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Abstract

The influence of the bremsstrahlung on the spin motion of muon is expressed by the
equation which is the analogue and generalization of the Bargmann-Michel-Telegdi equation.
The new constant is involved in this equation. This constant can be immediately determined
by the experimental measurement in FERMILAB of the spin motion of muon, or, it follows
from the classical limit of genneralized SM electrodynamics with radiative corrections (Pardy,
2008; 2009).
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1 Introduction

Fermi National Accelerator Laboratory near Chicago announced that muons elementary
particles similar to electrons wobbled more than expected while whipping around a
magnetized ring. Both measurements of the muons wobbliness, or magnetic moment,
significantly overshoot the theoretical prediction, as calculated by theoretical physicists.
The Fermilab researchers estimate that the difference has grown to a level that physicists
need to claim a discovery.

The discrepancy is probably caused by unknown particles giving muons an extra push.
It is the breakdown of the 50-year-old Standard Model of particle physics describing the
known elementary particles and interactions. According to Graziano Venanzoni, one of
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the leaders of the Fermilab Muon g-2 experiment and a physicist at the Italian National
Institute for Nuclear Physics, the existence of the new particle is plausible.

On the other hand Dominik Stöckinger, a theorist at the Technical University of
Dresden and the Fermilab Muon g-2 team, said that physicists can’t say whether exotic
new particles are pushing on muons until they agree about the effects of the 17 Standard
Model particles they already know about (Quanta magazine, 2021).

The similar scepticism is involved in the statement by Andreas Crivellin of CERN and
by Hoferichter of the University of Bern: ”it could be that the data, or the way it is
interpreted, is misleading”.

The crucial problem is also the calculation of the magnetic moment of elementary
particles in QED, SM, and QCD, which was in the best form performed by Julian
Schwinger in QED. His method was applied by author (Pardy, 1979; 2019a; 2019b) in
case of the Lee model of elementary particle. The author approach is of deep pedagogical
meaning.

We know that the measurement of the g-factor is based on the rotation of spin.
However spin rotation is described by the Bargaman-Michel-Telegdi equation whih is
in this experiment ignored. At the same time there is the influence of the synchrotron
radiation on the spin motion in the electromagnetic field. The equation which involves
the bremstrahlung interaction with spin was derived by author (Pardy, 2008; 2009). The
theory of the g-factor without the generalized BMT equation, or, so called the Bargaman-
Michel-Telegdi-Pardy equation (BMTP) is evidently incmplete and must be revized. So,
the crucial problem is the synchrotron radiation interaction of muon in FERMILAB,
which evidently influences the motion of the electron in accelerators in CERN and in
FERMILAB.

The equation which describes the classical motion involving radiative reaction is so
called the Lorentz-Dirac equation, which differs from the so called Lorentz equation only
by the additional term which describes the radiative corrections. The equation with the
radiative term is as follows (Landau et al., 1988):

mc
duµ
ds

=
e

c
Fµνu

ν + gµ, (1)

where uµ is the four-velocity and the radiative term was derived by Landau et al. in the
form (Landau et al., 1988):

gµ =
2e3

3mc3

∂Fµν
∂xα

uνuα − 2e4

3m2c5
FµαF

βαuβ +
2e4

3m2c5

(
Fαβu

β
)

(Fαγuγ)uµ. (2)

It is possible to show that the space components of the 4-vector force gµ is of the form
(Landau et al., 1988)

f =
2e3

3mc3

(
1− v2

c2

)−1/2 {(
∂

∂t
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)
E +

1

c

[
v

(
∂

∂t
+ (v∇)

)
H

]}
+

2e4

3m2c3

{
E×H +

1

c
H× (H× v) +

1

c
E(vE)

}
−

2e4

3m2c5
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c2

)v{(E +
1

c
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)2

− 1

c2
(Ev)2

}
. (3)
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Bargmann, Michel and Telegdi (Berestetzkii et al., 1989;) derived so called BMT
equation for motion of spin in the electromagnetic field, in the form

daµ
ds

= αFµνa
ν − βuµF νλuνaλ, (4)

where aµ is so called axial vector describing the classical spin and constants α and β were
determined after the comparison of the postulated equations with the non-relativistic
quantum mechanical limit. The result of such comparison is the final form of so called
BMT equations:

