current source of a circuit. Let U_{o} be the open source voltage between the terminals A and B of the unloaded circuit. Let Z_{i} be the internal impedance of the unloaded circuit.

Figure 21

Figure 22

Figure 23

Let P be the electrical power of the unloaded circuit displayed in Figure 21 and \widetilde{P} be the electrical power of the circuit displayed in Figure 22 loaded with resistor Z.
Then

$$
P-\widetilde{P}=\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{I^{*}}{I}
$$

Remark. Note that

$$
P-\widetilde{P} \neq \frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}},|P-\widetilde{P}|=\left|\frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}\right|
$$

Proof

According to Theorem 2

$$
p-\widetilde{p}=\frac{U_{o}^{2}}{Z_{i}+Z}
$$

The proof proceeds by multiplying this identity with the factor I^{*} / I :

$$
\begin{gathered}
\frac{I^{*}}{I} \cdot(p-\widetilde{p})=\frac{I^{*}}{I} \cdot\left(I^{2} \cdot Z_{e}-I^{2} \cdot \widetilde{Z}_{e}\right)=I \cdot I^{*} \cdot Z_{e}-I \cdot I^{*} \cdot \widetilde{Z}_{e}= \\
|I|^{2} \cdot Z_{e}-|I|^{2} \cdot \widetilde{Z}_{e}=P-\widetilde{P}=\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{I^{*}}{I}
\end{gathered}
$$

As has been remarked, the change in electrical power and the electrical power of the Thévenin circuit differ but are equal in magnitude.

Example 3

Given: $Z_{1}=-30 \jmath \Omega, Z_{2}=10 \Omega$

The two-port matrix of this circuit equals

$$
\mathbb{T}:=\left[\begin{array}{ll}
A & C \\
C & B
\end{array}\right]=\left[\begin{array}{cc}
Z_{1}+Z_{2} & Z_{2} \\
Z_{2} & Z_{2}
\end{array}\right]=\left[\begin{array}{cc}
10-30 \jmath & 10 \\
10 & 10
\end{array}\right] \Omega
$$

The equivalent impedance of the unloaded circuit equals

$$
Z_{e}=A=10-30 \jmath \Omega
$$

The equivalent impedance of the circuit loaded with impedance $Z=20$ ر Ω equals

$$
\widetilde{Z}_{e}=A-\frac{C^{2}}{B+Z}=8-26 \jmath \Omega
$$

Given the source voltage $U=740+370 \jmath \mathrm{~V}$ of the circuit displayed in Figure 26

Figure 26

Figure 27

Figure 28

The electrical power of the unloaded circuit equals

$$
P=\frac{|U|^{2}}{Z_{e}^{*}}=6845-20535 \jmath \mathrm{VA}
$$

The electrical power of the circuit loaded with impedance $Z=20 \jmath \Omega$ equals

$$
\widetilde{P}=\frac{|U|^{2}}{\widetilde{Z}_{e}^{*}}=7400-24050 \jmath \mathrm{VA}
$$

The open source voltage between the terminals A and B of the unloaded circuit equals

$$
U_{o}=\frac{C}{A} \cdot U=-37+259 \jmath \mathrm{~V}
$$

The internal impedance of the unloaded circuit equals

$$
Z_{i}=\frac{A \cdot B-C^{2}}{A}=9-3 \jmath \Omega
$$

Change in electrical power according to Theorem 3

$$
\widetilde{P}-P=\left(\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{U^{*}}{U}\right)^{*}=555-3515 \jmath \mathrm{VA}
$$

Note that

$$
\widetilde{P}-P=555-3515 \jmath \mathrm{VA} \neq \frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}=1665+3145 \jmath \mathrm{VA}
$$

whereas

$$
|\widetilde{P}-P|=\left|\frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}\right|=185 \sqrt{370} \mathrm{VA}
$$

Example 4

Given

$$
Z_{1}=15 \Omega, Z_{2}=30 \jmath \Omega, Z_{3}=40 \Omega
$$

Figure 29: Circuit

Figure 30: Circuit

The two-port matrix of this circuit equals

$$
\mathbb{T}:=\left[\begin{array}{ll}
A & C \\
C & B
\end{array}\right]=\left[\begin{array}{cc}
Z_{1}+Z_{2} & Z_{1}+Z_{2} \\
Z_{1}+Z_{2} & Z_{1}+Z_{2}+Z_{3}
\end{array}\right]=\left[\begin{array}{cc}
15+30 \jmath & 15+30 \jmath \\
15+30 \jmath & 55+30 \jmath
\end{array}\right] \Omega
$$

The equivalent impedance of the unloaded circuit equals

$$
Z_{e}=A=15+30 \jmath \Omega
$$

The equivalent impedance of the circuit loaded with impedance $Z=-20 \jmath \Omega$ equals

$$
\widetilde{Z}_{e}=A-\frac{C^{2}}{B+Z}=24+12 \jmath \Omega
$$

Given the source current $I=100-75 \jmath \mathrm{~A}$ of the circuit displayed in Figure 31

Figure 31

Figure 32

Figure 33

The electrical power of the unloaded circuit equals

$$
P=|I|^{2} \cdot Z_{e}=234375+468750 \jmath \mathrm{VA}
$$

The electrical power of the circuit loaded with impedance $Z=-20 \mathrm{\jmath} \Omega$ equals

$$
\widetilde{P}=|I|^{2} \cdot \widetilde{Z}_{e}=375000+187500 \jmath \mathrm{VA}
$$

The open source voltage between the terminals A and B of the unloaded circuit equals

$$
U_{o}=C \cdot I=3750+1875 \jmath \mathrm{VA}
$$

The internal impedance of the unloaded circuit equals

$$
Z_{i}=B=55+30 \jmath \Omega
$$

Change in electrical power according to Theorem 4

$$
P-\widetilde{P}=\frac{U_{o}^{2}}{Z_{i}+Z} \cdot \frac{I^{*}}{I}=-140625+281250 \jmath \mathrm{VA}
$$

Note that

$$
P-\widetilde{P}=-140625+281250 \jmath \mathrm{VA} \neq \frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}=309375+56250 \jmath \mathrm{VA}
$$

whereas

$$
|P-\widetilde{P}|=\left|\frac{\left|U_{o}\right|^{2}}{\left(Z_{i}+Z\right)^{*}}\right|=140625 \sqrt{5} \mathrm{VA}
$$

3 Acknowledgement

The authors acknowledge the support of Ad Klein and of the Department of Engineering of Zuyd University of Applied Sciences.

[^0]: *Corresponding author, Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, aloys.sipers@zuyd.nl
 ${ }^{\dagger}$ Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, hans.sauren@zuyd.nl

