Interpretation and solution of the cosmological constant problem.

Stéphane Wojnow,

wojnow.stephane@gmail.com

revised 3 May 2021

Abstract:

The cosmological constant problem or vacuum catastrophe has long been a mystery of physics. We bring a solution and a simple interpretation.

It is sufficient to calculate the dark energy density parameter $\Omega\Lambda$ at Planck time, origin of our universe :

We first consider its expression in the Friedman equation :

$$\Omega_{\Lambda} = \frac{\Lambda c^2}{3H^2}$$

then

with $t_H = 1/H$,

where t_{H} is Hubble time and H is Hubble constant :

$$\Omega\Lambda$$
, $tp = 1/3 \Lambda c^2 tp^2$

The vacuum catastrophe = $\Lambda / lp^{-2} = \Lambda lp^{-2}$

or when the vacuum catastrophe is express in energy density (J/ m^3) instead of $m^{\text{-}2}$

$$\frac{\epsilon_{\Lambda}}{\epsilon_p} = \frac{\frac{3\Lambda c^4}{8\pi G}}{F_p l_p^{-2}}$$

where $F_p = c^4/G$ is the Planck force

as

$$lp = c tp$$

$$lp^2 = c^2 tp^2$$

The vacuum catastrophe = $\Lambda c^2 tp^2$

The vacuum catastrophe = $3 \Omega \Lambda, tp$

Conclusion

The vacuum catastrophe would be the energy density parameter of cosmological constant at Planck time in the Λ CDM model with a factor of 3 (and with a divisor of 8 pi if we express the problem in terms of energy density, J/m³), and it would no longer be a problem

References:

S.E. Rugh and H. Zinkernagel, The Quantum Vacuum and the Cosmological Constant Problem , arXiv:hep-th/0012253

For the value l_p^{-2} = 3,83 * $10^{69}\,\mathrm{m^{-2}}$ from the QFT Lucas Lombriser, université de Genève, communiqué de presse , https://www.unige.ch/communication/communiques/2019/cosmologie-une-solution-a-la-pire-prediction-en-physique/