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ, (5)

where µ is magnetic moment of electron following directly from the Dirac equation and
µ′ is anomalous magnetic moment of electron which can be calculated as the radiative
correction to the interaction of electron with electromagnetic field and follows from
quantum electrodynamics. The BMT equation has more earlier origin. The first attempt
to describe the spin motion in electromagnetic field using the special theory of relativity
was performed by Thomas (1926). However, the basic ideas on the spin motion was
established by Frenkel (1926, 1958). After appearing the Frenkel basic article, many
authors published the articles concerning the spin motion (Ternov et al., 1980; Tomonaga,
1997). The mechanical model of spin was constructed by Uhlenbeck and Goudsmith
(1926), or, in the very sophisticated form by Ohanian (1984) and other authors. However,
we know at present time that spin of electron is its physical attribute which follows only
from the Dirac equation. Also the Schrödinger Zitterbewegung of the Dirac electron as a
point-like particle follows from the Dirac equation.

It was shown by Rafanelli and Schiller (1964), (Pardy, 1973) that the BMT equation
can be derived from the classical limit, i.e. from the WKB solution of the Dirac equation
with the anomalous magnetic moment. Equation (5) is also the basic equation of the
non-dissipative spintronics.

2 Equation of motion for the spin-vector

If we introduce the average value of the vector of spin in the rest system by the quantity
ζ, then the 4-pseudovector aµ is of the from aµ = (0, ζ). The momentum four-vector of a
particle is pµ = (m, 0) in the rest system of a particle. Then the equation

aµpµ = 0 (6)

is valid not only in the rest system of a particle but in the arbitrary system as a
consequence of the relativistic invariance. The following general formula is also valid
in the arbitrary system

aµaµ = −ζ2. (7)

The components of the axial 4-vector aµ in the reference system where particle
is moving with the velocity v = p/ε can be obtained by application of the Lorentz
transformation to the rest system and they are as follows (Berestetzkii et al., 1989):
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a0 =
|p|
m

ζ‖, a⊥ = ζ⊥, a‖ =
ε

m
ζ‖, (8)

where suffices ‖,⊥ denote the components of a, ζ parallel and perpendicular to the
direction p. The formulas for the components can be also rewritten in the more compact
form as follows (Berestetzkii et al., 1989):

a = ζ +
p(ζp)

m(ε+m)
, a0 =

ap

ε
=

ζp

m
, a2 = ζ2 +

(pζ)2

m2
. (9)

The equation for the change of polarization can be obtained immediately from the
BMT equation in the following form (Berestetzkii et al., 1989):

da

dt
=

2µm

ε
a×H +

2µm

ε
(av)E− 2µ′ε

m
v(aE) +

+
2µ′ε

m
v(v(a×H)) +

2µ′ε

m
v(av)(vE), (10)

where we used the relativistic relations c = 1, ds = dt
√

1− v2 , ε = m
√

1− v2 and the
following components of the electromagnetic field (Landau et al., 1988):

F µν =


0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0

 d
= (E,H); Fµν = (−E,H). (11)

Inserting equation a from eq. (9) into eq. (10) and using equations

p = εv, ε2 = p2 +m2,
dp

dt
= eE + e(v ×H),

dε

dt
= e(vE), (12)

we get after long but simple mathematical operations the following equation for the
polarization ζ

dζ

dt
=

2µm+ 2µ′(ε−m)

ε
ζ ×H +

2µ′ε

ε+m
(vH)(v × ζ) +

2µm+ 2µ′ε

ε+m
ζ × (E× v). (13)

The special interest is concerned not only in the change of the absolute quantity of
the polarization, but in the change with regard to the direction of motion represented by
the unit vector n = v/v. We write the ploarization in the form:

ζ = nζ‖ + ζ⊥. (14)

Then using eqs. (12), (13) and (14), we get the following equation for the parallel
component of the polarization (Berestetzkii et al., 1989):

dζ‖
dt

= 2µ′(ζ⊥(H× n)) +
2

v

(
µm2

ε2
− µ′

)
(ζ⊥E). (15)
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3 Spin motion equation with the bremsstrahlung reaction

It is meaningful to consider the BMT equation with the radiative corrections to express
the influence of the synchrotron radiation on the motion of spin. To our knowledge
such equation, the generalized BMT equation, was not published and we here present
the conjecture of the form of such equation. The equation of the spin motion under the
influence of the synchrotron radiation is suggested as an analogue to the BMT construction
(Pardy, 2008; 2009):

