APS Virtual April Meeting, Poster SP01.78, April 19, 2021

# **Do Event Horizons Really Exist?** or *Gravitation Without Divergences*

Alan M. Kadin Retired Princeton Junction, NJ USA Email <u>amkadin@alumni.princeton.edu</u>

# Summary

- Black holes surrounded by event horizons are standard solutions of orthodox gravitational theory, and are believed to have been observed in galactic centers and binary stars.
- But the theory has never been critically tested for strong fields, and observations of compact astronomical objects do not validate event horizons with divergent spacetime.
- Non-divergent models give rise to compact objects without event horizons, that are not strictly black holes.
- Recent observations of black holes from the Event Horizon Telescope and the Laser Interferometric Gravitational-Wave Observatory may represent confirmation bias of noisy data.
- The prudent scientific approach is to regard black holes and event horizons as interesting mathematical objects that may or may not exist in the real universe.

# Weak and Strong Grav. Potentials

- General Relativity (GR) predicts time dilation and length contraction as function of normalized grav. potential φ (ratio of grav. to rest energy)
  - At distance R from mass M,  $\phi$  = -GM/Rc<sup>2</sup> = -R<sub>s</sub>/2R, where R<sub>s</sub> is Schwarzschild radius of M
  - Largest  $\varphi$  in solar system is at surface of sun:  $\varphi$  = -2 x 10^{-6}
- GR verified in tests for  $|\phi| \ll 1$ .
  - Curvature of light by sun, rotation of perihelion of Mercury, grav. red shift.
- Black holes and event horizons correspond to  $\phi \rightarrow 1$ .
  - GR *not* verified or tested in this regime.

#### Large $\phi$ Gravity Undetermined

- GR time dilation ~  $(1+2\phi)^{-0.5} \approx 1 \phi + (3/2) \phi^2 \dots$
- But many formulas have same low-order behavior  $- (1 - \phi/n)^n \approx 1 - \phi + [n(n-1)/2] (\phi/n)^2 \dots \text{ for any } n$   $- \exp(-\phi) \approx 1 - \phi + \phi^2/2 \dots$
- A divergence in time at a location where  $\varphi$  is finite seems non-physical.
  - May be mathematical artifact of model extrapolated outside region of validity.
- (1-φ) is simplest expression, no higher order terms.
   *Select this as simple model for comparison with GR [1].*

### **Divergence in Gravitational Theory**

|                    | Orthodox Theory                | Non-Divergent Theory |
|--------------------|--------------------------------|----------------------|
| Time Dilation      | <b>(1+2</b> φ) <sup>-0.5</sup> | (1-ф)                |
| Length Contraction | <b>(1+2</b> φ) <sup>0.5</sup>  | 1/(1-\$)             |

- Orthodox theory diverges for  $\phi$  = -0.5, for R = R<sub>s</sub>
  - Corresponds to event horizon, factors are undefined
- Simple non-divergent theory matches orthodox theory for  $|\phi| << 1$ .
  - Defined for all R and all values of  $\phi$ .
- Impossible to distinguish two theories based on tests in solar system.

#### Non-Divergent Gravity

- Without event horizon, non-divergent gravity bends light with index of refraction n =  $(1-\phi)^2 > 1$ .
  - For large  $|\phi|$ , large n traps most photon trajectories.
  - But narrow cone of radial light emission (with red shift)
- So non-divergent theory leads to gravitationally compact "dim star" rather than black hole [2].
- Permits access to dense phase with large  $\phi >>1$ , possibly dense quark-lepton plasma similar to early universe.
- All space is continuous no separated regions.

### Black Hole Candidates [3]

- Massive stars
  - Theoretical predictions that stars with greater than 3 solar masses should collapse to black hole.
  - But difficult to determine solar masses of isolated stars.
- Stars in binary systems
  - Orbiting stars with matter streaming from one to another ("accretion disk").
  - Many such black-hole binaries identified.
- Supermassive objects in centers of galaxies
  - Most galaxies have at their center a compact object with millions of solar masses: "supermassive black hole."

#### Evidence for Event Horizons?

- X-ray emission from binary black holes consistent with modeling of event horizon, but not unique.
  - Would also follow from non-divergent models.
- Need accurate measurement of φ(R) approaching 0.5, together with time dilation (grav. red shift).
  - No location within solar system or close enough to measure accurately.
- Many observations of light bending for very distant objects, but with no independent measurement of  $\phi.$
- No direct or indirect verification of GR at or near event horizon – still consistent with non-divergence.

#### LIGO Detection of Black Hole Mergers

- Laser Interferometric Gravity Wave Observatory (LIGO) created to detect gravitational radiation from spiraling mergers of binary black holes.
  - Signals measured from two or more distant detectors, correlated and fit to theoretical model.
- In 2016 [4], signals detected that were interpreted as merger of 2 black holes, each 30 solar masses, in distant galaxy 1 billion light years away.
  - Widely acclaimed, Nobel Prize for LIGO in 2017.
- But one researcher [5] questioned whether these signals were real, as opposed to noise selected with a matching filter.
  - "It is a truism that, if gravitational waves are all you look for, gravitational waves are all you will ever find." [6]
- So do these really prove the existence of black holes?

# EHT Image of Black Hole



- A report in 2019 [7] provided an image of a supermassive black hole in another galaxy, observed with the "Event Horizon Telescope", EHT, an array of 8 distant radio telescopes designed to image supermassive black holes.
  - This was not a simple image, but rather a digitally processed signal in the presence of noise at the limit of spatial resolution.
  - This appears to show an image of a black central region surrounded by a bright ring, i.e., a black hole surrounded by a bright event horizon.
- However, I suggest that this may provide an example of confirmation bias – they saw exactly what they were looking for.
  - This may not be as convincing as has been presented.

# Conclusions

- A black hole with a surrounding event horizon is one of the most dramatic predictions of GR.
- Recent astronomical observations of black holes, in galactic centers and binary stars, are widely seen as convincing.
- However, all quantitative tests of GR have been for the grav. potential φ ~ 10<sup>-6</sup>, whereas φ = 0.5 for the divergence defining the event horizon.
- An alternative simple model matches GR for weak gravity, but avoids divergence for larger φ, and enables smooth transition to a "dim star" with φ >>1, which is not a black hole.
- Despite LIGO and EHT results, we should be skeptical of black holes, at least until accurate measurements for large φ are available.

## References

- A.M. Kadin, "Gravitation and Cosmology Without Divergences," Preprint, 2018. <u>https://vixra.org/abs/1804.0231</u>
- 2. A.M. Kadin, "Why We Should Be Skeptical of Black Holes," Preprint, 2020. https://vixra.org/abs/2005.0152
- 3. "Black Hole," Wikipedia article <u>https://en.wikipedia.org/wiki/Black\_hole</u>
- 4. "First Observation of Gravitational Waves," Wikipedia article. <u>https://en.wikipedia.org/wiki/First\_observation\_of\_gravitational\_waves</u>
- M. Brooks, "Grave Doubts over LIGO's Discovery of Gravitational Waves," New Scientist, Oct. 2018. <u>https://www.newscientist.com/article/mg24032022-600-exclusive-grave-doubts-over-ligos-discovery-of-gravitational-waves/</u>
- A.D. Jackson, et al., "Noise residuals for GW150914 using maximum likelihood and numerical relativity templates," J. Cosmol. & Astroparticle Phys., May 2019. <u>https://arxiv.org/abs/1903.02401</u>
- 7. "Event Horizon Telescope," Wikipedia article. <u>https://en.wikipedia.org/wiki/Event\_Horizon\_Telescope</u>