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ + Λfµ(axial), (16)

where the term fµ(axial) is generated as the ”axialization” of the force elaborated from
the radiation term gµ. The axialization is the operation which was used by Bargmann,
Michel and Telegdi and it consists in the construction of the axial vector from the four-
vector force. We see from the right side of the BMT equation how to construct such axial
equation. Or, the additional axial 4-vector constructed from the bremsstrahlung force is
as following:

fµ(axial) = Λuµ(gαaα) = Λuµ[g0a0 − g · a]. (17)

So, the generalized BMT equation which involves also the influence of synchrotron
radiation on spin motion is as follows:

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ+

Λuµ

{
2e3

3mc3

∂Fλν
∂xα

uνuα−

2e4

3m2c5
FλαF

βαuβ +
2e4

3m2c5

(
Fαβu

β
)

(Fαγuγ)uλ

}
aλ. (18)

Using eq. (17), we can write eq. (18) in the form

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ + Λuµ[g0a0 − g · a]. (19)

The constant Λ is new physical constant, which cannot be determined from the classical
theory of the spin motion. This constant can be determined immediately from the spin
motion observed experimentally. However, this constant follows logically from the classical
limit of quantum electrodynamics (QED) involving radiative corrections. The solution of
this problem in the framework of the WKB limit of the Dirac equation with radiation
term was not still published. On the other hand, Bayer (1971), Bayer et al. (1973)
derived, by the different method, the equation of the spin motion in electromagnetic field
where the influence of radiative reaction on the spin motion is involved. This equation
was used later for the determination of the polarization of electrons in the bent crystals
(Baryshevsky et al. 1979).

While the 3-vector components of the radiative force are involved in the equation (3)
the zero component must be determined by the extra way. We have:
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g0 = P1 + P2 + P3, (20)

where the terms of eq. (20) follow from eq. (2) in the form (c = 1):

P1 =

(
2e3

3m

)
∂F0ν

∂xα
uνuα, (21)

P2 =

(
− 2e4

3m2

)
F0αF

βαuβ, (22)

P3 =

(
2e4

3m2

)(
Fαβu

β
)

(Fαγuγ)u0 (23)

with

u =

(
1√

1− v2
,

v√
1− v2

)
. (24)

After some algebraic operations, we write the set of quantities P1, P2, P3 as follows:

P1 =

(
2e3

3m

)
1

1− v2
×

{(∂tE) · v + (∂xE) · vvx + (∂yE) · vvy + (∂zE) · vvz} , (25)

P2 =

(
2e4

3m2

)
1√

1− v2

{
E2 − (H× E) · v)

}
(26)

P3 =

(
− 2e4

3m2

)
1

(1− v2)3/2

{
(E + (v ×H))2 − (E · v)2

}
. (27)

The relation of this equation to the (dissipative) spintronics cannot be a priori
excluded. Such equation will have fundamental meaning for the work of LHC where
the synchrotron radiation influences the spin motion of protons in LHC.

4 The general solution of the spin precession equation

The equation(13) involving the 3-vector of the radiation term (17) can be in general
written in the following form:

d

dt
ζk =

3∑
l=1

aklζl + Λ
3∑
l=1

bklζl, (28)

where the coefficients akl are the corresponding coefficient in eq. (13) and bkl are the
corresponding coefficient in eq. (17).

It follows from the theory of the differential equations that the solution of the system
(28) is in general of the following form:

ζk(t) = αke
iΩt, (29)
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where αk and Ω are some constants. The time derivative of eq. (29) is now

dζk
dt

= αk(iΩ)eiΩt. (30)

After insertion of eqs. (29) and (30) into eq. (28), we get the following system after
some elementary modification:

(a11 + Λb11 − iΩ)α1 + (a12 + Λb12)α2 + (a13 + Λb13)α3 = 0 (31a)

(a21 + Λb21)α1 + (a22 + Λb22 − iΩ)α2 + (a23 + Λb23)α3 = 0 (31b)

(a31 + Λb31)α1 + (a32 + Λb32)α2 + (a33 + Λb33 − iΩ)α3 = 0. (31c)

The nontrivial solution of the system (31) for the determination of αi is possible if and
only if the determinat of the system is zero, or,

det(A+ ΛB − iΩE) = 0, (32)

where A,B,E are matrices

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (33)

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 (34)

E =

 1 0 0
0 1 0
0 0 1

 . (35)

Equation (32) is the equation for the determination of the three complex frequencies
Ωk = Ω1,Ω2,Ω3. To the every frequency corresponds the solution

ζk(t) = βke
iΩkt (36)

and it means that the solution of the system (31) is given as the linear combination of
the particular solutions. Or,

ζk =
3∑
l=1

βkle
iΩl(Λ)t, (37)

where βkl are some coefficients which can be determined by insertion of (37) in eq. (31).
However, Ω-s are the complex quantities depending on the small parameter Λ. So we

can write:

Ωl = <Ωl + i=Ωl (38)

Using eq. (38) we can write eq. (37) in the following form:
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ζk =
3∑
l=1

(
βkle

i<Ω(Λ)t
)
e−=Ωl(Λ)t. (39)

It may be easily see that for Λ = 0 we get the solution of the spin motion which is not
influenced by the synchrotron radiation. The corresponding Ω(0)-s follow from eq. (32)
with Λ = 0.

We also observe that that solution (39) involves term with exp{−=Ωl(Λ)t}, where
Λ is small parameter. The physical meaning of this term is that it expresses the
damping of spin precession caused by the bremsstrahlung. The damping is possible only
if =Ωl(Λ) > 0. Bayer, Katkov and Fadin used the specific method for determination of
such factor for the case of the motion of electron in electromagnetic magnetic field (Bayer,
1971; Bayer et al., 1973). Baryshevsky (1979) applied the Bayer-Katkov-Fadin results for
the determination of the polarization of electrons caused by the bent crystals.

The result of the Bayer-Katkov-Fadin method is the term exp{−δl(t/T )}, where δl are
some appropriate constants. They calculated T in the form

1

T
=

5

8

√
3α

h̄2

m2
γ5|v̇|3, (40)

where α ≈ 1/137 and γ is the Lorentz factor.
We see that we can define Tl by the relations

1

Tl
= =Ωl(Λ) (41)

and for the small parameter Λ it is possible to use approximation

=Ωl(Λ) ≈ =Ωl(0) + Λ
d=Ωl(Λ)

dΛ

∣∣∣∣∣
0

+ · · · . (42)

In other words, we get also three damping factors as Bayer et al. (1973) by the
different approach to the bremsstrahlung problem. The method of Schiller and Rafanelli
(Rafanelli and Schiller, 1964) based on the WKB solution of the Dirac equation with
bremsstrahlung term was not used by Bayer (1971) and Bayer et al. 1973). To our
knowledge, the Schiller and Rafanelli method was not still applied to the problem of the
influence of the bremsstrahlung on the spin motion.

5 Discussion

We have considered here the influence of the synchrotron radiation on the spin motion
of a charged particle moving in the homogeneous magnetic field. It is well known that
the synchrotron radiation also influences the trajectory of the charged particle. However
we do not consider this influence. It is well known that not only the the synchrotron
radiation is produced during the motion of a particle in the magnetic field but also the
so called spin light, which is generated by spin motion of a particle. We suppose that the
influence of the spin light on the spin motion is so small that it is possible to neglect such
influence.
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The intensity of the synchrotron radiation is, as it is well known, given by the formula
(Ternov, 1994; Bordovitsyn et al., 1995):

Wclass. synch. rad. =
2

3

e2c

R2
γ4; γ =

ε

m0c2
, (43)

where R is the radius of the circular motion, ε is the energy of the moving particle.
The intensity of the spin light is expressed by the formula:

Wspin light =
2

3

1

c3

(
d2

dt2
µ

)2

=
2

3

µ2
0

c3
ω4
Rζ

2
⊥. (44)

After comparison of formula (28) and (29), we see that the the intensity of the spin
light is smaller than the intensity of the synchrotron radiation. So, the influence of the
spin light on the spin motion can be neglected.

There is the second possibility how to generalize the BMT equation. It consists in
axialization of the bremsstrahlung force in the following way:

gµ(axial) =

2e3

3mc3

∂Fµν
∂xα

uνaα − 2e4

3m2c5
FµαF

βαaβ +
2e4

3m2c5

(
Fαβu

β
)

(Fαγuγ) aµ. (45)

Then, such force multiplied with the appropriate constant can be add to the original
BMT equation. We think that the second conjecture which is presented in this article
cannot be a priori excluded.

The verification of the bremsstrahlung equation (16) - the Bargman-Michel-Telegdi-
Pardy equation - can be evidently verified by all circular accelerators over the world,
including LHC and FERMILAB muon accelerator.
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